

Electric & Magnetic Field Study Report for

Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project

Electric & Magnetic Field Study Report		eport Applies to		
EMF-OHL-003	Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Distribution	Transmission 🗸
Revision: 2.00	Classification: Public Issue Date: September 25			

Revision	Overview of Amendment & Text Affected	Previous Document	Revision Author	Date
1.0	N/A	-	-	-
2.0	Administrative Changes	1	СТ	18/09/25

	Name	Title
Author		OHL Engineer
Checked by		Assistant Engineering Manager
Approved by		Principal Engineer

Summary

This report summarises the assessments of Electric and Magnetic Fields (EMF) associated with the proposed Beauly Blackhillock New Deer Peterhead 400kV Overhead Line Project (the 'Proposed Development'), focusing on its compliance with the exposure limits in the UK's Code of Practice 'Power Lines: Demonstrating compliance with EMF public exposure guidelines (DECC: 2012)', validation process and assessment of the more complex arrangements. It is proposed to use an AAAC Araucaria conductor which will be a triple-bundled configuration per phase, the conductor will be supported by lattice steel tower structures which are of an AS4 design.

SSEN Transmission undertook a comprehensive assessment of the EMF levels using PLS CADD software for two levels of current, 3370A (Amperes) and 5000A, for both transposed (optimal) and untransposed phasing scenarios. PLS CADD is an internationally recognised software for overhead line design. To validate the results, an independent consultant, WSP, was engaged, and they used an alternative software package for the assessment, known as SES CDEGS. Both analyses produced consistent results, ensuring the accuracy and reliability of the findings.

The assessed EMF levels comply fully with the exposure limits set out in the UK's Code of Practice. These guidelines are based on internationally recognised limits and form the basis of the framework for EMF safety in the UK. The results confirm that EMF levels remain within the permissible thresholds, demonstrating the Proposed Development's compliance with the Code of Practice.

	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
EMF-OHL-003			Distribution	Transmission
				•
Revision: 2.00	Classification: Public Issue Date: September 25			

Table of Contents

1	Introdu	ction	4
1.1	Objectiv	ve of EMF Study	4
1.2	Project	Background	4
2	Electric	and Magnetic Field	5
2.1	Introdu	ction to Electric and Magnetic Field Study	5
2.2	Electric	Fields	5
2.3	Magnet	ic Fields	5
2.4	EMF Ex	posure limits	5
3	EMF Ca	culations	7
3.1	Line Mo	odelling Parameters	7
3.2	Design (Calculations	7
3.3	Summa	ry of Assessment and Further Precautions	10
4	Validati	on of EMF Result	.12
5	Comple	x OHL Arrangements	.13
5.1	Cumula	tive Assessment	13
5.2	Comple	x Crossings	16
6	Conclus	ion	.17
Apper	ndix A	Tower Geometry	.18
Apper	ndix B	PLS CADD Electric and Magnetic Field Calculations	.19
Apper	ndix C	WSP Assessment	.23
Apper	ndix D	PLS CADD Report for Cumulative Assessment	.48
Apper	ndix E	Arcadis Complex EMF Assessment Report	.59

Electric & Magnetic Field Study Report		Applies to		
EMF-OHL-003	EMF-OHL-003 Beauly to Blackhillock to New Deer to Peterhead 400 kV		Distribution	Transmission
	Overhead L	ine Project		✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

1 Introduction

This document presents an assessment, results and compliance statement of the proposed Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line (OHL) Project (the 'Proposed Development') in terms of Electric and Magnetic Fields (EMF). This report is applicable to the new build OHL and the specific complex OHL arrangements detailed in Section 5 only.

1.1 Objective of EMF Study

The objective of this study is to assess the Electric and Magnetic Field (EMF) levels generated by the Proposed Development and to determine compliance with the UK's Code of Practice 'Power Lines: Demonstrating compliance with EMF public exposure guidelines (DECC: 2012)¹. This report summarises the studies carried out on EMF levels from the proposed OHLs to demonstrate a compliant design. The design calculations were done using PLS CADD software with the results being independently validated by Consultants using SES CDGES software.

1.2 Project Background

Scottish and Southern Electricity Networks Transmission ("SSEN Transmission") is proposing to construct and operate approximately 158 kilometres (km) of new double circuit 400 kilovolts (kV) OHL between the proposed Fanellan and Greens 400 kV substations and 28 km of new double circuit 400 kV OHL between the proposed Greens and Netherton 400 kV substations.

The proposed 400 kV OHL will consist of steel lattice towers using a new tower series known as the ASTI SSE400 or AS4 for short. These towers are expected to average 57 m in height across the routes. The conductor system is proposed to be 3 x 700 mm² AAAC Araucaria (also referred to as triple bundle) with 500 mm bundle spacing. The circuit is designed to function up to 90°C while maintaining a minimum ground clearance of 9 m under normal conditions. Although it is capable of operating at to 90°C, it is not currently intended to be used at this maximum rating.

¹ Power Lines: Demonstrating compliance with EMF public exposure guidelines (DECC: 2012) https://assets.publishing.service.gov.uk/media/5a796799ed915d07d35b5397/1256-code-practice-emf-public-expguidelines.pdf accessed: 18 September 2025

	HL-003 Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
EMF-OHL-003			Distribution	Transmission ✓
Revision: 2.00	Classification: Public Issue Date: September 25			

2 Electric and Magnetic Field

2.1 Introduction to Electric and Magnetic Field Study

OHLs are used to carry high voltage electricity across long distances and are a source of electric and magnetic fields. There are long established concerns around the potential health effects of exposure of these fields. As a result, OHLs have been subject to a large body of scientific research and regulatory initiatives. A summary of the known potential impacts is provided in this section.

2.2 Electric Fields

Electric fields are found wherever there is electricity. Electric fields are created by the presence of electric charges and are measured in volts per meter (V/m). An electric field is associated with any device or wire that is connected to a source of electricity, even when a current is not flowing. Electric fields are easily shielded by common objects such as trees, fences, and walls. It has been determined there is no body of evidence indicating a relationship between exposure to electric fields and human disease. However, strong electric fields can lead to micro-shocks from poorly earthed objects and sensory impacts (reversible on removal from the field and temporary in duration). Therefore, it is necessary to understand and control the electric field strength.

2.3 Magnetic Fields

Magnetic fields are created by charges (electrons) moving in a conductor, such as a wire. The number of electrons moving through a conductor at any given time is called the current (measured in amperes). As the powerflow increases, so does the magnetic field. The magnetic field decreases as the distance from the source increases. Scientific studies have identified that there is a statistical association between magnetic fields and childhood leukaemia, however the evidence of the association has weakened in recent years. No biological mechanism has been found for this relationship and since this potential relationship was identified in the 1960's, subsequent studies have shown a steady decline in the potentially elevated risk. This is despite powerflows, and thus the magnetic field strength from OHLs, increasing over the same period. There is insufficient evidence of magnetic fields being linked to other diseases or cancers. As the statistical association with childhood leukaemia remains, it is acknowledged as a potential impact and thus it is considered necessary to control the magnetic field strength to reduce the potential risk.

2.4 EMF Exposure limits

To ensure the safety of the public due to EMF emissions from OHLs, the UK Government issued, following consultation, a Code of Practice for the industry 'Power Lines: Demonstrating compliance with EMF public exposure guidelines' issued via the Department of Energy & Climate Change in 2011 and updated in 2012. This was based on levels set by 1998 guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These levels are set to minimise any health risk posed by the OHL. Additionally, whilst being low risk, the statistical association with childhood leukaemia was recognised and the UK Government further introduced a precautionary measure requiring optimal phasing, where reasonably possible, in the Cc

The Code of Practice sets the maximum levels for long term public exposure as 360 μ T for magnetic fields and 9 kV/m for electric fields. Long term exposure relates to places of residence or similar where people regularly

Electric & Magnetic Field Study Report		Applies to		
EMF-OHL-003			Distribution	Transmission ✓
Revision: 2.00	Classification: Public Issue Date: September 25			

spend extended periods of time. The SSEN Transmission OHL design standard TG-NET-OHL-506 Rev 2.0 defines the exposure limits in accordance with the Code of Practice.

The following characteristics are defined by TG-NET-OHL-506 Rev 2.0 for calculation of the EMF fields from OHLs:

- Fields shall be measured directly below the line.
- Fields shall be calculated with maximum continuous current and voltage.
- > The conductors shall be modelled at the design minimum clearance.
- > Double circuit vertical transmission lines shall have optimum phase arrangement to reduce imbalance EMF and induced ground currents.

The UK Government have reconfirmed the principles and limits set out in the Code of Practice with their latest policy on EMF. National Policy Statement EN-5², (NPS EN-5) which was reissued in November 2023 and came into force on 17 January 2024. This policy confirmed the current UK Government guidance, informed by relevant international guidance, is therefore still considered appropriate.

https://assets.publishing.service.gov.uk/media/65a78a5496a5ec000d731abb/nps-electricity-networks-infrastructure-en5.pdf accessed: 18 September 2025

² National Policy Statement EN-5

	DO3 Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
EMF-OHL-003			Distribution	Transmission ✓
Revision: 2.00	Classification: Public Issue Date: September 25			

3 EMF Calculations

This section summarises the SSEN Transmission calculations of EMF for the proposed OHLs.

3.1 Line Modelling Parameters

The Proposed Development is being designed with a triple bundled AAAC Araucaria conductor per phase on AS4 Towers (a modified version of the SSE400). The phase configurations are considered as optimal phasing i.e. a fully transposed phase arrangement.

The following conductor system design is proposed as shown in Table 3.1 below.

Conductor	Construction	Diameter (mm)	Resistivity (nΩm)	No. of Sub conductors	Bundle Distance (mm)	Max. Operating Temperature (°C)
Araucaria	AAAC 700mm²	37.26	30.5	3	500	90

Table 3.1 - Conductor System

Two power flow scenarios were considered:

- 1. Intended maximum power flow; 3370 Amps (winter pre-fault continuous based on a summer pre-fault continuous power flow of 2090MVA),
- 2. Maximum possible power flow; 5000A (maximum winter pre-fault continuous considering substation limitations)

It should be noted that although analysis has been carried out up to a maximum current of 5000A, the OHL is only intended to operate up to 3370A but the full capability has been considered to be conservative.

The proposed structure design for the OHL is the AS4 series of lattice steel towers, specifically designed for the Proposed Development. The proposed tower outline drawing for the standard suspension tower (AS4-AD) is attached in Appendix-A.

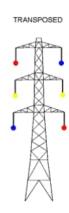
3.2 Design Calculations

The EMF calculations were performed in-house by SSEN Transmission's Onshore Capital Delivery Project Engineering team using PLS-CADD Software, an internationally recognised tool by the transmission industry. The OHL was modelled on the basis of the parameters defined in Section 3.1 of this report. The calculations were performed for both transposed and untransposed (for reference only) phase arrangement and calculated at middle of the span where the conductor is nearest to the ground level; the worst-case scenario. These calculations were made for a range of different ground clearance options to determine the minimum ground clearance needed to ensure compliance with the Code of Practice. The smallest, minimum ground clearance which was found to be compliant is shown in green for each of the following scenarios:

Transposed: Maximum possible power flow;

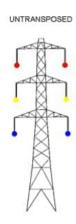
	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
EMF-OHL-003			Distribution	Transmission ✓
Revision: 2.00	Classification: Public Issue Date: September 25			

Transposed: Required maximum power flow;


Untransposed: Maximum possible power flow; and

Untransposed: Required maximum power flow.

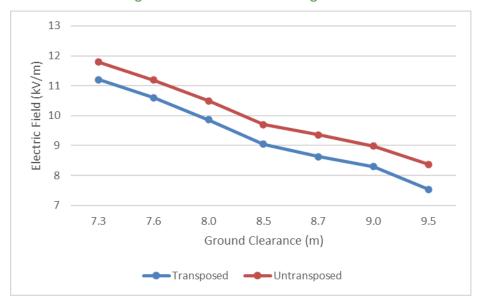
The below tables summarise the EMF level for the range of heights checked. The EMF reports, generated by the PLS-CADD software, used to populate these tables are enclosed in Appendix-B. Where cells are highlighted red, this indicates the value exceeds the exposure limits set by the Code of Practice. Where cells are highlighted green, this indicates the value is less than the exposure limits.


Table 3.2 - Transposed Phase Arrangement

Current: 5000 A				Current: 3370 A		
	TRANSPO					
Clearance (m)	Electric Field (kV/m)	Magnetic Field (uT)		Clearance (m)	Electric Field (kV/m)	Magnetic Field (uT)
7.3	11.20	111.20		7.3	11.20	74.90
7.6	10.6	108.30		7.6	10.60	72.96
8.0	9.86	104.36		8.0	9.86	70.34
8.5	9.05	96.47		8.5	9.05	65.02
8.7	8.63	93.12		8.7	8.63	62.76
9.0	8.30	89.36		9.0	8.30	60.22
9.5	7.54	83.24		9.5	7.54	44.65

Table 3.3 - Un-Transposed Phase Arrangement

Current: 5000 A				Cui	rent: 3370	Α
		UNTRANSPO	S	ED (RYB-RYB)		
Clearance (m)	Electric Field (kV/m)	Magnetic Field (uT)		Clearance (m)	Electric Field (kV/m)	Magnetic Field (uT)
7.3	11.79	92.50		7.3	11.79	67.80
7.6	11.19	91.66		7.6	11.19	64.90
8.0	10.49	90.55		8.0	10.50	61.03
8.5	9.70	83.91		8.5	9.70	56.56
8.7	9.36	81.11		8.7	9.36	54.67
9.0	8.98	77.90		9.0	8.98	52.51
9.5	8.37	72.85		9.5	8.37	49.10


The calculated values for the electric field at the minimum statutory ground clearance (7.3m) are 11.20 kV/m and 11.79 kV/m for the transposed and untransposed scenarios respectively. These values are not within the acceptable limits (i.e. 9 kV/m). The acceptable electric field exposure levels are not achieved until a ground clearance of 8.7 m and 9.0 m is achieved for the transposed and untransposed scenarios respectively. The following figure shows a graphical representation of the electric field in transposed and untransposed phasing scenarios.

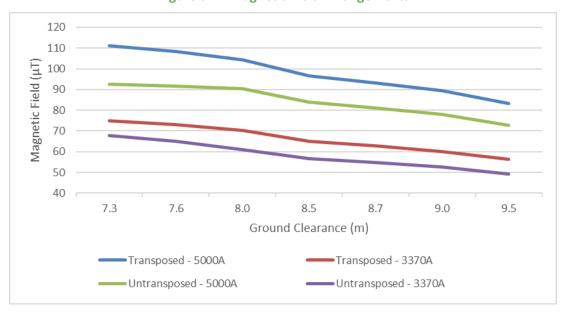

	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Electric & Magnetic Field Study Report Applies to		es to
EMF-OHL-003			Distribution	Transmission	
				✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			

Figure 3.1 - Electric Field Arrangement

The calculated value for the magnetic field varies with the increase in the current/load. However, the statutory limit for the magnetic field is 360 uT which is achieved at the 7.3 m ground clearance for all scenarios. The following figure shows the graphical representation of the magnetic field at transposed and untransposed phasing scenarios and with two different power flows:

Figure 3.2 - Magnetic Field Arrangements

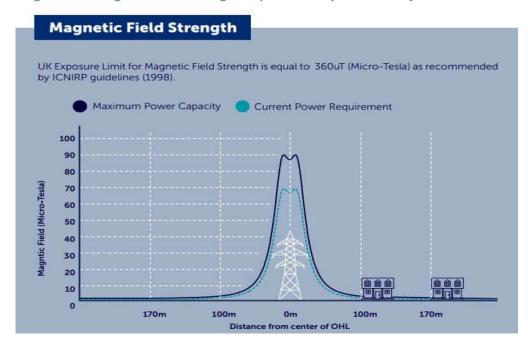
It was concluded from the above tables that the minimum compliant clearance to ground, 8.7 m-9.0 m, was relatively consistent for the four scenarios considered, including the conservative untransposed values. The overall tower height would not change whether an 8.7 m or 9.0 m clearance to ground was adopted. As such,

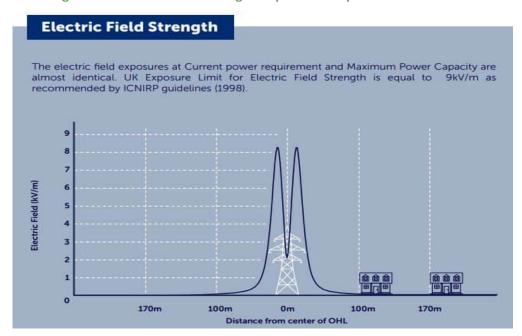
	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Appli	ies to
EMF-OHL-003			Distribution	Transmission 🗸
Revision: 2.00	Classification: Public	Issue Date: September 25		

there would be no change to the landscape & visual, or other environmental impacts and therefore the more conservative value of 9.0 m clearance was adopted.

3.3 Summary of Assessment and Further Precautions

The assessment of electric and magnetic field levels for the Proposed Development confirms that with a minimum ground clearance of 9.0 m, all calculated values are within the statutory exposure limits. It should be noted that these values are for a 1 m height above ground, directly beneath the line and assume long term exposure that would be typical for a residence or similar. The routeing of the Proposed Development has avoided the oversail of residential (or similar) properties and looked to site the OHL away from the properties. Whilst this is not necessary under the Code of Practice, nor was the EMF levels the sole factor in these routing decisions, in practice this substantially reduces the EMF exposure levels compared to the values given in this report. This is illustrated in Figures 3.3 and 3.4, taken from the SSEN Transmission, Pathway to 2030 Projects EMF leaflet.³




Figure 3.3 - Magnetic Field Strength as per Pathway to 2030 Projects EMF leaflet

³ SSEN Transmission, 'Electric and Magnetic Field's (EMF's)', https://www.ssen-transmission.co.uk/globalassets/projects/2030-projects/2030-project-documents/emf.pdf accessed: 24 August 2025

	Electric & Magnetic	Electric & Magnetic Field Study Report		es to
EMF-OHL-003	Beauly to Blackhillock to New Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

Figure 3.4 - Electric Field Strength as per Pathway to 2030 EMF leaflet

	Electric & Magnetic	Electric & Magnetic Field Study Report		es to
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

4 Validation of EMF Result

SSEN Transmission commissioned the consultancy group WSP to provide an independent validation of the EMF levels generated by the proposed OHL. WSP utilised another industry standard tool, SES CDEGS software, for this work. The EMF reports generated by WSP by using CDEGS software are enclosed in Appendix-C. The results from WSP's analysis were consistent with those calculated in Section 3, see Table 4.1, and confirmed that the EMF levels are well within the acceptable exposure limits set by the Code of Practice.

Table 4.1 - Comparison of WSP and SSEN-T EMF analysis

Power flow/ Current	Clearance	Magnetic Field (under the line at mid span)			tric Field ine at mid span)
(3x Araucaria on AS4)		SSEN Transmission (PLS-CADD)	WSP (CDEGS)	SSEN Transmission (PLS-CADD)	WSP (CDEGS)
5000 A	9.00 M	89.3 μΤ	92 μΤ	8.3 kV/m	7.9 kV/m
3370 A	9.00 M	60.2 μΤ	62 μΤ	8.3 kV/m	7.9 kV/m

	Electric & Magnetic	Electric & Magnetic Field Study Report		es to
EMF-OHL-003	Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Distribution	Transmission
	2.22			<u> </u>
Revision: 2.00	Classification: Public	Issue Date: September 25		

Complex OHL Arrangements

5.1 Cumulative Assessment

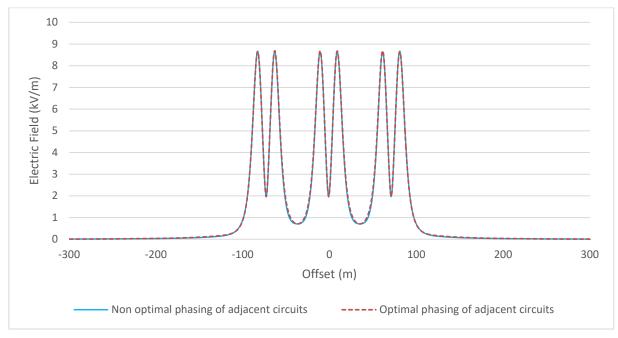
Where OHLs come into close proximity to each other, their electric and magnetic fields can interact with one another and therefore a cumulative assessment is required to demonstrate compliance. Due to the fact that electric and magnetic fields are vector quantities and have both magnitude and direction, the way in which they combine is complex and the values cannot simply be added together. Although combining the EMFs from different sources is complex, generally when the field from one source is larger than the other, the larger field dominates, with the smaller field making a minor impact to the overall field. This is why at substations the largest fields typically come from the OHLs entering the substation and the impact of the plant within the substation itself is considered to have minimal impact to the overall fields.

To demonstrate compliance, a conservative assessment has been carried out within PLS-CADD considering three 400 kV OHLs, in parallel, all operating at 5000 A using the parameters from Section 3 of this report. The three OHLs have been spaced at 72 m centre to centre which has been selected based on an 18 m substation bay spacing and is considered to be the closest the OHLs will operate at this voltage on approach to a substation.

The exact field that is produced by the OHLs in parallel depends on specifics of relative phasing and loads, however this assessment considers a number of scenarios that are considered to be representative of the cumulative effect.

Two phasing scenarios have been modelled. The first scenario (Case 1) considers all OHLs being optimally phased and the circuits between adjacent OHLs also being optimally phased. This is an ideal scenario as when circuits have optimal phasing the electric and magnetic fields can partially cancel each other out, reducing the resultant fields. However, while the Proposed Development is to be optimally phased, the phasing of future developments is not yet confirmed, therefore a precautionary assessment was undertaken. For the precautionary assessment, a second case (Case 2) was considered where the three individual OHLs were still optimally phased, but the circuits between the adjacent OHLs were not optimally phased. This second arrangement has the potential to increase the magnitude of the resultant fields. Figure 5.1 below depicts the two cases described above.

Figure 5.1 - Case 1 on left, Case 2 on right


	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

The maximum fields for each scenario are presented in Table 5.1 below. The full PLS-CADD report can be seen in Appendix-D. Figures 5.2 and 5.3 show the two cases for both the cumulative electric field and magnetic field extracted from the PLS Report.

Table 5.1 - Summary of Electric and Magnetic Field Values for Cumulative Assessment

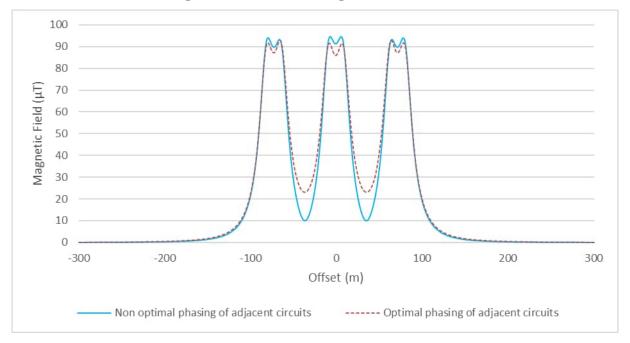

Cumulative Assessment Case	Maximum Magnetic Field (μΤ)	Maximum Electric Field (kV/m)
Case 1 – Optimal phasing of adjacent circuits	92.71	8.69
Case 2 – Non-Optimal phasing of adjacent circuits	94.71	8.67

Figure 5.2 - Cumulative Electric Field Results

	Electric & Magnetic Field Study Report		Appli	ies to
EMF-OHL-003	Beauly to Blackhillock to Ne		Distribution	Transmission
	Overhead Line Project			✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

Figure 5.3 - Cumulative Magnetic Field Results

As stated above, this analysis depends on numerous factors such as phasing and load, however the cases carried out demonstrate the mechanisms in which fields combine and are considered representative for the Proposed Development. This assessment demonstrates that the combined impact of electric and magnetic fields from parallel OHLs does not affect the assessment of compliance for the proposed new OHL, with the maximum fields remaining within the acceptable exposure limits set by the Code of Practice.

	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

5.2 Complex Crossings

Across the Proposed Development there are certain complex OHL arrangements that required further detailed analysis. These arrangements are a result of the proposed 400 kV OHL crossing an existing OHL. Where these crossings occur, the electric and magnetic fields of the respective OHLs can interact with one another and therefore the combined effects must be considered.

This analysis cannot be carried out in the same method as discussed in the previous sections and requires specialist software, SES CDEGS, due to the complexity of these crossings involving multiple circuits directly crossing each other. This type of analysis is best suited to the specialist software to accurately model the resultant electric and magnetic fields. A specialist consultant, Arcadis Consulting (UK) Limited, was commissioned to carry out this detailed analysis and the full study is included within Appendix-E of this report.

An overview of the results for the proposed crossing is provided within Table 5.2 below.

Table 5.2 - Summary of Electric and Magnetic Field Values for Complex Arrangements

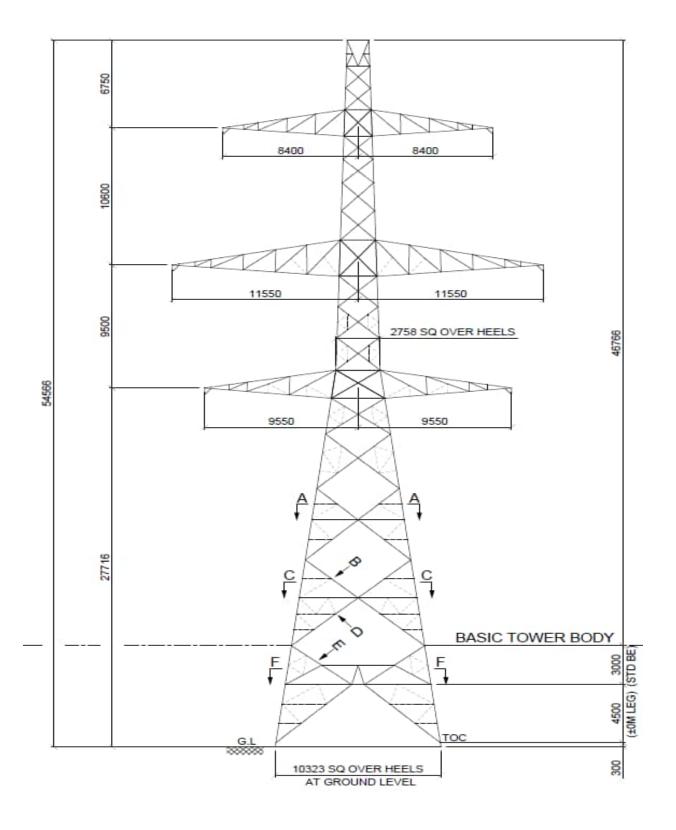
Description of Crossing	Maximum Magnetic Field (μΤ)	Maximum Electric Field (kV/m)
OHL Crossing 1	60.16	6.98
OHL Crossing 2	65.97	7.44
OHL Crossing 3	46.99	4.11
OHL Crossing 4	34.03	3.70
OHL Crossing 5	78.42	9.52
OHL Crossing 6	78.89	7.50

Based on the results in Table 5.2 it can be observed that all complex arrangements except for OHL Crossing 5 remain below the UK public exposure limits. OHL Crossing 5 exceeds the UK public exposure limit for electric field which is 9 kV/m with a maximum value of 9.52 kV/m. Although this crossing exceeds this limit, it does however still comply with the EMF public exposure guidelines, as the location in which this crossing occurs is not deemed to be an area where members of the public spend significant time. As exposure can be deemed not to be for a significant period of time, the ICNIRP occupational guidelines apply in which this crossing remains in compliance with.

It should be noted that this analysis is considered conservative and further work shall be progressed within the detailed design stage to further reduce the electric field magnitude at this crossing as low as reasonably practicable however the current proposal remains compliant with the Code of Practice.

The full details of this analysis can be seen in Appendix-E.

	Electric & Magnetic Field Study Report		Applies to		
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			


6 Conclusion

In conclusion, as demonstrated by this report and its supporting documents, the Proposed Development is compliant with the industry's current Code of Practice 'Power Lines: Demonstrating compliance with EMF public exposure guidelines' developed by the Department of Energy & Climate Change.

	Electric & Magnetic	Applies to		
EMF-OHL-003	Beauly to Blackhillock to Nev Overhead L		Distribution	Transmission 🗸
Revision: 2.00	Classification: Public	Issue Date: September 25		

Appendix A Tower Geometry

	Electric & Magnetic Field Study Report		Applies to		
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			

PLS CADD Electric and Magnetic Field Calculations Appendix B

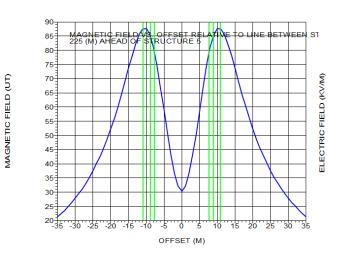
TRIPLE Araucaria (7.6m ground clearance)

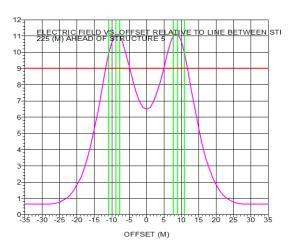
11:51:13 AM 06 July 2023 Scottish and Southern Energy Project Name: 'C:\Users\AM25305\Desktop\CSR ASTI-\PLS Model ASTI\profile 637.don'

Design criteria developed for SSE Beauly Blackhillock Line <u>reconductoring</u>
Global wind notes: wind directions are annotated NNW-330, E-90, etc as `wind from` - angles in GLB wind are `wind to` or wind <u>azumuth</u>
delete - survey and maps confirm angle as per XYZ 19/08/08.Terrain 289: angle has been corrected in pfl. CHECK <u>XYZ</u> delete?20/08/08.PFL 180 and 181 points edited
tower 229 is a D10 with extended crossarms. It should be modeled???Erection loads??CHECK.

3D EMF Calculation Notes:

- 1) Calculations based on the EPRI Red Book methods (3rd Edition, 2005 7.4 Calculation of Magnetic Fields and Appendices 7.1 Calculation of Field Ellipse Parameters and 7.6 Electric Field Calculations for 3D Geometry).


 2) All wire positions are modeled at the specified weather case and wind direction. Height above ground determined by the modeled ground
- - 3) Only the effects of wires are being analyzed. The effects of structures are not included unless enabled as noted below.
 - 4) Ground return is being ignored for magnetic field calculations.


Meter height above ground: Maximum wire distance: Maximum cable segment size: Cross section offset +/-: Result interval: 1.00 (m) 150.00 (m) 3.00 (m) 35.00 (m) 1.00 (m) Electric field limit: Magnetic field limit: 9.00 (kV/m) 360.00 (uT) Space potential limit: Contour Map Spacing: 0.00 (kV) 3 (m) Analyzing spans between these structures: 1 - 6

One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections.

Section Data for 3D EMF Results:

Section Section	n Voltage Current	Cable	Conductors	Bundle	Cable Weather	Condition Wind	WC Effe	ective
Number Not	e Ph-Ph	Filename Desc	cription <u>Per</u> Phase I	Diameter	Radius Case	Dir.	Temperature Ra	adius
	(<u>kV) (</u> Amps)		I	(cm)	(cm)		(deg C)	(cm)
1	400.0 4570.0	araucaria lumpi - 30.5.wir 700mm² AAAC - Ar	raucaria 3	57.735	1.863 90°C	Creep RS Left	90.000 16	6.700
2	400.0 4570.0	araucaria lumni - 30.5 wir 700mm² ΔΔΔC - Δx	raucaria 3	57.735	1.863 90°C	Creen RS Left	90.000 16	6.700

		Electric & Magnetic	Applies to			
	EMF-OHL-003	Beauly to Blackhillock to Nev Overhead L		Distribution	Transmission	
ŀ					▼	
	Revision: 2.00	Classification: Public	Issue Date: September 25			

TRIPLE Araucaria (7.6m ground clearance)

3D EMF Point Results Span from 5 to 6:

	Measuremen	t			В			ј нј				EF				Space Pot	ential	
x				Imaginary			Polarization				[maginary	Angle		Polarization	Real	Imaginary		lagnitude
(m)	<u>(</u> m)	(m)	(uT)	(uT)	(deg)	(uT)	Axial Ratio %	(A/m)	(k/	V/m)	(kV/m)	(deg)	(kV/m)	Axial Ratio %	(kV)	(kV)	(deg)	(kV)
275807 0	3098063.4	1.9	17.279	12.506	35.9	21.330	20.2	16.974		.273	0.582	64.8	0.643	6.0	0.269	0.581	65.1	0.640
	3098064.4	1.9	18.101	13.284	36.3	22.452	20.4	17.867		.238	0.599	68.3	0.645	6.9	0.232	0.599	68.8	0.642
	3098065.3	1.9	18.975	14.132	36.7	23.659	20.7	18.827		.197	0.616	72.3	0.646	7.9	0.188	0.615	73.0	0.643
	3098066.3	1.9	19.906	15.057	37.1	24.960	21.0	19.862		.151	0.629	76.5	0.647	9.1	0.136	0.628	77.8	0.643
	3098067.2	1.9	20.898	16.069	37.6	26.362	21.2	20.978		.103	0.640	80.8	0.648	10.5	0.075	0.638	83.3	0.642
	3098068.2	1.9	21.955	17.178	38.0	27.877	21.4	22.184		.079	0.645	83.0	0.650	12.2	0.003	0.642	89.7	0.642
	3098069.1	1.9	23.083 24.286	18.393 19.729	38.5 39.1	29.515 31.290	21.5 21.7	23.487 24.899		.119	0.643	79.5 72.2	0.654	14.2 16.4	-0.081 -0.178	0.640	-82.8 -74.2	0.645
	3098070.1	1.9	25.571	21.197	39.7	33.214	21.7	26.431		.311	0.610	63.0	0.685	18.6	-0.291	0.604	-64.3	0.671
	3098072.0	1.9	26.943	22.814	40.3	35.304	21.7	28.094		.440	0.573	52.5	0.722	20.5	-0.422	0.564	-53.2	0.704
	3098072.9	1.9	28.409	24.595	40.9	37.576	21.6	29.902	0.	.590	0.517	41.2	0.784	21.6	-0.574	0.502	-41.2	0.762
	3098073.9	1.9	29.978	26.557	41.5	40.049	21.4	31.870		.763	0.438	29.8	0.880	21.5	-0.748	0.413	-28.9	0.854
	3098074.8	1.9	31.655 33.450	28.718 31.098	42.2 42.9	42.741 45.673	21.2 20.8	34.012 36.345		.964	0.338	19.3 11.4	1.021	20.4	-0.948 -1.177	0.290	-17.0 -5.9	0.991
	3098075.0	1.9	35.371	33.712	43.6	48.863	20.0	38.884		.456	0.242	10.6	1.482	16.3	-1.177	-0.102	4.0	1.443
	3098077.7	1.9	37.425	36.574	44.3	52.329	19.6	41.642		.757	0.500	15.9	1.827	14.2	-1.739	-0.394	12.8	1.783
275812.9	3098078.6	1.9	39.617	39.693	45.1	56.081	18.7	44.628		.099	0.857	22.2	2.267	12.3	-2.079	-0.770	20.3	2.217
	3098079.6		41.947	43.066	45.8	60.119	17.7	47.841		.486	1.328	28.1	2.819	10.6	-2.464	-1.246	26.8	2.761
	3098080.5	1.9	44.408	46.673	46.4	64.424	16.6	51.267		.923	1.923	33.3	3.498	9.1	-2.897	-1.837	32.4	3.430
	3098081.5	1.9	46.972 49.585	50.461 54.336	47.1 47.6	68.940 73.560	15.3 13.8	54.861 58.537		.409	2.650 3.514	37.9 41.7	4.318 5.282	7.8 6.6	-3.378 -3.906	-2.557 -3.407	37.1 41.1	4.237 5.183
	3098082.4	1.9	52.147	58.133	48.1	78.095	12.2	62.146		.516	4.502	44.9	6.377	5.5	-4.469	-4.377	44.4	6.256
	3098084.3	1.9	54.492	61.603	48.5	82.246	10.5	65.449		.106	5.576	47.5	7.560	4.6	-5.047	-5.429	47.1	7.412
275815.1	3098085.3	1.9	56.380	64.393	48.8	85.587	8.7	68.108	5.	.675	6.664	49.6	8.753	3.7	-5.602	-6.490	49.2	8.573
	3098086.2	1.9	57.501	66.075	49.0	87.591	6.9	69.703		173	7.655	51.1	9.834	3.0	-6.084	-7.455	50.8	9.623
	3098087.2	1.9	57.534	66.217	49.0	87.720	4.9	69.806		537	8.417	52.2	10.657	2.4	-6.436	-8.199	51.9	10.424
	3098088.1 3098089.1	1.9	56.246 53.598	64.522 60.960	48.9 48.7	85.596 81.172	3.0 1.0	68.115 64.594		713 679	8.834 8.848	52.8 53.0	11.095 11.086	2.0 1.8	-6.609 -6.582	-8.612 -8.641	52.5 52.7	10.855 10.862
	3098090.0	1.9	49.784	55.810	48.3	74.788	1.0	59.514		456	8.492	52.8	10.668	1.8	-6.375	-8.317	52.5	10.479
	3098090.9	1.9	45.180	49.566	47.7	67.067	3.0	53.370		098	7.871	52.2	9.957	2.0	-6.039	-7.738	52.0	9.816
	3098091.9	1.9	40.224	42.787	46.8	58.726	4.9	46.732		677	7.122	51.4	9.107	2.1	-5.641	-7.034	51.3	9.017
	3098092.8	1.9	35.337	35.982	45.5	50.432	6.7	40.133		.258	6.370	50.5	8.260	2.2	-5.244	-6.326	50.3	8.217
	3098093.8	1.9	30.904 27.294	29.595 24.103	43.8 41.4	42.789 36.413	7.9	34.051 28.976		.891	5.711	49.4 48.5	7.519 6.954	2.1	-4.895	-5.705 -5.230	49.4	7.517 6.983
	3098094.7	1.9	24.892	24.103	39.0	30.413	7.9 5.2	25.498		.435	5.206 4.892	45.5	6.603	1.8	-4.628 -4.461	-5.230	47.9	6.652
	3098096.6		24.043	18.702	37.9	30.460	0.0	24.240		.376	4.785	47.6	6.484	1.1	-4.405	-4.834	47.7	6.540
275819.2	3098097.6	1.9	24.892	20.176	39.0	32.042	5.2	25.498	4.	.435	4.892	47.8	6.603	1.4	-4.461	-4.934	47.9	6.652
	3098098.5	1.9	27.294	24.103	41.4	36.413	7.9	28.976		.610	5.206	48.5	6.954	1.8	-4.628	-5.230	48.5	6.983
	3098099.5	1.9	30.904	29.595	43.8	42.789	7.9	34.051		.891	5.711	49.4	7.519	2.1	-4.895	-5.705	49.4	7.517
	3098100.4 3098101.4	1.9 1.9	35.337 40.224	35.982 42.787	45.5 46.8	50.432 58.726	6.7 4.9	40.133 46.732		.258	6.370 7.122	50.5 51.4	8.260 9.107	2.2 2.1	-5.244 -5.641	-6.326 -7.034	50.3 51.3	8.217 9.017
	3098102.3	1.9	45.180	49.566	47.7	67.067	3.0	53.370		098	7.871	52.2	9.957	2.0	-6.039	-7.738	52.0	9.816
	3098103.3	1.9	49.784	55.810	48.3	74.788	1.0	59.514		456	8.492	52.8	10.668	1.8	-6.375	-8.317	52.5	10.479
	3098104.2	1.9	53.598	60.960	48.7	81.172	1.0	64.594		679	8.848	53.0	11.086	1.8	-6.582	-8.641	52.7	10.862
	3098105.2	1.9	56.246	64.522	48.9	85.596	3.0	68.115		713	8.834	52.8	11.095	2.0	-6.609	-8.612	52.5	10.855
	3098106.1 3098107.1	1.9	57.534 57.501	66.217 66.075	49.0 49.0	87.720 87.591	4.9 6.9	69.806 69.703		537	8.417 7.655	52.2	10.657	2.4 3.0	-6.436	-8.199 -7.455	51.9 50.8	10.424
	3098107.1	1.9	56.380	64.393	48.8	85.587	8.7	68.108		.675	6.664	51.1 49.6	9.834 8.753	3.7	-6.084 -5.602	-6.490	49.2	9.623 8.573
	3098109.0	1.9	54.492	61.603	48.5	82.246	10.5	65.449		.106	5.576	47.5	7.560	4.6	-5.047	-5.429	47.1	7.412
	3098109.9	1.9	52.147	58.133	48.1	78.095	12.2	62.146		.516	4.502	44.9	6.377	5.5	-4.469	-4.377	44.4	6.256
	3098110.9	1.9	49.585	54.336	47.6	73.560	13.8	58.537		.944	3.514	41.7	5.282	6.6	-3.906	-3.407	41.1	5.183
	3098111.8	1.9	46.972 44.408	50.461 46.673	47.1	68.940	15.3 16.6	54.861 51.267		.409	2.650 1.923	37.9	4.318	7.8 9.1	-3.378 -2.897	-2.557 -1.837	37.1	4.237
	3098112.8	1.9	41.408	46.673	45.8	64.424 60.119	17.7	47.841		.486	1.328	28.1	2.819	10.6	-2.897	-1.837	26.8	2.761
	3098114.7	1.9	39.617	39.693	45.1	56.081	18.7	44.628		.099	0.857	22.2	2.267	12.3	-2.079	-0.770	20.3	2.217
	3098115.6	1.9	37.425	36.574	44.3	52.329	19.6	41.642		.757	0.500	15.9	1.827	14.2	-1.739	-0.394	12.8	1.783
	3098116.6	1.9	35.371	33.712	43.6	48.863	20.2	38.884		.456	0.272	10.6	1.482	16.3	-1.439	-0.102	4.0	1.443
	3098117.5	1.9	33.450	31.098	42.9	45.673	20.8	36.345		.193	0.242	11.4	1.218	18.5	-1.177	0.122	-5.9	1.183
	3098118.5	1.9	31.655 29.978	28.718 26.557	42.2 41.5	42.741	21.2 21.4	34.012 31.870		.964 .763	0.338	19.3 29.8	1.021	20.4 21.5	-0.948 -0.748	0.290	-17.0 -28.9	0.991
	3098119.4	1.9	28.409	26.557	40.9	37.576	21.4	29.902		.590	0.517	41.2	0.880	21.5	-0.748	0.502	-28.9	0.762
	3098121.3	1.9	26.943	22.814	40.3	35.304	21.7	28.094		.440	0.573	52.5	0.722	20.5	-0.422	0.564	-53.2	0.704
275827.4	3098122.3	1.9	25.571	21.197	39.7	33.214	21.7	26.431	0.	.311	0.610	63.0	0.685	18.6	-0.291	0.604	-64.3	0.671
	3098123.2	1.9	24.286	19.729	39.1	31.290	21.7	24.899		.203	0.633	72.2	0.665	16.4	-0.178	0.628	-74.2	0.653
	3098124.2	1.9	23.083	18.393	38.5	29.515	21.5	23.487		.119	0.643	79.5	0.654	14.2	-0.081	0.640	-82.8	0.645
	3098125.1	1.9	21.955 20.898	17.178 16.069	38.0 37.6	27.877 26.362	21.4	22.184		.079	0.645	83.0	0.650	12.2 10.5	0.003	0.642	89.7 83.3	0.642
	3098127.0	1.9	19.906	15.057	37.1	24.960	21.0	19.862		.151	0.629	76.5	0.647	9.1	0.136	0.628	77.8	0.643
	3098128.0	1.9	18.975	14.132	36.7	23.659	20.7	18.827		.197	0.616	72.3	0.646	7.9	0.188	0.615	73.0	0.643
	3098128.9		18.101	13.284	36.3	22.452	20.4	17.867		.238	0.599	68.3	0.645	6.9	0.232	0.599	68.8	0.642
275829.9	3098129.9	1.9	17.279	12.506	35.9	21.330	20.2	16.974	0.	.273	0.582	64.8	0.643	6.0	0.269	0.581	65.1	0.640

	Electric & Magnetic	Applies to			
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			

TRIPLE Araucaria (9.0m ground clearance to achieve 9kV/m Electric Field)

PLS-CADD Version 18.00x64 2:28:01 PM 06 July 2023 Scottish and Southern Energy Project Name: 'C:\Users\AM25305\Desktop\CSR ASTI-\PLS Model ASTI\profile 637.don'

Criteria Notes:

Design criteria developed for SSE Beauly Blackhillock Line reconductoring

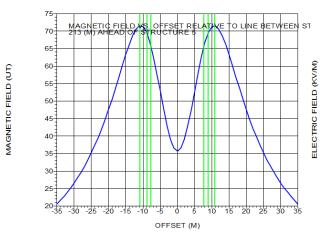
Global wind notes: wind directions are annotated NNW-330, E-90, etc as `wind from` - angles in GIB wind are `wind to` or wind azumuth

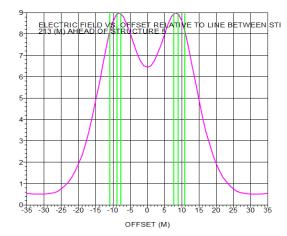
delete - survey and maps confirm angle as per XYZ 19/08/08.Terrain 289: angle has been corrected in pfl. CHECK xyz

delete270/08/08.PFL 180 and 181 points edited

tower 229 is a D10 with extended crossarms. It should be modeled???Erection loads??CHECK.

3D EMF Calculation Notes:


- 1) Calculations based on the EPRI Red Book methods (3rd Edition, 2005 7.4 Calculation of Magnetic Fields and Appendices 7.1 Calculation of Field Ellipse Parameters and 7.6 Electric Field Calculations for 3D Geometry).
- 2) All wire positions are modeled at the specified weather case and wind direction. Height above ground determined by the modeled ground
 - 3) Only the effects of wires are being analyzed. The effects of structures are not included unless enabled as noted below.
 4) Ground return is being ignored for magnetic field calculations.


Meter height above ground: 1.00 (m) Maximum wire distance:
Maximum cable segment size:
Cross section offset +/-:
Result interval: 150.00 (m) 3.00 (m) 35.00 (m) 1.00 (m) Electric field limit: Magnetic field limit: $9.00 \, (kV/m)$ 360.00 (uT) Space potential limit: Contour Map Spacing: 0.00 (kV) 3 (m) Analyzing spans between these structures: 1 - 6

One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections.

Section Data for 3D EMF Results:

Section	n Section	Voltage	Current	Cable		Conductors	Bundle	Cable	Weather	Condition Wine	1 WC	Effective
Numbo	r Noto	Ph-Ph		Filonamo	Doscription 1	Por Phase	Diamotor	Radius	Casc	Dir	Tomporaturo	Radius
		(<u>k</u> V)	(Amps)		Ī		(cm)	(cm)			(deg C)	(cm)
	1	400.0	4570.0	araucaria lumpi - 30.5.wir 700mmª AA	AC - Araucaria	3	57.735	1.863	90°c	Creep RS Lef	90.000	16.700
	2	400.0	4570.0	araucaria lumpi - 30.5.wir 700mm* AA	AAC - Araucaria	3	57.735	1.863	90°c	Creep RS Lef	90.000	16.700

	Electric & Magnetic	Applies to		
EMF-OHL-003	Beauly to Blackhillock to New Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

TRIPLE Araucaria (9.0m ground clearance to achieve 9kV/m Electric Field)

Real Imaginary
(kV) (kV) tial-----Angle Magnitude (deg) (kV) H Magnitude (A/m) Angle (deg) Angle Magnitude Polarization | (deg) (uT) Axial Ratio % | Real Imaginary (uT) gnitude Polarization (kV/m) Axial Ratio % Real Imaginary (kV/m) (m) (m) (m) (m)
275818.8 3098050.8
275819.1 3098050.8
275819.4 3098050.8
275819.4 3098061.7
275820.0 3098062.7
275820.0 3098062.7
275820.1 3098062.7
275821.1 3098062.7
275821.2 3098062.3
275821.2 3098062.3
275822.2 3098071.2
275822.3 3098071.2
275823.3 3098071.2
275823.3 3098071.3
275823.4 3098073.1
275823.4 3098073.1 16.631 17.391 18.197 36.0 36.4 36.8 69.6 73.8 78.3 70.2 74.7 80.1 86.3 -86.4 -77.8 -67.9 -56.7 -44.6 -32.3 -20.5 -9.7 -0.1 8.2 13.605 14.457 15.383 16.391 17.488 18.683 19.986 21.406 22.953 0.510 0.511 0.507 0.497 0.479 0.450 0.409 0.353 0.281 0.089 0.033 -0.032 -0.107 -0.193 -0.292 -0.405 -0.534 -0.682 37.2 37.6 38.1 38.6 19.032 20.052 21.148 22.326 0.510 0.506 0.505 0.512 0.071 0.076 0.131 0.211 23.916 25.198 26.575 28.056 29.648 31.361 33.206 35.191 37.328 39.626 42.091 82.1 81.5 75.2 66.3 55.8 44.4 32.9 22.1 13.2 8.9 11.9 17.5 23.0 28.1 32.6 11.9 13.9 16.3 18.7 20.6 21.7 21.4 19.9 39.1 39.6 40.1 40.7 41.3 41.9 42.5 23.593 24.956 26.424 28.004 29.705 31.533 33.495 0.523 0.545 0.585 0.651 0.748 0.884 1.063 1.292 0.694 24.637 26.466 28.449 0.201 0.165 0.267 -0.848 1.050 -1.038 -1.251 -0.413 -0.701 -1.056 -1.484 275824.1 3098075.9 275824.4 3098076.9 275824.7 3098077.8 275825.1 3098077.8 275825.3 3098087.7 275825.7 3098080.7 275825.3 3098081.6 275826.3 3098081.6 275826.3 3098081.5 275827.0 3098084.5 275827.3 3098084.5 37.905 40.573 43.275 45.920 48.383 50.492 52.046 52.827 52.646 51.392 49.078 2.049 2.645 3.318 4.051 2.855 3.445 4.122 4.879 5.697 6.538 7.350 8.064 8.608 3.395 4.064 4.811 5.617 6.445 39.821 41.708 43.544 45.244 46.694 47.750 48.253 48.062 47.091 45.345 42.933 40.052 56.850 60.102 63.283 66.241 68.774 70.632 71.548 71.285 69.704 66.819 62.811 58.004 42.913 336.578 33.696 33.093 42.913 47.624 52.798 45.240 47.828 50.359 52.713 54.728 56.207 56.936 56.727 55.469 53.173 49.984 46.158 -2.749 -3.138 -3.550 -3.972 -4.388 -4.774 -5.102 -5.343 -5.476 -5.493 -5.404 -5.235 35.9 39.5 42.5 45.0 47.1 48.8 50.0 50.9 51.5 51.7 51.7 8.925 8.990 8.821 8.471 49.078 45.847 41.955 5.545 5.448 5.268 7.076 6.937 6.633 8.872 8.720 8.394 275827.9 3098087.3 275828.2 3098088.3 275828.5 3098098.2 275828.8 3098090.2 275828.2 3098091.1 275829.5 3098092.1 275829.8 3098093.0 275830.1 3098094.9 275830.7 3098095.9 275830.3 3098095.9 275830.3 3098095.9 275831.3 3098095.9 40.052 36.949 33.889 31.134 28.930 27.498 27.001 27.498 28.930 31.134 46.158 42.016 37.898 34.149 31.109 29.108 28.406 29.108 31.109 34.149 6.633 6.233 5.807 5.415 5.105 4.907 4.839 4.907 5.105 5.415 37.715 33.461 29.533 26.293 24.120 23.348 24.120 26.293 29.533 33.461 37.715 45.6 44.6 43.5 42.3 41.3 40.9 41.3 42.3 43.5 44.6 45.6 5.039 4.800 4.582 51.0 50.4 49.8 49.2 48.8 48.6 48.8 49.2 49.8 -5.019 -4.792 -4.584 -4.420 -4.315 -4.280 -4.315 -4.420 -4.584 -4.792 -5.019 -6.185 -5.783 -5.413 -5.119 -4.933 -4.869 -4.933 -5.119 -5.413 -5.783 -6.185 50.9 50.4 49.7 49.2 48.8 48.7 48.8 49.2 49.7 275831.0 3098096.8 275831.4 3098097.8 50.4 51.0 51.5 51.9 51.9 33.889 37.898 42.016 4.800 5.807 7.534 8.016 50.4 7.510 41.955 45.847 49.078 51.392 46.158 49.984 53.173 55.469 -5.235 -5.404 -5.493 -5.476 8.990 8.925 275832.6 3098101.6 275832.9 3098102.5 275833.2 3098103.5 275833.6 3098104.4 275833.9 3098105.4 52.646 52.827 52.046 50.492 71.285 71.548 70.632 68.774 56.727 56.936 56.207 54.728 -5.343 -5.102 -4.774 -4.388 8.481 7.944 7.243 6.445 5.399 5.154 6.703 6.201 5.548 4.811 4.821 275833.9 3098105.4 275834.2 3098106.3 275834.5 3098107.3 275834.8 3098107.3 275835.1 3098109.2 275835.4 3098110.1 275835.1 3098112.0 275836.4 3098113.0 275836.7 3098113.0 275836.7 3098113.0 54.728 52.713 50.359 47.828 45.240 42.679 40.198 37.831 35.594 33.495 31.533 -4.388 -3.972 -3.550 -3.138 -2.749 -2.388 -2.058 -1.759 -1.491 -1.251 -1.038 45.244 43.544 41.708 39.821 37.941 36.103 34.331 32.635 31.021 29.491 28.043 26.676 25.385 24.168 23.020 46.9 46.1 45.5 45.0 44.4 43.8 43.1 42.5 66.241 63.283 60.102 55.850 55.515 47.540 44.729 42.091 39.626 37.328 35.191 33.206 31.361 29.648 28.056 26.575 4.051 5.697 4.879 4.122 3.445 2.855 2.351 1.928 1.577 1.292 5.617 4.811 4.064 3.395 2.811 2.313 1.894 1.547 1.264 3.318 2.645 2.049 1.537 1.107 0.755 0.474 0.267 0.165 0.201 0.281 1.264 31.533 29.705 28.004 -20.5 -32.3 -44.6 -56.7 -67.9 -77.8 -86.4 86.3 0.585 0.545 0.523 0.514 0.513 0.516 15.383 14.457 25.198 0.507 0.032 275840.2 3098123.4 275840.2 3098124.4 275840.5 3098125.3 275840.8 3098126.2 0.071 0.106 0.147 0.185

Electric & Magnetic Field Study Report		Appli	es to	
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

Appendix C WSP Assessment

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400kV OHTL

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400KV OHTL REPORT

TYPE OF DOCUMENT (THIRD ISSUE)

PROJECT NO. 70111023

OUR REF. NO. 70111023-509

DATE: JULY 2025

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400KV OHTL REPORT

WSP

8 First Street Manchester M15 4RP

Phone: +44 161 200 5000

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Second issue	Third issue
Remarks	Draft Report	Final Report	Final Report
Date	July 2024	August 2024	July 2025
Prepared by			
Checked by			
Authorised by			
Project number	70111023	70111023	70111023
Report number	70111023-509	70111023-509	70111023-509

.

CONTENTS

QUALITY CONTROL							
CONTENTS	2						
TERMINOLOGY	4						
1 BACKGROUND AND SCOPE OF WORK	5						
2 INPUT DATA	6						
3 SIMULATION MODEL DEVELOPMENT	8						
3.1 SIMULATION TOOL	8						
3.2 CONSIDERATIONS FOR THE STUDY	8						
3.3 MODEL DEVELOPMENT	8						
4 STANDARD EXPOSURE LIMITS	11						
4.1 PUBLIC EXPOSURE LIMITS	11						
4.2 OCCUPATIONAL EXPOSURE LIMITS	12						
5 CASE SCENARIO	13						
5.1 CASE - A	13						
5.2 CASE - B	13						
6 STUDY RESULTS	14						
6.1 SIMULATED GRAPH FOR ELECTRIC FIELD	14						
6.2 TABULATED CASE RESULTS FOR ELECTRIC FIELD	16						
6.3 SIMULATED GRAPH FOR MAGNETIC FIELD	17						
6.4 TABULATED CASE RESULTS FOR MAGNETIC FIELD	19						
7 CONCLUSION	20						

8 REFERENCES 21

TERMINOLOGY

Term	Definition
ENA	Energy Network Association
EMF	Electro Magnetic Fields
ELF	Extremely Low Frequency
ICNIRP	International Commission on Non-Ionizing Radiation Protection
INIRC	International Non-Ionizing Radiation Committee
IARC	International Agency for Research on Cancer
NPS	National Policy Statement
OHTL	Overhead Transmission Line
SCENIHR	Scientific Committee on Emerging and Newly Identified Health Risks
SSEN	Scottish and Southern Electricity Network
WHO	World Health Organisation

1 BACKGROUND AND SCOPE OF WORK

WSP is assigned as the consultant to perform a 400kV Substation and 400kV OHL EMF Assessment Study Report for Scottish & Southern Electricity Networks (SSEN). The EMF Assessment Study is essential to ensure that personnel available in Substations or nearby to the OHTL are not exposed to a harmful level of Electromagnetic Field (EMF).

As per our proposal (70111023) to undertake the EMF studies, the following report is issued by WSP.

EMF assessment Study Report for 400kV OHTL of SSEN – Transmission

This report covers the EMF assessment study for the 400kV OHTL of SSEN Transmission. The proposed tower cross-section diagram considered for the entire study is shown below.

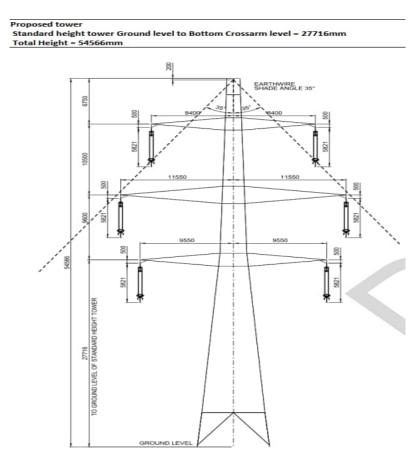


Figure 1- Proposed Suspension Tower AD & BD Diagram

2 INPUT DATA

The following are the input data received from SSEN for the undertaking the EMF studies.

		I	
SI. No.	DESCRIPTION	VALUES	UNIT
А	Source Fault Level of 400kV OHTL		
	Phase Fault	45	kA
	Earth Fault	-	-
В	X/R Ratio of 400kV OHTL		
	Phase Fault	19.95	
	Earth Fault	6.7	
	Length of the Overhead Transmission Line		
С	Minimum	76	km
	Maximum	115	km
	400kV Tension Insulator Details		
D	Creepage Distance	10500	mm
	String Length	7.6	m
	Mechanical Strength	300	kN
	No. of Discs	22	-
	Disc Type	Glass	-
	Arc Horn Distance	2800	mm
	400kV Suspension Insulator Details		
	Creepage Distance	4290	mm
	String Length	6	m
Е	Mechanical Strength	300	kN
	No. of Discs	24	-
	Disc Type	Glass	-
	Arc Horn Distance	2683	mm

F	400kV OHTL Conductors Details		
	Number of Conductor per phase	3	-
	Bundle Spacing	500	mm
	Maximum Continuous Current Rating of each circuit	5000	А
	Minimum Continuous Current Rating of each circuit	3370	А
	Soil Resistivity	100	ohm-m
	400kV Tower Footing Resistance	5	ohm
	400kV Transmission Line Minimum Ground Clearance	9	m

3 SIMULATION MODEL DEVELOPMENT

3.1 SIMULATION TOOL

CDEGS (**C**urrent **D**istribution, **E**lectromagnetic Fields, **G**rounding and **S**oil Structure Analysis) tool was used to perform the EMF voltage assessment study for 400kV Overhead Transmission Line Tower.

CDEGS is a powerful set of integrated software tools designed to accurately analyse a variety of electromagnetic related problems encountered in all industries involving electric networks.

The use of CDEGS for EMF analysis is recognised within the industry as standard practice.

3.2 CONSIDERATIONS FOR THE STUDY

The following are the data considered as per the confirmation provided by SSEN

- 400kV Span Length is considered to be 350m.
- Ground Clearence of 400kV OHTL is considered as 9m.
- Optimum phasing is also included in the 400kV OHTL model.
- Maximum 400kV Overhead Transmission Line Length (i.e. 115km) is considered for the entire study.
- EMF observation points is extended up to 170m on cross section side of the tower.

3.3 MODEL DEVELOPMENT

The following are the models that have been developed in CDEGS simulation tool to carry out the required EMF assessment study. The insulator lengths provided within the inputs table in section 2 are approximate lengths and final lengths will be confirmed by SSEN during their detailed design. Slight variation in these lengths will have negligible impact on the EMF assessment as the conductor has been sagged to have a minimum clearance to ground of 9m and the EMF values are taken at this closest point to ground where fields are at their maximum.

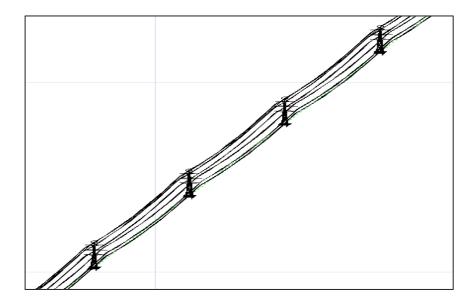


Figure 2 400kV OHTL Model

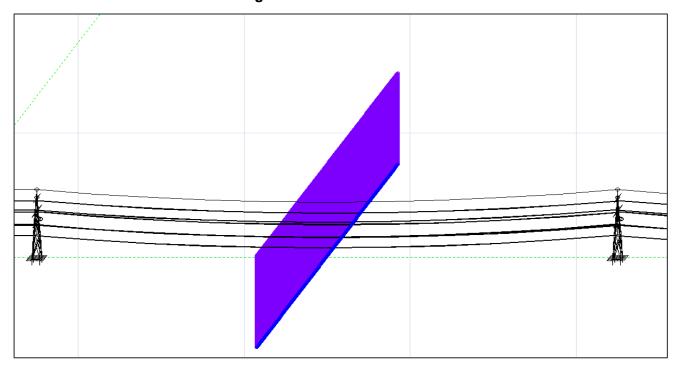


Figure 3 EMF Measuring points in YZ Plane in the mid of span

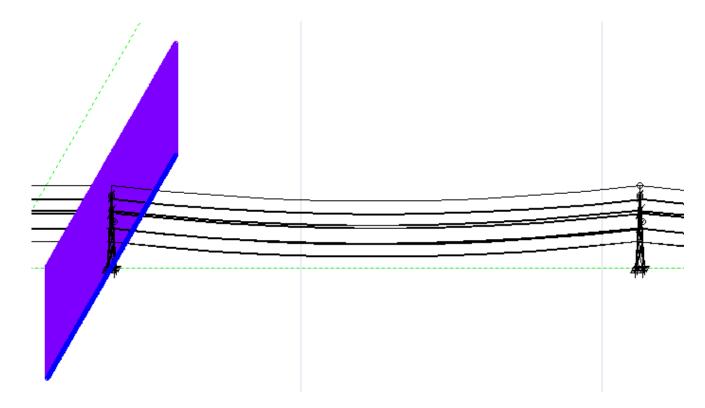


Figure 4 EMF Measuring points in YZ Plane in the mid of tower

4 STANDARD EXPOSURE LIMITS

4.1 PUBLIC EXPOSURE LIMITS

In March 2004, the UK adopted the 1998 guidelines published by ICNIRP. These guidelines (See <u>Table 1</u>) are designed to set conservative exposure levels for the general public to electric and magnetic fields, and they are endorsed by the UK's Health Protection Agency, the World Health Organisation and the UK Government.

It is the policy of the electricity industry to follow these independent guidelines. A Code of Practice CoP, published jointly in 2012 by industry and the Department for Energy and Climate Change (now part of the Department for Business, Energy and Industrial Strategy). This CoP sets out all the practical details needed to apply the exposure limits for transmission lines. All exposures in homes already comply with the ICNIRP guidelines. The electricity industry designs all new equipment to comply with the Government guidelines as set out in the Code of Practice. This includes measures such as adhering to statutory ground clearance requirements and ensuring optimum phasing of high voltage double-circuit overhead lines.

The CoP sets the maximum levels for long term public exposure as 360 μ T for magnetic fields and 9 kV/m for electric fields. Long term exposure relates to places of residence or similar where people regularly spend extended periods of time. In other environments, where exposure can be deemed not to be for a significant period of time, the ICNIRP occupational guidelines, rather that the ICNIRP general public guidelines, shall be deemed to apply.

Table 1 – Public Exposure Limits for Power Frequency EMFs

SI. No.	Public Exposure Levels	Electric Fields	Magnetic Fields
1	Reference level (external unperturbed field)	5kV/m	100 μΤ
2	Field corresponding to the basic restriction (external unperturbed field)	9kV/m	360 μT

4.2 OCCUPATIONAL EXPOSURE LIMITS

Occupational exposure (see <u>Table 2</u>) is defined as any exposure experienced by an individual during work related activities. The limits for occupational exposure are stated in the Control of Electromagnetic Fields at Work Regulations 2016. These limits are enforceable and should not be exceeded.

Table 2- Occupational Exposure Limits for Power Frequency EMFs

SI. No.	Occupational Exposure Levels	Electric Fields	Magnetic Fields
1	Reference level (external unperturbed field)	10kV/m	1000 μΤ
2	Field corresponding to the basic restriction (external unperturbed field)	20kV/m	6000 μΤ

5 CASE SCENARIO

Based on the measuring profile and OHTL loading conditions, the following are the cases considered as discussed with SSEN.

Case A considers the expected continuous operating current for the proposed OHTL.

Case B considers the maximum possible current for the OHTL based on the substation equipment ratings being capped at 5000A. It should however be noted that some substation plant is limited at 4000A so although this assessment has been carried out, it is presented to consider the worst case load conditions however case A is representative of the actual operational values.

5.1 CASE - A

With partial loading of the OHTL (i.e. 3375A), the magnitudes of Electric and Magnetic Fields are measured at the mid of span.

5.2 CASE - B

With full loading of the OHTL (i.e. 5000A), the magnitudes of Electric and Magnetic Fields are measured at the mid of span.

6 STUDY RESULTS

This section presents the simulation results of the EMF assessment study for the Partial and full loading of the 400kV OHTL Circuit and results are tabulated in the <u>Table 3</u> and <u>Table 4</u>.

6.1 SIMULATED GRAPH FOR ELECTRIC FIELD

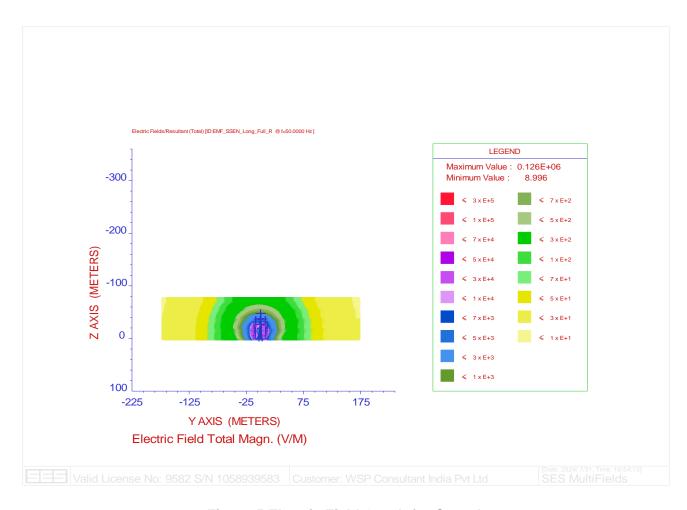


Figure 5 Electric Field Graph for Case A

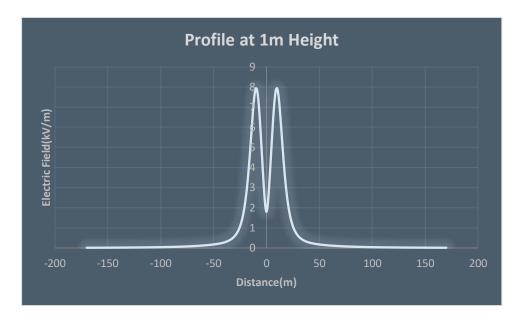


Figure 6 Electric Field Profile at 1m Height for Case A

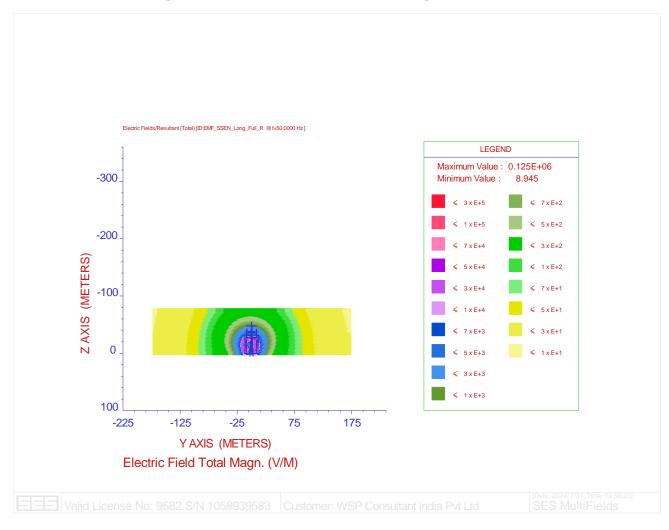


Figure 7 Electric Field Graph for Case B

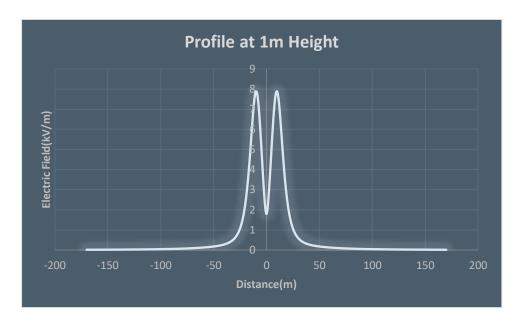


Figure 8 Electric Field Profile at 1m Height for Case B

6.2 TABULATED CASE RESULTS FOR ELECTRIC FIELD

Table 3 Electric Field result with change in OHTL loading and profile location

		MAGNITUDE OF ELECTRIC FIELD FOR VARIOUS CASES										
			SIMULATED VA HEIGHT FROM									
CASES	PROFILE LOCATION	400kV OHTL LOADING	<u>+</u> 9 m from Centre (Lowest Conductor Below)	<u>+</u> 170m from Centre	UK PUBLIC EXPOSURE LIMIT	SAFE/ UNSAFE						
	TOWER/MID OF SPAN	Α	kV/n	n	kV/m							
А	MID OF SPAN	3375 A	7.936394	0.010479	9.0	SAFE						
В	MID OF SPAN	5000 A	7.881355	0.01043	5.0	SAFE						

6.3 SIMULATED GRAPH FOR MAGNETIC FIELD

Figure 9 Magnetic Field Graph for Case A

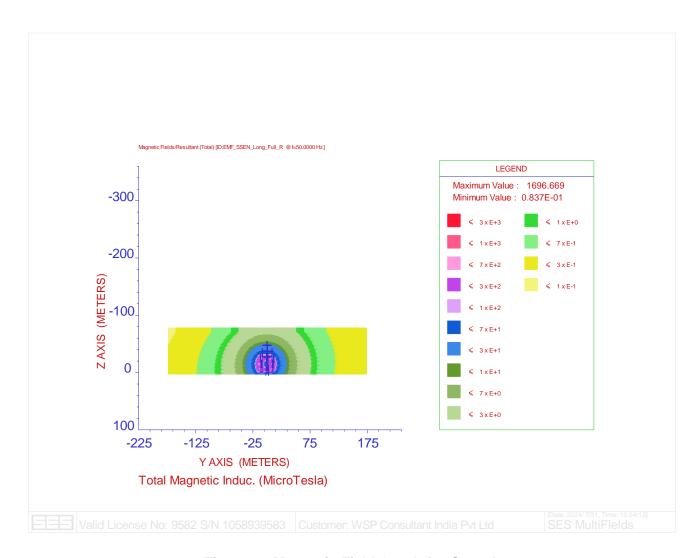


Figure 10 Magnetic Field Graph for Case A

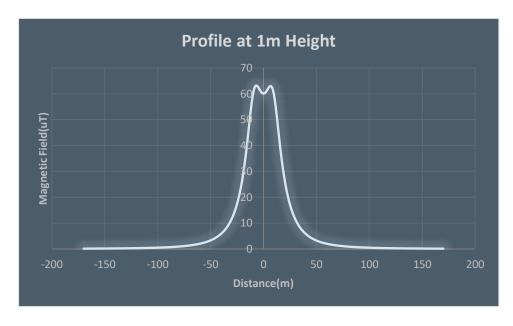


Figure 11 Magnetic Field Profile at 1m Height for Case A

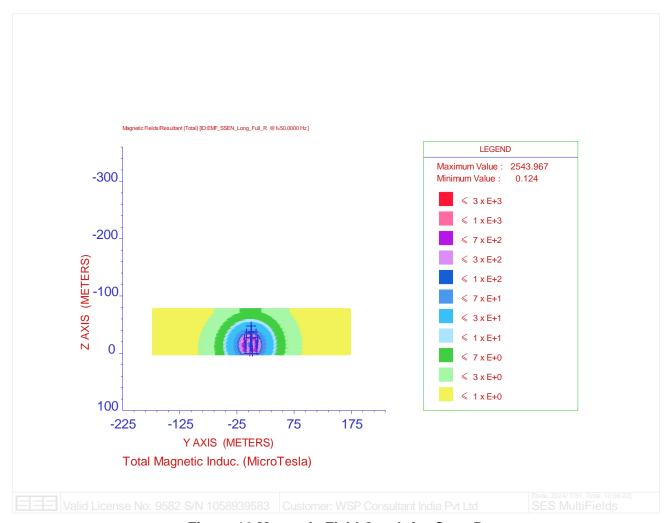


Figure 12 Magnetic Field Graph for Case B

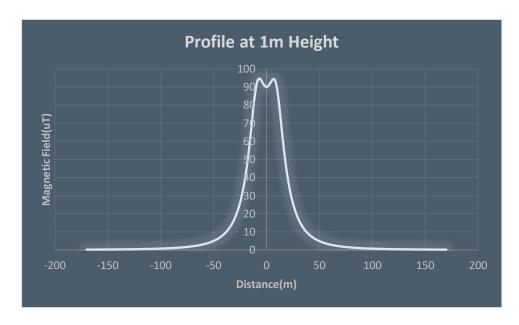


Figure 13 Magnetic Field Profile at 1m Height for Case B

6.4 TABULATED CASE RESULTS FOR MAGNETIC FIELD

Table 4 Magnetic Field result with change in OHTL loading and profile location

		MAGNIT	JDE OF MAGNETIC	C FIELD FOR V	ARIOUS CASES		
			SIMULATED VA				
CASES	PROFILE LOCATION	400kV OHTL LOADING	<u>+</u> 9 m from Centre (Lowest Conductor Below)	±170m from Centre	UK PUBLIC EXPOSURE LIMIT	SAFE/ UNSAFE	
	TOWER/MID OF SPAN	Α	Micro T	esla	Micro Tesla		
А	MID OF SPAN	3375 A	62.74127 0.123508		360	SAFE	
В	MID OF SPAN	5000 A	92.30611	0.182544	300	SAFE	

7 CONCLUSION

- In all the simulated test cases, the results have shown that the simulated values of Electric Field are well within the UK Exposure Limit.
- Similarly, the simulated value of the Magnetic Field is well within the UK Exposure Limit.

8 REFERENCES

- ICNIRP- Guidelines for Limiting Exposure to time varying Electric, Magnetic and EMF (Up to 300GHz)
- Electric and Magnetic Fields the facts Produced by ENA September 2017
- Working Group C4.208, "EMC within Power Plants and Substations," CIGRE2013
- IEEE Reference paper Magnetic field calculations within substation environment for EMC studies
- National Policy Statement for Electricity Networks Infrastructure (EN-5)

	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

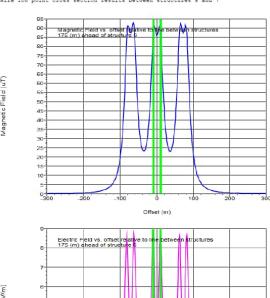
Appendix D PLS CADD Report for Cumulative Assessment

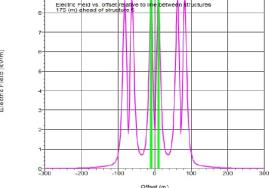
Optimal Phasing of Adjacent Circuits

```
PLS-CADD Version 10.01x64 14:23:43 02 July 2025
Scotish and Southern Energy
Project Mass: "C:VE2S/Combine_EMF_Check Temp/Combined_EMF_Check.don'
Line Title: 'Mas Op'
DE DEFT Calculation Store:

1) Calculations based on the EPRI Red Book methods (3rd Edizion, 2005 - 7.4 Calculation of Magnetic Fields and Appendices 7.1 Calculation of Field Ellipse Parameters and 7.6 Electric Field Calculations for 3D Geometry).

2) All view positions are modeled at the specified weather case and wind direction. Height above ground determined by the modeled ground TIN.


3) Ground return is being ignored for magnetic field calculations.
```


One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections

Section Data for 3D EMF Results:

Section Number	Ph-Ph		i	Filename	ole			Conductors Per Phase		r Radius		Condition		WC Temperature (deg C)	
1	 400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	- Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE	Left	90.000	16.700
2	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57,735	1.863	Max Op	Creep FE	Left	90,000	16,700
3	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE	Left	90.000	16.700
4	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE	Left	90.000	16.700
5	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE			16.700
6	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57,733	1.863	Max Op	Creep FE	Left	90,000	16,700
7	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omme AAAC -	Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE	Left	90.000	16.700
8	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.73	1.863	Max Op	Creep FE	Left	90.000	16.700
9	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omm AAAC -	Araucaria	(H)	3	57.73		Max Op	Creep FE			16.700
10	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.73	1.863	Max Op	Creep FE	Left	90.000	16.700
11	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omm" AAAC -	Araucaria	(H)	.3	57.733	1.863	Max Op	Creep FE			16,700
12	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.738	1.863	Max Op	Creep FE	Left	90.000	16.700
13	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	- Araucaria	(H)	3	57.735		Max Op	Creep FE			16.700
14	400.0	5000.0	700mm aa	ac araucaria.wir 70	Omms AAAC -	Araucaria	(H)	3	57.733	1.863	Max Op	Creep FE	Left	90.000	16,700
15		5000.0		ac araucaria.wir 70				3			Max Op	Creep FE			16.700
16		5000.0		ac araucaria.wir 70				3	57.73		Max Op	Creep FE			16.700
17		5000.0		ac araucaria.wir 70				3	57.73		Max Op	Creep FE			16.700
1.8		5000.0		ac araucaria vir 70				3	57 739		May On	Creen FE		90.000	16.700

Wire low point cross section results between structures 6 and 7

Page **48** of **104**

	Electric & Magnetic	Electric & Magnetic Field Study Report							
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission ✓					
Revision: 2.00	Classification: Public	Issue Date: September 25							

30 EMF Point Results Span from € to 7:

	asurement				В			1 11	H						Space Potential				
×	Y	I I	Real	Imaginary	Angle 1		Polarization		Real	Imaginary	Angle b		Polarization		Inaginary	Angle H	tagnitude		
(m)	(m)	(n)	(uT)	(uT)	(deg)	(uT)	Axial Ratio %	(A/m) 1	(kV/n)	(kV/n)	(deg)	(kV/n)	Axial Ratio *	(kV)	(kV)	(deg)	(kV)		
372.0	525.0	1.0	0.052	0.066	51.7	0.094	7.5	0.067	0.000	0.007	89.1	0.007	0.2	-0.000	-0.007	89.1	0.007		
371.0	525.0	1.0	0.071	0.090	51.6	0.115	6.8	0.092	0.000	0.009	87.5	0.009	0.2	-0.000	-0.009	67.5	0.009		
370.0	525.0	1.0	0.972	0.091	51.8	0.115	6.9	0.093	0.000	0.009	E7.3	0.009	0.2	-0.000	-D_000	87.3	0.009		
369.0	535.0	1.0	0.973	0.092	51.8	0,118	7.1	0.094	0,000	0.009	E7-2	0.009	0.2	-0.000	-0.000	87.2	0.009		
368.0	525.0	1.0	0.673	0.093	51.8	0.119	7.2	0.095	0.000	0.009	E7.1	0.009	0.2	-0.000	-0.009	87.1	0.009		
367.0	525.0	1.0	0.674	0.094	51.8	0,120	7.3	0.096	0.001	0.010	86.9	0.010	0.2	-0.001	-0.010	86.9	0.010		
365.0	525.0	1.0	0.075	0.095	51.8	0,121	7.5	0.097	0.001	0.010	86.8	0.010	0.2	-0.001	-0.010	86.8	0.010		

	Electric & Magnetic	Field Study Report	Applies to					
EMF-OHL-003	Beauly to Blackhillock to Nev		Distribution	Transmission				
	Overhead L	ine Project		✓				
Revision: 2.00	Classification: Public	Issue Date: September 25						

364.0 525.0	1.0 0.077	0.098	51.8	0,124	7.8	0.059	0,001	0.010	86.5	0.010	0.	2	-0.001	-0.010	66.5 65.4	0.010
363.0 525.0 362.0 525.0 361.0 525.0 360.0 525.0 359.0 525.0	1.0 0.078 1.0 0.078 1.0 0.079 1.0 0.090 1.0 0.081	0,099 0,100 0,101 0,103 0,103	51.8 51.8 51.8 51.8 51.8	0.125 0.127 0.128 0.130 0.131	7.9 #.0 #.2 #.3 #.5	0.100 0.101 0.102 0.103 0.104	0,001 0,001 0,001 0,001 0,001	0.010 0.010 0.010 0.010 0.010	86.4 86.3 86.1 86.0 85.8	0.010 0.010 0.010 0.010 0.010	0, 0, 0.	2	-0.001 -0.001 -0.001 -0.001 -0.001	-0.010 -0.010 -0.010 -0.010 -0.010	86.4 86.1 86.0 85.8	0.010 0.010 0.010 0.010
356.0 525.0 357.0 525.0 356.0 525.0	1.0 0.082	0.104 0.106 0.107	51.6 51.6 51.6	0.133 0.134 0.136	8.6 8.6 8.9	0.104 0.106 0.107 0.108	0.001	0.010	85.7 85.5	0.010 0.011 0.011	0.	2	-0.001 -0.001 -0.001	-0.010 -0.011 -0.011	85.7 85.6 85.4	0.010
355.0 525.0 354.0 525.0 353.0 525.0	1.0 0.085 1.0 0.086 1.0 0.087	0,108 0,109 0,110	51.8 51.8	0.137 0.139 0.141	9.1 9.2 9.4	0.109 0.111 0.112	0,001	0.011	85.3 85.1	0.011	0, 0, 0.	3 3 3	-0.001 -0.001	-0.011 -0.011 -0.011	85.3 85.1 85.0	0.011
352.0 525.0 351.0 525.0 350.0 525.0 349.0 525.0	1.0 0.089 1.0 0.099 1.0 0.090	0,112 0,113 0,114 0,116	51.8 51.8 51.8 51.8	0.142 0.144 0.146 0.147	9.5 9.7 9.8 10.0	0.113 0.114 0.116 0.117	0,001 0,001 0,001	0.011 0.011 0.011	84.7 84.5 84.4	0.011 0.011 0.011 0.012	0. 0.	3	-0.001 -0.001 -0.001 -0.001	-0.011 -0.011 -0.011	84.7 84.5 84.4	0.011 0.011 0.011 0.012
348.0 525.0 347.0 525.0	1.0 0.092	0,117	51.0	0.149	10.1 10.3 10.5	0,119	0,001	0.012	84.2	0.012	0.	3	-0.001	-0.012 -0.012	84.2 84.0	0.012
345.0 525.0 344.0 525.0 343.0 525.0	1.0 0.094 1.0 0.096 1.0 0.097 1.0 0.098 1.0 0.099	0.120 0.121 0.123 0.124 0.126	51.# 51.# 51.# 51.# 51.7	0,153 0,155 0,156 0,158 0,160	10.6 10.8 10.9 11.1	0.122 0.123 0.125 0.126 0.128	0,001 0,001 0,001 0,001	0.012 0.012 0.012 0.012 0.012	83.9 83.7 83.6 83.4 83.2	0.012 0.012 0.012 0.012 0.012	0, 0, 0, 0,	3	-0.001 -0.001 -0.001 -0.001 -0.001	-0.012 -0.012 -0.012 -0.012 -0.012	83.7 83.6 83.4 83.2	0.012 0.012 0.012 0.012 0.012
342.0 525.0 341.0 525.0 340.0 525.0 339.0 525.0	1.0 0.099 1.0 0.101 1.0 0.102 1.0 0.103	0,126 0,128 0,129 0,131	51.7 51.7 51.7 51.7	0,160 0,162 0,164 0,167	11.1 11.2 11.4 11.6	0.128 0.129 0.131 0.132	0.001 0.002 0.002	0.012 0.013 0.013	#3.2 #3.1 #2.9 #2.7	0.012 0.013 0.013 0.013	0, 0. 0.	3	-0.001 -0.002 -0.002 -0.002	-0.012 -0.012 -0.013 -0.013	83.1 82.9 82.7	0.013 0.013 0.013
339.0 525.0 337.0 525.0 336.0 525.0	1.0 0.104 1.0 0.106 1.0 0.107	0,132	51.7	0.169 0.171 0.173	11.7 11.9 12.1	0.134 0.136 0.136	0.002 0.002 0.002	0.013	52.4 52.2	0.013 0.013 0.013	0.	2	-0.002 -0.002 -0.002	-0.013 -0.013 -0.013	82.6 82.4 82.2	0.013 0.013 0.013
335.0 525.0 334.0 525.0 333.0 525.0	1.0 0.109 1.0 0.110 1.0 0.112	0.136 0.137 0.139 0.141	51.7 51.7 51.7 51.6	0.175 0.177 0.180	12.2 12.4 12.6	0.139 0.141 0.143	0,002	0.013	81.7 81.5	0.013	0. 0. 0.	3	-0.002 -0.002 -0.002	-0.013 -0.013 -0.014	82.1 81.9 81.7	0.013
332.0 525.0 331.0 525.0 330.0 525.0 329.0 525.0	1.0 0.113 1.0 0.115 1.0 0.116 1.0 0.118	0,143 0,145 0,147 0,148	51.6 51.6 51.6	0.182 0.185 0.187 0.190	12.7 12.9 13.1 13.2	0.145 0.147 0.149 0.151	0,002 0,002 0,002 0,002	0.014 0.014 0.014 0.014	81.4 81.2	0.014 0.014 0.014 0.014	0. 0.	3	-0.002 -0.002 -0.002 -0.002	-0.014 -0.014 -0.014 -0.014	81.5 91.4 91.2 81.0	0.014 0.014 0.014 0.014
328.0 525.0 327.0 525.0	1.0 0.119	0,150	51.6 51.5 51.5 51.5	0.192	13.4 13.6 13.7 13.9	0.153 0.155 0.157 0.159	0,002	0.014	HO.H	0.015	0,	3	-0.002	-0.014	HO. H	0.015
326.0 525.0 325.0 525.0 324.0 525.0 323.0 525.0 322.0 525.0	1.0 0.123 1.0 0.125 1.0 0.126 1.0 0.128 1.0 0.130		51.5 51.5 51.5	0,200 0,203 0,206	13.9 14.1 14.3 14.6	0.164	0,003 0,003 0,003	0.015 0.015 0.015 0.015 0.015	80.4 80.2 80.1 79.9 79.7	0.015 0.015 0.015 0.016	0, 0, 0, 0,	3	-0.003 -0.003 -0.003 -0.003	-0.015 -0.015 -0.015 -0.015 -0.015	#0.4 #0.2 #0.1 79.9 79.7	0.015 0.015 0.015
322.0 525.0 321.0 525.0 320.0 525.0 315.0 525.0	1.0 0.132 1.0 0.134 1.0 0.136	0,163 0,165 0,168 0,170	51.4 51.4 51.4	0,209 0,211 0,214 0,218	14.6 14.8 15.0	0.166 0.168 0.171 0.173	0,003 0,003 0,003 0,003	0.016 0.016 0.016		0.016 0.016 0.016	0.	3	-0.003 -0.003 -0.003	-0.016 -0.016 -0.016	79.7 79.5 79.3 79.1	0.016 0.016 0.016 0.016
316.0 525.0 317.0 525.0 316.0 525.0	1.0 0,138	0.172 0.175 0.177	51.3 51.3	0.221 0.224 0.227	15.1 15.3 15.5	0.176 0.176 0.181	0,003	0.016	79.3 79.1 78.9 78.7 78.5	0.016 0.017 0.017	0. 0.	4	-0.003 -0.003	-0.016 -0.016 -0.017	78.5 78.5	0.016
315.0 525.0 314.0 525.0 313.0 525.0	1.0 0.153 1.0 0.156 1.0 0.158	0.191 0.193 0.196 0.199	51.2 51.2 51.1	0.245 0.248 0.252	13.8 14.0 14.2 14.4	0.195 0.198 0.200	0,003	0.019	80.3 80.1 79.9 79.7	0.019	0. 0.	4	-0.003 -0.003 -0.003 -0.004	-0.019 -0.019 -0.019	80.3 80.1 79.9 79.7	0.019
312.0 525.0 311.0 525.0 310.0 525.0 309.0 525.0	1.0 0.160 1.0 0.163 1.0 0.167 1.0 0.170 1.0 0.170	0.201	51.1 51.1 51.1 51.0	0.255 0.259 0.263 0.266	14.6 14.8 15.0	0.203 0.206 0.209 0.212	0,004 0,004 0,004 0,004	0.019 0.020 0.020 0.020	79.5 79.3	0.020 0.020 0.020 0.021	o. o.	4	-0.004 -0.004	-0.019 -0.020 -0.020 -0.020	79.5 79.3	0.020 0.020 0.020 0.021
308.0 525.0 307.0 525.0	1.0 0.170 1.0 0.173 1.0 0.175	0,210	51.0 51.0 51.0 50.9	0.270	15.2 15.4 15.6 15.8	0,215 0,218 0,221 0,225	0,004	0.020	78.8	0.021	0.	4	-0.004	-0.020	78.8 78.6 79.4 79.2	0.021
306.0 525.0 305.0 525.0 304.0 525.0 303.0 525.0 302.0 525.0	1.0 0.175 1.0 0.178 1.0 0.181 1.0 0.184 1.0 0.184	0.216 0.219 0.222 0.226 0.229	50.9	0.278 0.282 0.287 0.291 0.295	16.0	0.228	0,004 0,005 0,005	0.021 0.021 0.021 0.022 0.022	78-2 77-9 77-7	0.021 0.022 0.022 0.022 0.022	0.	4	-0.004 -0.004 -0.005 -0.005 -0.005	-0.021 -0.021 -0.021 -0.022 -0.022		0.021 0.022 0.022 0.022 0.022
301.0 525.0 300.0 525.0 299.0 525.0	1.0 0.190 1.0 0.193 1.0 0.214	0.232 0.236 0.263	50.8 50.8 50.9	0.300 0.304 0.339	16.4 16.6 16.8 15.9	0.235 0.239 0.242 0.270	0,005 0,005 0,005 0,006	0.022 0.022 0.025	7#.4 7#.2 77.9 77.7 77.5 77.2 77.0 76.8	0.023 0.023 0.026	0.	4	-0.005 -0.005 -0.006	-0.022 -0.022 -0.025	77.7 77.5 77.3 77.0 76.8	0.023 0.023 0.025
298.0 525.0 297.0 525.0 296.0 525.0	1.0 0.221 1.0 0.221 1.0 0.224	0.267 0.271 0.275 0.279	50.6	0.344 0.350 0.355	16.1 16.3 16.5	0.276 0.276 0.283	0.006 0.006 0.006 0.007	0.025	76.6 76.4 76.1 75.9 75.7	0.026 0.027 0.027 0.027	0,	4	-0.006 -0.006 -0.006 -0.007	-0.026 -0.026 -0.026	76.6 76.4 76.1 75.9	0.026
295.0 525.0 294.0 525.0 293.0 525.0 292.0 525.0	1.0 0.228 1.0 0.232 1.0 0.236 1.0 0.240	0,279 0,284 0,288 0,292	50.8 50.7 50.7 50.7	0.361 0.366 0.372 0.378	16.7 16.9 17.1	0.291 0.296 0.301	0,007 0,007 0,007 0,007	0.026 0.027 0.027 0.027	75.9 75.7 75.4 75.2	0.027 0.028 0.028 0.028	0. 0.	4	-0.007 -0.007 -0.007 -0.007	-0.026 -0.027 -0.027 -0.027	75.9 75.7 75.4 75.2	0.027 0.028 0.028 0.028
291.0 525.0 290.0 525.0	1.0 0.244 1.0 0.248	0.297	50.6 50.5	0.384	17.1 17.3 17.5 17.7 18.0	0.306	0.007	0.028	74.9 74.7	0.029	0.	4 4	-0.007 -0.008	-0.028 -0.028	75.0 74.7 74.5	0.029
288.0 525.0 287.0 525.0 286.0 525.0	1.0 0.256 1.0 0.261 1.0 0.265 1.0 0.270 1.0 0.275	0,311 0,316 0,321	50.5 50.4 50.4	0.403 0.410 0.416	18.2 18.4 18.6	0,321 0,326 0,331	0,008	0.029	74.2 73.9 73.7 73.4 73.1	0.030 0.030 0.031	o, o, o,	5	-0.00# -0.00#	-0.029 -0.029 -0.029	74.2 73.9 73.7 73.4 73.2	0.030 0.030 0.031
286.0 525.0 285.0 525.0 284.0 525.0 283.0 525.0 282.0 525.0	1.0 0.280 1.0 0.285	0,321 0,326 0,331 0,337 0,342	50.4 50.4 50.3 50.3 50.3	0.416 0.423 0.431 0.438 0.445	18.8 19.0 19.2 19.5	0.331 0.337 0.343 0.348 0.354	0,009 0,009 0,009 0,010	0.029 0.030 0.030 0.031 0.031	72.5	0.031 0.031 0.031 0.032 0.032	0.	ET ET	-0.009 -0.009 -0.009 -0.009	-0.029 -0.030 -0.030 -0.031 -0.031	73.2 72.9 72.6	0.031 0.031 0.031 0.032 0.032
281.0 525.0 280.0 525.0 279.0 525.0	1.0 0.296 1.0 0.396 1.0 0.301	0.348 0.354 0.360	50.2 50.1 50.0	0.461 0.469	19.7 19.9 20.1	0.361 0.367 0.373	0.010	0.031	72.3 72.0 71.# 71.5 71.2	0.033 0.033 0.034	0.	5 5	-0.010 -0.010 -0.011	-0.031 -0.032 -0.032	72.3 72.0 71.8	0.033
278.0 525.0 277.0 525.0 276.0 525.0 275.0 525.0	1.0 0.307 1.0 0.313 1.0 0.319 1.0 0.325	0,366 0,372 0,379 0,385	50.0 49.9 49.9	0.478 0.486 0.495 0.504	20.5 20.6 20.8 21.0	0,360 0,367 0,394 0,401	0.011 0.011 0.012 0.012	0.032 0.033 0.033 0.034		0.034 0.035 0.035 0.036	0.	5 5	-0.011 -0.011 -0.012 -0.013	-0.032 -0.033 -0.033 -0.034	71.5 71.2 70.9 70.6	0.034 0.035 0.035 0.036
274.0 525.0 273.0 525.0 272.0 525.0	1.0 0.332 1.0 0.338	0,392	49.8 49.7 49.6	0.513 0.523 0.533	21.2 21.5 21.7	0.409 0.416 0.424	0.012	0.034	70.6 70.3 70.0 69.6	0.036	0.	5	-0.012 -0.012 -0.013 -0.013	-0.034 -0.035 -0.035	70.3 70.0 69.7	0.036
271.0 525.0 270.0 525.0 269.0 525.0	1.0 0.352 1.0 0.359 1.0 0.367	0.413 0.421 0.428	49.6 49.5 49.5	0.543 0.553 0.564	21.9 22.2 22.4	0.432 0.440 0.449	0.013	0.035 0.036 0.036	69.3 69.0	0.038 0.038 0.039	0.	6	-0.013 -0.014	-0.035 -0.036 -0.036	69.3 69.0 69.7	0.038 0.039 0.039
268.0 525.0 267.0 525.0 266.0 525.0 265.0 525.0 264.0 525.0	1.0 0.374 1.0 0.382 1.0 0.390 1.0 0.399 1.0 0.407	0,436 0,445 0,453 0,461 0,470	49.4 49.3 49.3 49.2 49.1	0.575 0.586 0.598 0.610	22.6 22.8 23.1 23.3 23.5	0.457 0.466 0.476 0.485 0.495	0.015 0.015 0.016 0.016 0.017	0.037 0.037 0.038 0.038 0.039	68.3 68.0 67.7 67.3 67.0	0.040 0.040 0.041 0.042 0.042	0,	6 6	-0.015 -0.015 -0.016 -0.016 -0.017	-0.037 -0.037 -0.038 -0.038 -0.039	65.4 65.0 67.7 67.3	0.040 0.040 0.041 0.042 0.042
263.0 525.0 262.0 525.0	1.0 0.416	0,479	49.0	0,621 0,635 0,648	23.8	0.505	0.017	0.039	56.2	0.043	0.	€ €	-0.017 -0.01#	-0.039	65.6 65.2	0.043
261.0 525.0 260.0 525.0 259.0 525.0 256.0 525.0	1.0 0.435 1.0 0.444 1.0 0.455 1.0 0.465	0.498 0.508 0.518 0.529	48.5 48.7 48.7	0.661 0.675 0.689 0.704	24.3 24.5 24.7 25.0	0.536 0.537 0.549 0.560	0.018 0.019 0.019 0.020	0.040 0.041 0.041 0.042	65.9 65.5 65.1	0.044 0.045 0.046 0.046	0, 0, 0. 0.	7 7 7	-0.018 -0.019 -0.019 -0.020	-0.040 -0.041 -0.041 -0.042	65.5 65.1 64.7	0.045 0.045 0.046
257.0 525.0 256.0 525.0 255.0 525.0	1.0 0.465 1.0 0.476 1.0 0.487 1.0 0.497 1.0 0.510 1.0 0.523 1.0 0.536	0,540 0,551 0,562	48.6 48.5 48.4	0.719 0.735 0.751	25.2 25.5 25.7	0.572 0.565 0.598	0,020 0,021 0,022	0.043 0.043 0.044	64.7 64.3 63.9 63.5 63.1 62.7 62.3	0.047 0.048 0.049	0, 0, 0,	7 7	-0.020 -0.021 -0.022	-0.043 -0.043 -0.044	64.3 63.5 63.5	0.047
254.0 525.0 253.0 525.0 252.0 525.0	1.0 0.510 1.0 0.523 1.0 0.536 1.0 0.549	0,574 0,586 0,599 0,612	48.3 48.3 48.2 49.1	0.768 0.785 0.803 0.822	25.9 26.2 26.4 26.7	0.611 0.625 0.639 0.654	0.022 0.023 0.024	0.044 0.045 0.045	63.1 62.7 62.3	0.050 0.051 0.051	0.	7 8	-0.022 -0.023 -0.024	-0.044 -0.045 -0.045	63.1 62.7 62.3 61.8	0.050 0.051 0.051
251.0 525.0 250.0 525.0 249.0 525.0 248.0 525.0 247.0 525.0	1.0 0.549 1.0 0.563 1.0 0.577 1.0 0.591 1.0 0.607	0,625 0,639 0,653 0,668	48.0 47.9 47.8 47.7	0.841 0.861 0.881 0.902	26.9 27.2 27.4	0.669 0.665 0.701 0.718	0,025 0,025 0,026 0,027 0,028	0.046 0.047 0.047 0.048 0.049	61.8 61.4 60.9 60.5 60.0	0.052 0.053 0.054 0.055 0.056	0.	8	-0.025 -0.025 -0.026 -0.027 -0.028	-0.046 -0.047 -0.047 -0.048 -0.049	61.4 60.9 60.5 60.0	0.052 0.053 0.054 0.055 0.056
267.0 525.0 266.0 525.0 265.0 525.0 264.0 525.0	1.0 0.607 1.0 0.633 1.0 0.639 1.0 0.656	0,683 0,698 0,715	47.5 47.4	0.902 0.924 0.947 0.970	27.7 27.9 28.2 28.4	0.71H 0.735 0.753 0.772	0,028 0,029 0,030 0,031	0.049 0.049 0.050 0.050	59.5 59.0 58.5	0.056 0.057 0.058 0.059	o. o.	5	-0.029 -0.039 -0.030 -0.031	-0.049 -0.050 -0.050	59.5 59.0 59.5	0.056 0.057 0.058 0.059
242.0 525.0 242.0 525.0 241.0 525.0	1.0 0.5#2 1.0 0.701 1.0 0.720	0,742	47.4 47.3 47.2	1,033	28.0 28.3 28.5	0.802	0.032	0.053	59.1 58.6 58.0	0.063 0.065	0,	9 9	-0.032 -0.033 -0.034	-0.053 -0.054 -0.055	59,1 58,6 58,1	0.063
240.0 525.0 239.0 525.0 238.0 525.0 237.0 525.0	1.0 0.740 1.0 0.760 1.0 0.782 1.0 0.804	0,796 0,815 0,835 0,856	47.1 47.0 46.9 46.8	1.08E 1.114 1.144 1.174	28.8 29.1 29.3 29.6	0.865 0.867 0.910 0.934	0.035 0.036 0.038 0.039	0.055 0.056 0.057 0.057	57.5 57.0 56.4 55.8	0.066 0.067 0.068 0.069	1.	# D D E	-0.035 -0.036 -0.038	-0.055 -0.056 -0.057	57.5 57.0 56.4 55.8	0.066 0.067 0.068 0.069
236.0 525.0 235.0 525.0 234.0 525.0	1.0 0.827 1.0 0.851 1.0 0.876	0,877 0,899 0,922	45.7 45.5 46.5	1,205 1,238 1,272	29.9 30.1 30.4	0.959 0.965 1.012	0,040 0,042 0,043	0.058 0.059 0.059	55.3 54.7 54.0	0.071 0.072 0.073	1.	1	-0.039 -0.040 -0.042 -0.043	-0.057 -0.058 -0.059 -0.059	55.3 54.7 54.1	0.071 0.072 0.073
233.0 525.0 232.0 525.0 231.0 525.0	1.0 0.930 1.0 0.930 1.0 0.958 1.0 0.988	0.946 0.971 0.997	46.2 46.1 46.0	1,307 1,344 1,383	30.7 30.9 31.2 31.5	1.040	0,045 0,046 0,048	0.060 0.061 0.061	53.4 52.8 52.1	0.075 0.076 0.078 0.079	1.	1	-0.045 -0.046 -0.048 -0.049 -0.051	-0.060 -0.061 -0.061 -0.062	53.4 52.8 52.1	0.075 0.076 0.078 0.079 0.079
230,0 525.0 229,0 525.0 228,0 525.0 227,0 525.0	1.0 1.019 1.0 1.052 1.0 1.086	1,023 1,051 1,080 1,110	45.8 45.6	1,423 1,464 1,508 1,553	31.9 32.0 32.3	1.132 1.165 1.200 1.236	0,049 0,051 0,053 0,055	0.062 0.063 0.063 0.064	51.5 50.8 50.1 49.3	0.081 0.083 0.084	1:	3	-0.053	-0.063 -0.064	51.5 50.8 50.1 49.3	0.083
226.0 525.0 225.0 525.0 224.0 525.0	1.0 1.121 1.0 1.158 1.0 1.197	1.142 1.174 1.208	45.4 45.3	1,600	32.6 32.9 33.2	1.312	0,057 0,059 0,061	0.064	47.8 47.0	0.086	1.		-0.057 -0.059 -0.061	-0,064 -0,065 -0,066	47.8 47.0	0.086
223.0 525.0 222.0 525.0 221.0 525.0 220.0 525.0	1.0 1.238 1.0 1.280 1.0 1.325 1.0 1.372	1,244 1,281 1,319 1,360	45.0 44.9 44.7	1,755 1,911 1,870 1,931	33.4 33.7 34.0	1.441 1.488 1.537	0.063 0.066 0.068 0.070	0.065 0.067 0.067	45.4 45.4 44.5 43.7 42.8	0.091 0.093 0.095 0.097	1.	# 1% 1% #	-0.063 -0.065 -0.068	-0.066 -0.067 -0.067	45.4 44.6 43.7	0.093 0.095 0.097
219.0 525.0 218.0 525.0	1.0 1.421 1.0 1.473	1,403	44.E 44.5	1.996	34.3 34.6 34.9	1.588	0.070 0.073 0.076	0.067	42.8 41.8	0.099	1.	€ 7	-0.070 -0.073 -0.076	-0.067 -0.068	42.8 41.8	0.099

	Electric & Magnetic	Field Study Report	Applies to				
EMF-OHL-003	Beauly to Blackhillock to Nev	Distribution	Transmission				
	Overhead L	ine Project		✓			
Revision: 2.00	Classification: Public	Issue Date: September 25					

11.0	1.527 1.490 1.527 1.490 1.527 1.490 1.527 1.491 1.707 1.491	44.3 2.135 44.3 2.135 44.4 3.2 2.135 44.4 2.2 2.235 44.6 2.2 2.235 44.6 2.2 2.235 44.6 2.2 2.235 44.6 2.2 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 43.6 2.246 44.6 3.346 46.6 3.346 46.7 3.366 46.8 3.34	35.2 1.699 33.7 1.699 33.7 1.699 33.7 1.699 33.7 1.699 33.7 1.691 32.6 2 1.681 32.7 2 1.681 32.7 2 1.681 32.7 2 1.681 32.7 2 1.681 32.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	0.078	40.8 0.104 33.8 0.104 33.8 0.106 33.8 0.106 33.8 0.106 33.8 0.106 33.5 0.113 33.5 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 33.7 0.113 34.7 0.113 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 34.7 0.136 35.7 0.136 36.7 0.136 36.7 0.136 37.7 0.136	1.7	11 -0.088 12 -0.088 13 -0.088 14 -0.088 15 -0.	0.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 338.8 0.104 34.2 0.138 34.2 0
146.0 325.0 1.0 146.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 159.0 325.0 1.0 146.0 325.0 1.0	44.4.18 20.099 25 25.481 25.48	24.4 48.464 21.5 23.010 21.7 22.130 21.7 22.130 21.7 7	33.1 38.567 31.3 31.5 31.5 31.5 31.5 31.5 31.5 31.5	2.986 1.471 3.986 1.490 4.982 1.490 6.402 1.490 7.000 1.339 8.592 0.1,000 8.772 1.100 8.592 0.0,741 7.407 0.601 8.592 0.741 7.407 0.255 7.700 0.255 7	24.1. 3.4510 17.4. 4.770 14.7. 4.5.750 14.7. 4.5.750 10.5. 7.225 8.9. 2.750 10.5. 7.225 8.9. 2.750 10.5. 7.225 10.5. 7.225 10.7.	6.0 3.6 4.6 3.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4	44 1.464 14 1.464 14 1.464 14 1.464 14 1.464 14 1.274 15 1.465 15 1.465 16	141.2 3.588 4.200 20.11 141.8 5.673 20.11 141.8
125.0 025.0 1.0 1.0 1.1 125.0 025.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	41,170 4 5,030 4 6,030 4 6,130 4 6,130 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44.1 6.699 44.11 6.699 44.12 6.699 44.13 6.699 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.14 6.700 44.15 6.700 44.16 7	20.11 22.017 23.	4.117 4.100 2.742 3.377 2.177 3.377 2.1177 3.377 2.1177 3.377 2.1177 3.100 2.1177 2.114 1.202 2.114 1.202 3.100 0.574 1.880 0.574 1.880 0.118 1.880 0.118 1.880 0.118 1.880 0.118 1.880 0.118 0.574 0.118 0.574 0.118 0.574 0.118 0.574 0.574 0.574 0.	44.9 5.812 41.1 4.040 331.1 4.040 331.1 4.040 331.1 4.040 331.1 4.040 31.1 5.040 31.1 5.	6.90.0 5.60.7 6.10.7 6.10.7 6.20.7 6.30.7 6.30.7 6.50.7 6.7	134 - 2.078 134 - 1.078 134 - 1.078 134	44.4 9.734 41.73 4.860 31.6 4.860 31.6 4.860 31.6 5.4 9.600 31.6 2.460 31.6 2.460 3
96.0 525.0 1.0 1.0 98.0 525.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	29,975 17,163 31,795 17,460 23,175 17,460 24,175 17,460 40,193 21,19,400 40,193 21,19,400 40,193 20,149 41,194 21,194 41,194 21,	30.1 34.195 29.4 3 34.195 20.7 3 41.170 20.7 3 41.770 20.8 44.482 20.9 46.382 20.9 46.382 20.0 46.382 20.0 46.382 20.0 46.382 20.0 46.382 20.0 46.382 20.0 46.382 20.0 46.382 20.0 2 80.482 20.0 2 80.482 20.0 2 80.482 20.1 30.282 20.1 3	44.3 27.211 43.3 27.211 44.3 28.958.8 40.9 33.200 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 32.7 8 38.466 33.7 8 38.466 34.3 8 58.463 4.3 58.463	0.853 1.234 1.306 2.124 1.306 2.124 1.306 2.124 1.306 2.124 1.246 2.124 1.306	55.3 1.500 48.7 2 1.713 48.9 2 1.713 48.9 2 1.713 48.9 2 1.724 48.9 2 1.724 48.9 2 1.724 48.9 2 1.724 29.4 2 1.724 29.4 2 1.724 29.4 2 1.724 29.4 2 1.724 29.6 2 1.724 29.6 2 1.724 29.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2 1.724 20.7 2	10.0 0.8 1.0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.231 1.372 1.373	55.9 1.488 50.1 1.1897 50.1 1

	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to Nev	Distribution	Transmission	
	Overhead L	ine Project		✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

10.0 0.05.0 1.0 0.05.0 1.0 0.05.0 1.0 0.05.0 1.0 0.05.0 1.0 0.05.0 0.05.0 1.0 0.05.0 0.0	72, 079 4, 941 71, 776 52, 084 71, 776 52, 084 71, 776 52, 084 71, 776 52, 084 71, 776 52, 084 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 76, 021 8 58, 522 77, 021 8 58, 523 77, 021 8 58, 523 77, 021 8 58, 523 77, 021 8 59, 523 77, 021	33.1 86.513 34.6 87.522 35.0 88.462 37.4 89.613 39.8 92.1418 39.8 92.1418 42.6 88.006 42.6 88.006 42.6 88.006 44.2 75.969 44.2 75.973 44.1 86.773 44.1 86.773 44.2 75.974 44.2 77.974 44.2 77.974 44.2 86.007 44.2 77.974 44.3 84.773 44.1 86.1772 44.1 86.1772 44.1 86.1772 44.1 86.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 44.1 16.1772 45.1 16.1772 46.1 16.1772 47.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 1	1.5 #8.02	1.050 2.457 1.712 2.326 4.341 1.712 3.360 4.341 1.360 4.341 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 4.361 1.360 6.361 1.360	\$2.8 2.85 2.	10.1	7.80 - 2564 7.10 - 2569 7.	71.1 2.119 60.3 4.66 61.3 3.03 60.3 4.66 60.3 5.66 60.3 5.66 60.3 5.66 60.3 6.66 60.3
-4.0 252.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	73,002 44,094 73,077 64,012 73,077 64,012 73,077 64,013 73,077 64,013 73,077 65,040 73,077 66,041 73,077 66,041 73,077 66,041 73,077 66,041 73,077 66,041 74,077 75,077 75,077 75,077 75,077 75,077 77	30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 30.1 91.330 44.5 97.457 44.1 97.300 44.6 9	5.8 9 70.445 6.7 9 71.423 7.9 4 772.477 7.9 4 772.477 7.1 11.1 772.477 11.1 772.477 11.1 772.477 11.1 8 64.477 11.2 8 64.477 11.	1,000 1,00	\$3.0 0 3.7 PEG 50.1 0 5.6 0 3.7 PEG 50.1 0 6.6 0 3.7 PEG 50.1 0 6.6 0 3.7 PEG 50.1 0 6.6 0 3.7 PEG 50.	1.7. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 4.6. 5.7. 1.2. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4	1000 1000	58.00 - 2.333 56.10 - 2.441 56

	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to Nev	Distribution	Transmission	
	Overhead L	ine Project		✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

-77.0 5 -78.0 5 -79.0 5	525.0 525.0 525.0	1.0 1.0 1.0	1.716 1.664 1.615	0,743 0,714 0,686	23.4 23.2 23.0	1,870 1,911 1,755	34.0 33.7 33.4	1.488 1.441 1.396	0,092 0,090 0,089	0,025 0,024 0,022	15.5 14.6 13.8	0.095 0.093 0.091	1.:	5 0.092 5 0.090 4 0.099	0.025 0.024 0.022	15.4 14.6 13.8	0.095 0.093 0.091
-80.0 5 -81.0 5	125.0 125.0	1.0	1,568	0,660	22.6	1.701 1.649 1.600	33.2 32.9 32.6	1.353 1.312 1.273	0.086 0.086	0.020	13.0	0.090	1.	6 0.087 6 0.086 3 0.084	0.020 0.01# 0.017	13.0 12.2 11.4	0.090
-83.0 5 -84.0 5	125.0 125.0	1.0 1.0 1.0 1.0	1.437	0.566	22.3 22.1 21.9 21.7 21.5	1.553 1.508 1.464 1.473	32.3 32.0 31.8 31.5	1.236 1.200 1.165 1.132	0.083 0.081 0.080 0.078	0.014	10.7 10.0 9.3 8.6	0.053	1. 1. 1. 1.	0.0E3 0.0E1	0.014	10.7 9.9 9.2 8.5	0.084 0.083 0.081 0.079
-88.0 5	25.0 25.0 25.0 25.0	1.0	1.322 1.286 1.252 1.219	0,526 0,507 0,489 0,472 0,456	21.5 21.3 21.2	1.423 1.383 1.344 1.307	31.2 30.9 30.7	1.100 1.070 1.040	0.07E 0.077 0.07E 0.074	0.012 0.011 0.010 0.009 0.009	7.9 7.2 6.6	0.079 0.078 0.076 0.075 0.073	1:	0.076	0.012 0.011 0.010 0.009	8.5 7.9 7.2 6.6	0.078 0.076 0.075
-91.0 5 -92.0 5	525.0 525.0 525.0	1.0 1.0 1.0 1.0	1.157 1.128 1.100 1.073	0.440	21.3 21.2 21.0 20.8 20.6 20.5 20.3	1.272 1.238 1.205 1.174	30.4 30,1 29.9 29.6	1.012 0.965 0.959 0.934	0.073 0.072 0.070 0.069	0.007	5.4 4.8 4.2	0.072	1.	0.072 0.070 0.069	0.008 0.007 0.006 0.005	5.9 5.3 4.7 4.2 3.6	0.073 0.072 0.071 0.069
	25.0 25.0 25.0	1.0 1.0 1.0	1.046	0,396 0,383 0,371 0,358	20.1	1.144 1.114 1.086 1.059	29,3 29,1 28,8 28,5	0.910 0.887 0.865 0.843	0.068 0.067 0.066 0.064	0.004 0.004 0.003	3.6 3.1 2.5 2.0	0.068 0.067 0.066	1.0	0.067	0.004 0.003	3.6 3.0 2.5 1.9	0.068 0.067 0.068 0.065
-99.0 5 -100.0 5	125.0 125.0 125.0	1.0 1.0 1.0 1.0	0,997 0,973 0,951 0,914	0.347	19.8 19.6 19.4 19.6	1.033 1.008 0.970	29.3 28.0 25.4	0.822 0.802 0.772	0.063 0.062 0.059	0.002 0.002 0.001 0.002	1.5 1.0 1.5	0.065 0.063 0.062 0.059	0.	0.063 0.062 0.059	0.002 0.002 0.001 0.002	1.4 0.9 1.5	0.063
-102.0 5 -103.0 5 -104.0 5	125.0 125.0 125.0	1.0	0,893 0,872 0,853 0,833	0.315 0.305 0.295 0.286	19.6 19.4 19.3 19.1 18.9	0.947 0.924 0.902 0.881	28.2 27.9 27.7 27.4	0.753 0.735 0.718 0.701	0.058 0.057 0.056 0.055	0.001 0.001 0.000 0.001	0.7 0.5 0.7	0.058 0.057 0.056 0.055	0.1	8 0.057 8 0.056 9 0.055	0.001 0.000 -0.000 -0.000	0.5 -0.0 -0.5	0.058 0.057 0.056 0.055
	25.0 25.0 25.0	1.0	0,#15 0,797 0,779	0.277	18.6	0.861 0.841 0.822	27.2 26.9 26.7	0.685 0.669 0.654	0.054 0.053 0.052	0.001	1.0 1.5 1.9	0.054	0.1	H 0,054 H 0,053 H 0.052	-0.001 -0.001 -0.002	-0.9 -1.4 -1.8	0.054 0.053 0.052 0.051
-108.0 5 -109.0 5 -110.0 5 -111.0 5 -112.0 5	525.0 525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.762 0.746 0.730 0.715 0.700	0.253 0.245 0.238 0.231 0.224	18.3 18.2 18.0 17.9 17.7	0.803 0.785 0.768 0.751 0.735	26.4 26.2 25.9 25.7 25.5	0.639 0.625 0.611 0.598 0.585	0.051 0.050 0.050 0.049 0.048	0.002 0.002 0.003 0.003 0.003	2.3 2.7 3.1 3.5 4.0	0.051 0.051 0.050 0.049 0.048	0. 0. 0.	7 0.050	-0.002 -0.002 -0.003 -0.003 -0.003	-2.3 -2.7 -3.1 -3.5	0.051 0.050 0.049
-113.0 5 -114.0 5	525.0 525.0	1.0	0,686	0.217	17.6	0.719	25.2 25.0 24.7	0.572	0.046	0.004	4.4	0.047	0.	7 0.047 7 0.046 7 0.046	-0.004 -0.004	-3.9 -4.3 -4.7 -5.1	0.048 0.047 0.046 0.046
	125.0 125.0 125.0	1.0 1.0 1.0 1.0	0,645	0.199 0.194 0.188 0.183	17.3 17.2 17.0 16.9 16.7	0.675 0.661 0.648 0.635	24.5 24.3 24.0 23.8	0.537 0.526 0.515 0.505	0.045 0.044 0.043 0.043	0.004 0.005 0.005	5.5 5.9 6.3 6.6	0.045 0.044 0.044 0.043	0.		-0.004 -0.005 -0.005	-5.5 -5.9 -6.2	0.045 0.044 0.044 0.043
-121.0 5 -122.0 5	125.0 125.0 125.0	1.0	0.608 0.596 0.585 0.574	0.178 0.173 0.168	16.3	0.622 0.610 0.598	23.5 23.3 23.1	0.505 0.495 0.485 0.476	0.042 0.041 0.041	0.005 0.005 0.005 0.005	7.0 7.3 7.7	0.042 0.042 0.041	0.	6 0.042 6 0.041 6 0.041	-0.005 -0.005 -0.005 -0.005	-6.6 -7.0 -7.3 -7.7	0.042 0.042 0.041
-124.0 5 -125.0 5 -126.0 5	325.0 325.0 325.0	1.0 1.0 1.0	0,563 0,563 0,542 0,532	0.164 0.159 0.155 0.151	16.2 16.1 15.9 15.8	0.586 0.575 0.564 0.553	22.6 22.6 22.4 22.2	0.466 0.457 0.449 0.440	0.040 0.039 0.039 0.038	0,006 0,006 0,006	H.4 H.7 F.0	0.040 0.040 0.039 0.038	0. 0. 0.	6 0.039	-0.006 -0.006 -0.006	-8.4 -8.7 -9.0	0.040 0.040 0.039 0.039
-128.0 5 -129.0 5	525.0 525.0 525.0	1.0 1.0 1.0	0.523 0.513 0.504	0.147 0.143 0.139 0.135	15.5 15.5 15.4	0.543 0.533 0.523 0.513	21.9 21.7 21.5 21.2	0.432 0.424 0.416 0.409	0.037 0.037 0.036 0.036	0.006	9.3 9.7 10.0 10.3	0.037 0.037 0.037 0.036	0.1	E 0.037	-0.006 -0.006 -0.006	-9.3 -9.7 -10.0 -10.3	0.038 0.037 0.037 0.036
-131.0 5 -137.0 5	525.0 525.0 525.0	1.0 1.0 1.0	0.495 0.487 0.478 0.470 0.462	0.132 0.126 0.125 0.122	15.3 15.2 15.0 14.9 14.8	0.504 0.495 0.486 0.478	21.0 20.8 20.6 20.6	0.401 0.394 0.367 0.380	0.035 0.035 0.034 0.034	0.006 0.007 0.007 0.007 0.007	10.6 10.9 11.2 11.5	0.036 0.035 0.035 0.034	0.1	5 0.035 5 0.035 5 0.034	-0.006 -0.007 -0.007 -0.007 -0.007	-10.6 -10.9 -11.2 -11.5	0.036 0.035 0.035 0.034
-135.0 5 -136.0 5 -137.0 5	125.0 125.0	1.0	0.454	0.119 0.116 0.113	14.7	0.469	20.1 19.9 19.7	0,373 0,367 0,361	0.033	0.007	11.8 12.0 12.3	0.034	0.1	5 0.033 5 0.033 5 0.032	-0.007 -0.007 -0.007	-11.8 -12.0 -12.3	0.034
	125.0 125.0 125.0 125.0	1.0 1.0 1.0 1.0	0.432 0.425 0.418 0.411 0.404	0.110 0.107 0.105 0.102 0.100	14.3 14.2 14.1 14.0 13.9	0.445 0.438 0.431 0.423 0.416	19.5 19.2 19.0 18.8	0.354 0.348 0.343 0.337 0.331	0.032 0.031 0.031 0.030 0.030	0.007 0.007 0.007 0.007 0.007	12.6 12.9 13.1 13.4 13.7	0.032 0.032 0.031 0.031 0.031	0. 0. 0. 0.	0.032 0.031 0.031 0.030	-0.007 -0.007 -0.007 -0.007 -0.007	-12.6 -12.9 -13.2 -13.4 -13.7	0.032 0.032 0.031 0.031
-143.0 5 -144.0 5	025.0 025.0 025.0	1.0	0,404 0,399 0,392 0,385	0.100 0.097 0.095 0.093	13.9 13.7 13.6 13.5 13.4 13.3	0.416 0.410 0.403 0.396	18.6 18.4 18.2 18.0	0.331 0.325 0.321 0.315	0.030 0.029 0.029	0.007 0.007 0.007	13.7 13.9 14.2 14.4	0.031 0.030 0.030 0.029	0.	0.029	-0.007 -0.007 -0.007 -0.007	-13.7 -13.9 -14.2 -14.5	0.031 0.030 0.030 0.029
-146,0 5 -147,0 5	525.0 525.0	1.0 1.0 1.0	0,379	0.090 0.088	13.4 13.3 13.2 13.1	0.390	17.7 17.5 17.3 17.1	0.310	0.02# 0.02# 0.027	0.007	14.7	0.029 0.029 0.028	0. 0. 0.	0.028 0.028 0.027	-0.007 -0.007	-14.7 -15.0 -15.2 -15.4	0.029 0.029 0.028 0.028
	525.0 525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.362 0.357 0.351 0.366	0.084 0.062 0.060 0.079	13.0 12.9 12.8	0.372 0.366 0.361 0.355 0.350	16.9 16.7 16.5	0.296 0.291 0.267 0.283	0.027 0.027 0.026 0.026	0.007 0.007 0.007 0.007 0.007	15.4 15.4 15.7 15.9 16.1	0.028 0.028 0.027 0.027 0.027	0.0	0.027 0.026 0.026	-0.007 -0.007 -0.007 -0.007	-15.7 -15.9 -16.1	0.028 0.027 0.027
-154.0 5 -155.0 5 -156.0 5	125.0 125.0	1.0 1.0 1.0 1.0	0,341 0,336 0,331 0,297	0.079 0.077 0.075 0.073 0.068	12.7 12.6 12.5 12.9 12.8	0.344	16.3 16.1 15.9 16.8	0.278 0.274 0.270 0.242	0.025 0.025 0.025 0.022	0.007	16.4	0,026 0,026 0,023	0.0	4 0.025 4 0.025 4 0.022	-0.007 -0.007 -0.007 -0.007	-16.4 -16.6 -16.8 -17.0	0.027 0.026 0.026 0.023
-150.0 5	125.0 125.0 125.0	1.0	0.292 0.288 0.294 0.280	0.067 0.065 0.064	12.7	0,300 0,295 0,291 0,287	16.4 16.2 16.0	0.239 0.235 0.231 0.228	0.022 0.021 0.021 0.021	0.007	16.8 17.0 17.3 17.5 17.7	0.023 0.022 0.022	0.	0.021	-0.007 -0.007 -0.007	-17.0 -17.3 -17.5 -17.7 -17.9	0.023 0.022 0.022 0.022
-161.0 5 -162.0 5 -163.0 5 -164.0 5	525.0 525.0 525.0 525.0	1.0 1.0 1.0 1.0	0,276 0,272 0,268 0,264	0.062 0.061 0.059 0.058 0.057	12.5 12.4 12.3 12.3 12.3	0.282 0.278 0.274 0.270	15,8 15,6 15,4 15,2	0.225 0.221 0.218 0.215	0.020 0.020 0.020 0.020	0.007 0.007 0.007 0.007 0.007	17.9 18.2 18.4 18.6 18.8	G.022 G.022 G.021 G.021 G.021	0. 0. 0.	6 0.020 6 0.020	-0.007 -0.007 -0.007 -0.007 -0.007	-18.2 -18.4 -18.6 -18.8	0.022 0.021 0.021 0.021
-165,0 5 -166,0 5 -167,0 5	525.0 525.0 525.0	1.0	0,260	0.056	12.1	0.266 0.263 0.259	15.0 14.8 14.6	0.212	0.019	0.007	19.0 19.3 19.5	G.021 G.020 G.020	0.	0.019 0.019	-0.007 -0.007 -0.007	-19.0 -19.3 -19.5	0.021
-169.0 5	525.0 525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.250 0.246 0.243 0.240 0.222	0.052 0.051 0.050 0.049 0.048	11.8 11.7 11.6 11.5 12.1	0.255 0.253 0.248 0.245 0.227	14.4 14.2 14.0 13.8 15.5	0.203 0.200 0.198 0.195	0.018 0.018 0.018 0.016	0.007 0.007 0.007 0.007 0.007	19.7 19.9 20.1 20.3 18.5	0.020 0.020 0.019 0.019 0.017	0 0	4 0.018	-0.007 -0.007 -0.007 -0.007 -0.005	-19.7 -19.9 -20.1 -20.3 -18.5	0.020 0.020 0.019 0.019
-173.0 5 -174.0 5	525.0 525.0 525.0	1.0	0.216	0.048 0.047 0.046 0.045	12.0	0,227 0,224 0,221 0,218	15.5 15.3 15.1 15.0	0.161 0.178 0.176 0.173	0.016 0.016 0.016 0.015	0.005 0.005 0.005 0.005	18.7 18.9	0.017 0.017 0.016 0.016	0.0	4 0.016 4 0.016	-0.005 -0.005 -0.005	-18.7 -18.9 -19.1	0.017 0.017 0.016 0.016
-176.0 5 -177.0 5	125.0 125.0	1.0 1.0 1.0 1.0	0.210	0.044 0.043 0.042 0.041	11.8 11.7 11.7 11.6 11.5	0.214 0.211 0.209 0.206	14.9 14.6 14.4 14.3	0.171 0.168 0.166 0.164	0.015 0.015 0.015 0.015	0.005	19.3	0.016	0.	0.015	-0.005 -0.005 -0.005 -0.005	-19.3 -19.5 -19.7 -19.9	0.016 0.016 0.016 0.015
-191.0 5 -192.0 5	125.0 125.0 125.0	1.0	0,202 0,199 0,196 0,194 0,191	0.040	11.4 11.4 11.3	0.203 0.200 0.197	14.1 13.9 13.7	0.161	0.014 0.014 0.014	0.005 0.005 0.005 0.005	19.9 20.1 20.2 20.4	0.015 0.015 0.015 0.015	0.	0.014 0.014 0.014	-0.005 -0.005	-20.1 -20.2 -20.4	0.015 0.015 0.015
-185.0 5 -186.0 5	525.0 525.0 525.0	1.0	0,189	0.03# 0.037 0.036 0.036	11.1 11.1 11.0 10.9	0.192 0.192 0.190 0.187	13.4 13.4 13.2 13.1	0.155 0.153 0.151 0.149	0.014 0.014 0.013 0.013	0.005 0.005 0.005	20.6 20.# 21.0 21.2	0.015 0.015 0.015 0.014 0.014	0.	0.013	-0.005 -0.005 -0.005 -0.005	-20.8 -20.8 -21.0 -21.2	0.015 0.015 0.014 0.014
-188.0 5 -189.0 5	025.0 025.0 025.0	1.0 1.0 1.0	0.181 0.179 0.177 0.174	0.035 0.034 0.034 0.033	10.8	0.185 0.182 0.180 0.177	12.9 12.7 12.6 12.4	0.145 0.145 0.143 0.141	0.013 0.013 0.013	0.005	21.4 21.5 21.7 21.9	0.014 0.014 0.014	0. 0.	0.013	-0.005 -0.005 -0.005	-21.4 -21.5 -21.7 -21.9	0.014 0.014 0.014
	525.0 525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.174 0.172 0.170 0.158 0.166	0.033 0.032 0.032 0.031 0.031	10.7 10.6 10.6 10.5 10.5	0.177 0.175 0.173 0.171 0.169	12.2 12.1 11.9 11.7	0.141 0.139 0.138 0.136 0.134	0.013 0.012 0.012 0.012 0.012	0.005 0.005 0.005 0.005 0.005	21.9 22.1 22.2 22.4 22.6	0.014 0.013 0.013 0.013 0.013	0. 0. 0.	3 0.012	-0.005 -0.005 -0.005 -0.005 -0.005	-22.1 -22.2 -22.4 -22.5	0.014 0.013 0.013 0.013 0.013
-195.0 5 -196.0 5 -197.0 5	125.0 125.0	1.0	0.164 0.162 0.160 0.150	0.030	10.4	0.167 0.164 0.162 0.160	11.6 11.4 11.2	0.132 0.131 0.129	0.012 0.012 0.012	0.005 0.005 0.005	22.7 22.9 23.1	0.013 0.013 0.013	0	0.012 0.012 0.012	-0.005 -0.005 -0.005	-22.7 -22.9 -23.1	0.013 0.013 0.013
-200.0 5 -201.0 5	125.0 125.0 125.0	1.0 1.0 1.0	0,156 0,154 0,152	0.028 0.028 0.027 0.027	10.2 10.2 10.1 10.0	0.158 0.156 0.155	11.1 10.9 10.# 10.#	0.128 0.126 0.125 0.123	0.011 0.011 0.011 0.011	0.005	23.2 23.4 23.6 23.7	0.012 0.012 0.012 0.012	0.	0.011 0.011	-0.005 -0.005 -0.005	-23.2 -23.4 -23.6 -23.7	0.012 0.012 0.012 0.012
-203.0 5 -204.0 5 -205.0 5	125.0 125.0 125.0	1.0	0,150 0,149 0,147 0,145	0.026 0.026 0.026 0.025	10.0 9.9 9.9	0.153 0.151 0.149 0.147	10.5 10.3 10.1 10.0	0.122 0.120 0.119 0.117	0.011 0.011 0.011 0.011	0.005 0.005 0.005	23.9 24.0 24.2 24.4	0.012 0.012 0.012 0.012	0.	0.011 0.011 0.011	-0.005 -0.005 -0.005	-23.9 -24.0 -24.2 -24.4	0.012 0.012 0.012 0.012
-206.0 5 -207.0 5 -208.0 5	125.0 125.0 125.0	1.0 1.0 1.0	0,143 0,142 0,140 0,139	0.025 0.024 0.024 0.024	9.8 9.7 9.7 9.6	0.146 0.144 0.142 0.141	9,8 9,7 9,5 9,4	0.116 0.114 0.113 0.112	0.010 0.010 0.010 0.010	0.005 0.005 0.005	24.5 24.7 24.8 25.0	0.011 0.011 0.011	0.	0.010 0.010	-0.005 -0.005 -0.005 -0.005	-24.5 -24.7 -24.8 -25.0	0.011 0.011 0.011 0.011
-210.0 5 -211.0 5 -212.0 5	525.0 525.0 525.0	1.0 1.0 1.0	0.137 0.135 0.134 0.132	0.023 0.023 0.022 0.022	9.6 9.5 9.5 9.5	0.139 0.137 0.136 0.134	9.2 9.1 8.9 8.8	0.111 0.109 0.108 0.167	0.010 0.010 0.010 0.010	0,005 0,005 0,005 0,005	25.1 25.3 25.4 25.5	0,011 0,011 0,011 0,011	0.	0.010 3 0.010 3 0.010	-0.005 -0.005 -0.005 -0.005	-25.1 -25.3 -25.4	0.011 0.011 0.011 0.011
-214.0 5 -215.0 5 -216.0 5	525.0 525.0 525.0	1.0 1.0 1.0	0,131 0,129 0,128	0.022 0.021 0.021	9.4	0.133 0.131 0.130	8.5 8.3	0.106 0.104 0.103	0.009	0.005	25.7 25.8 26.0	0.010	0.	0.009 0.009	-0.005 -0.005 -0.005	-25.6 -25.7 -25.8 -26.0	0.010
-218.0 5 -219.0 5 -220.0 5	125.0 125.0 125.0	1.0 1.0 1.0 1.0	0,127 0,125 0,124 0,122 0,121	0.021 0.020 0.020 0.020	9.3 9.2 9.2 9.2	0.128 0.127 0.125 0.124	8.2 8.0 7.9 7.6	0.101 0.101 0.100 0.099	0.009 0.009 0.009	0.004 0.004 0.004 0.004	26.1 26.3 26.4 26.5 26.7	0.010 0.010 0.010 0.010 0.010	0.: 0.: 0.:	0.009	-0.004 -0.004 -0.004	-26.1 -26.3 -26.4 -26.5 -26.7	0.010 0.010 0.010 0.010
-223.0 5	125.0 125.0 125.0	1.0	0.120	0.020 0.019 0.019	9.1	0.123 0.121 0.120	7.3	0.098 0.097 0.096	0.009	0.004 0.004 0.004	26.9	0.010	0.	0.009	-0.004 -0.004 -0.004	-26.9	0.010
-225.0 5 -226.0 5 -227.0 5	125.0 125.0 125.0	1.0 1.0 1.0	0.117 0.116 0.115 0.114	0.019 0.018 0.018 0.018	9.1 9.0 9.0 9.0	0,119 0,118 0,116 0,115	7.2 7.1 6.9 6.8	0.095 0.094 0.093 0.092	0.008 0.008 0.008 0.008	0.004 0.004 0.004	27.1 27.2 27.3 27.5	0,009 0,009 0,009 0,009	0. 0. 0.	2 0.008 2 0.008 2 0.008	-0.004 -0.004 -0.004 -0.004	-27,1 -27,2 -27,3 -27,5	0,009 0,009 0,009
-22#.0 S	525.0	1.0	0.083	0.013	9.3	0.084	7.5	0.067	0,00€	0.003	29.1	0.007	0.	2 0.006	-0.003	-29.1	0.007

	Electric & Magnetic	Appli	es to	
EMF-OHL-003	Beauly to Blackhillock to New Overhead L		Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

Optimal Phasing of Adjacent Circuits

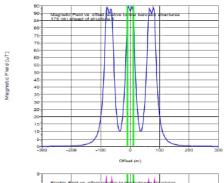
PLS-CADD Version 20.01x64 13:59:08 02 July 2025 Scottish and Southern Energy Project Mans, 'C:VESS/Combined_EMF_Check Temp\Combined_EMF_Check.don' Line Title: 'Max Op'

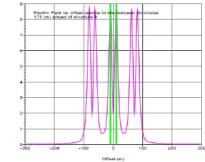
3D BMT Calculation Notes:

1) Calculation Notes:

1) Calculation State on the EMRI Bed Book methods (lid Edition, 2005 - 7.4 Calculation of Magnetic Fields and Appendices 7.1 Calculation of Field Ellipse Farameters and 7.5 Electric Field Calculations for 3D Geometry).

3) Only the effects of Wires are being analysed. The effects of structures are not included unless enabled as noted below.


4) Ground return is being ignored for magnetic field calculations.


```
Mater beight above ground: 1.00 (m)
Maximus wire distance: 300.00 (m)
Maximus wire distance: 300.00 (m)
Maximus wire agement size: 300.00 (m)
Deault intervalifact s/1. 1.00 (m)
Deault intervalifact s/1. 1.00 (m)
Deault intervalifact: 9.00 (kV/m)
Maymento field limit: 340.00 (kV/m)
Maymento field limit: 340.00 (kV/m)
Maymento field limit: 340.00 (kV/m)
Maymento piece size s/2 (m)
Maximus piece s/2 (m)
Maximus piece s/2 (m)
Maximus piece s/2 (m)
Maximus piece s/2 (m)
Maximus s/2 (m)
Maximus
```

One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections.

Section Data for 3D EMF Results:

Section Humber	Ph-Ph	(Amps)		Filename			Descript		Conductors Fer Phase		Radius	Weather Case	Condition		Temperature (deg C)	Effective Radius (cm)
1	 400.0	5000.0	700mm aas	c arancaria.wir	700mm*	AAAC -	Arsucaria	(H)	3	57.735	1,863	Мак Ор	Creep FE	Left	90,000	16,700
2	400.0	5000.0	700mm aas	c araucaria.wir	700mm*	AAAC -	Arancaria	(H)	3	57,735	1.863	Max Op	Creep FE	Laft	90,000	16,700
3	400.0	5000.0	700mm aas	c araucaria.wir	700mm*	AAAC -	Araucaria	(H)	- 3	57.735	1.#63	Max. Op	Creep FE	Left	90,000	16,700
4	400.0	5000.0	700mm sas	c araucaria.wir	700mm ³	ARAC -	Araucaria	(H)	.3	57,735	1.863	Max Op	Creep FE	Laft	90,000	16,700
5	400.0	5000.0	700mm aas	c araucaria.wir	700sm3	AAAC -	Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
- 6	400.0	5000.0	700sm ass	c arauceria.wir	700mm ³	AAAC -	Araucaria	(H)	3	57,735	1.863	Max Op	Creep FE	Laft	90,000	16,700
7	400.0	5000.0	700mm eas	c arancaria.wir	700mm*	AAAC -	Arapparia	(H)	3	57,735	1,863	Max. Op.	Creep FE	Left	90,000	16,700
8	400.0	5000,0	700mm aaa	c araucaria.wir	700mm2	AAAC -	Araucaria	(H)	3	57,735	1,863	Max. Op	Creep FE	Left	90,000	16,700
9	400.0	5000.0	700mm aas	c araucaria.wir	700mm ²	AAAC -	Araucaria	(H)	3	57,735	1.863	Max Op	Creep FE	Left	90,000	16,700
10	400.0	5000.0	700mm aas	c araucaria.wir	700mm ²	AAAC -	Araucaria	(H)	3	57,735	1,863	Max Op	Creep FE	Left	90,000	16,700
- 11	400.0	5000.0	700mm aas	c araucaria.wir	700nm ³	AAAC -	Arancaria	(H)	3	57,735	1,863	Max Op	Creep FE	Left	90,000	16,700
1.2	400.0	5000.0	700mm eas	c araucaria.wir	700mm ³	ARAC -	Araucaria	(H)	3	57,735	1,863	Max. Op.	Creep FE	Left	90,000	16.700
13	400.0	5000.0	700mm aas	c araucaria.wir	700mn3	AAAC -	Arancaria	(H)	3	57,735	1,863	Max. Op.	Creep FE	Left	90,000	16,700
1.4	400.0	5000.0	700mm and	c araucaria.wir	700mm3	AAAC -	Araucaria	(H)	3	57,735	1,863	Max Op	Creep FE	Left	90,000	16,700
1.5	400.0	5000.0	700mm aaa	c araucaria.wir	700mm3	AAAC -	Araucaria	(H)	3	57,735	1.863	Max Op	Creep FE	Left	90,000	16,700
1.6	400.0	5000.0	700mm was	c araucaria.wir	700mm3	AAAC -	Arsucaria	(H)	3	57,735	1.863	Max. Op	Creep FE	Left	90,000	16,700
17	400.0	5000.0	700mm eas	c arsucaria.wir	700mm*	AAAC -	Araucaria	(H)	3	57,735	1,#63	Max Op	Creep FE	Left	90,000	16,700
1#	400.0	5000.0	700mm aas	ic arancarta.wir	700mm*	ARAC -	Avancaria	(#)	3	57,735		Max On	Creen FE		90.000	26 700

	Electric & Magnetic	Field Study Report	Appli	es to
EMF-OHL-003	Beauly to Blackhillock to Ne Overhead L		Distribution	Transmission 🗸
Revision: 2.00	Classification: Public	Issue Date: September 25		

×	aurement-	=	Real D	naginary	Angle H	agnitude	Polarization	Hegnitude	Real I	maginary	Angle I	tagnitude 1	Polarization	Real 1	-Space Pot Imaginary	λn	gle Ma	agni tur
(m) 72.0	(m)	(n)	(uT)	(uT)	(deg)	(uT)	Axial Batio *	0.067	(kV/m)	(kV/m)	(deg) 78,2	(kV/m) A	cial Natio %	(kV) -0,002	(kV) -0.00E	(di	eg)	0.00
71.0 70.0 69.0	525.0 525.0 525.0 525.0	1.0 1.0 1.0	0.023	0.062	69.6 69.5	0.066	7.5 12.7 12.9	0.053 0.053 0.054	0.001 0.001 0.001	0.009	86.2 86.3 86.4	0.009	0.2 0.2 0.2	0,001 0,001 0,001	-0.009 -0.009 -0.009	- 5	6.2 6.3 6.4	0.00
69.0 68.0 67.0 66.0	525.0 525.0 525.0 525.0	1.0 1.0 1.0	0.024	0.064	69.5 69.4 69.4		13.1 13.3 13.5 13.8				86.4 86.5 86.6 86.7		0.2 0.2 0.2 0.2		-0.009 -0.009 -0.009	-8	6.4 6.5 6.6 6.7	0.00
6.0	525.0 525.0	1.0	0.024 0.025 0.025	0.065	69.4	0.069	13.8 14.0	0.055 0.054 0.057	0.001	0.009	86.5	0.009	0.2	0.001 0.001 0.001	-0.009 -0.009	-8 -6	6.7 6.8	0.00
.0	525.0	1.0 1.0 1.0	0.025	0.067	69.3	0.072	14.2	0.057	0.000	0.009	96.9	0.009	0.2	0.000	-0.009	-R6	.9	0.00
-0	525.0 525.0 525.0	1.0	0.026 0.026 0.026	0.069	69.2 69.2	0.073 0.074 0.074 0.075	14.4 14.6 14.9 15.1	0.058 0.059 0.059	0.000	0.009	97.0 97.1 #7.2 #7.3 #7.5	0.009	0.2 0.2 0.2	0.000 0.000 0.000	-0.009 -0.009 -0.009	-87 -87	-2	0.00
.0	525.0 525.0 525.0	1.0	0.027	0.070	69.1 69.1		15.3	0.060	0.000	0.010	87.3 87.5	0.010	0.2 0.2 0.2	0.000	-0.010 -0.010 -0.010	-87	.5	0.01
-0	525.0	1.0	0.028	0.073	49.0	0.077 0.078 0.079	15.5 15.7 16.0	0.061 0.062 0.063	0.000	0.010	87.€ 87.7 87.8	0.010	0.2	0.000		-67	. 7	
1.0	525.0 525.0 525.0	1.0	0,029	0.074 0.075 0.076 0.076	68.9 68.9 68.8	0,079 0,080 0,081 0,082	16.0 16.2 16.4 16.7	0.064	0.000	0.010	87.6 87.9 88.0 88.2	0.010	0.2 0.2 0.2	0.000	-0.010 -0.010 -0.010 -0.010	-87 -87 -88	.0	0.01 0.01 0.01
2.0	525.0 525.0	1.0 1.0 1.0 1.0 1.0	0.030	0.077	68.8 68.7 68.6	0.083	16.9	0.066	0.000	0.010	88.3	0.010	0.2	0.000	-0.010 -0.010	-81 -81	1.3	0.01
0.0	525.0	1.0	0.031	0.079	68.6	0.085	17.3	0.068	0.000	0.011	88.4 88.5 88.6	0.011	0.2	0.000	-0.011	-61	.6	0.01
-0	525.0 525.0 525.0	1.0	0.032	0.081 0.082 0.083	68.5 68.4 68.3	0.087	17.8 18.0 18.3	0.670 0.070 0.071	0.000	0,611 0,611 0,011	88.9 89.0	0.011	0.2 0.2 0.2	0.000	-0.011 -0.011 -0.011	-88 -88	9.0	0.01
.0	525.0	1.0	0.034	0.084	68.2	0.091	18.5	0.072	0.000	0.011	89.2	0.011	0.2	0.000	-0.011 -0.011	-85 -85	1,3	0.0
-0	525.0	1.0	0.035	0.097	69.1 69.0	0.093	18.9	0.074		0.011	89.4	0.011	0.2		-0.011	-85 -85	1.6	0.0
1.0	525.0 525.0 525.0	1.0	0,036 0,037 0,037	0.099	68.0 67.9 67.8	0.096 0.097 0.099	19.4 19.6 19.9	0.076 0.077 0.078	0.000	0.012 0.012 0.012	89.7 89.8 89.9	0.012 0.012 0.012	0.2 0.2 0.2	0.000 0.000 0.000	-0.012 -0.012 -0.012	-91 -91		0.0
0.0	525.0	1.0	0,039	0.092	67.5	0.100	20.1	0.079 0.081 0.082	0.000	0.012	89.6 89.7 89.5	0.012	0.3	-0,000	-0.012	81	1.7	0.0
-0	525.0 525.0 525.0	1.0 1.0 1.0 1.0	0,039	0.095	67.5 67.5	0,103 0,104 0,106	20.6 20.8 21.1	0.083	0.000	0.01Z 0.01Z 0.01Z	#9.4 #9.3	0.012	0.3	-0,000 -0,000 -0,000	-0.012 -0.012 -0.012	8.1	1.6	
-0	525.0	1.0	0.041	0.099	67.3 67.2	0.107	21.3	0.085	0.000	0.013	89.1	0.013	0.3	-0.000 -0.000	-0.013 -0.013	81	1.1	0.0
-0	525.0 525.0 525.0	1.0	0.043 0.044 0.044	0.101 0.103 0.104	67.1 67.0 66.9	0.110 0.112 0.113	21.8 22.0 22.2	0.089	0.000	0.013 0.013 0.013	88.6 88.5	0.013 0.013 0.013	0.3	-0.000 -0.000 -0.000	-0.013 -0.013 -0.013	88	.6	0.0
-0	525.0 525.0	1.0	0.045	0.104	66.8 66.7	0.115	22,2 22,5 22,7	0.092	0.000	0.013	88.5 88.3	0.013	0.3	-0.000	-0.013	55	.3	0.0
.0	525.0	1.0	0.047	0.109	66.6	0.119	23.0	0.094 0.096	0.000 0.001 0.001	0.014	88.0	0.014	0.3	-0.000 -0.001 -0.001	-0.014 -0.014 -0.014	88	.0	0.0
-0	525.0 525.0 525.0	1.0	0.049 0.050 0.051	0.112 0.114 0.115	66.5 66.4 66.2 66.2	0.172 0.124 0.126	23.4 23.7 23.9	0.097 0.099 0.100 0.102	0.001 0.001 0.001	0.014 0.014 0.014	87.8 87.6 97.5 97.3	0.014 0.014 0.014	0.3	-0.001 -0.001 -0.001	-0.014 -0.014 -0.014	97	.5	0.0
0.0	525.0	1.0	0.052	0.117	66.1	0.128	24.2		0.001	0.014	87.1	0.014	0.3	-0.001	-0.014	87	.1	0.0
.0	525.0	1.0	0.054	0,120	65.9 65.8 65.7	0.132 0.134 0.136	24.6 24.9 25.1	0.105 0.107 0.108	0.001	0.015	86.7 86.6 86.4	0.015	0.3	-0.001 -0.001	-0.015 -0.015 -0.015	84	. 6	0.0
-0	525.0 525.0 525.0 525.0	1.0	0.056	0.124 0.126 0.125 0.127	65.6 69.6 69.4	0.138 0.133 0.135	25.4 25.8 26.0	0.110 0.106 0.108	0.001 0.001 0.001 0.001	0.015 0.015 0.017 0.017	86.2 88.0 88.2	0.015 0.015 0.017 0.017	0.3	-0,001 -0,001 0,001	-0.015 -0.015 -0.017 -0.017	64 - 64	.2	0.0
-0		1.0	0.046 0.047 0.049		69.3								0.4	0.001 0.001 0.000		-81	. 4	
0.0	525.0 525.0 525.0	1.0	0.050 0.051 0.053	0.131	68.9 68.7	0.140 0.142 0.145	26.5 26.7 26.9	0.111 0.113 0.115	0.000	0.017 0.017 0.018	88.6 88.8 89.1	0.017 0.017 0.018	0.4	0.000	-0.017 -0.017 -0.018	-81 -81 -91	.9.	0.0
.0	525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.054 0.055 0.057	0.137 0.139 0.142	68.3 68.2	0.147 0.150 0.152	27.2 27.4 27.6	0.117 0.119 0.121	0.000	0.018 0.018 0.018	89.3 89.5 89.7	0.018	0.4	0.000	-0.018 -0.018 -0.018	-81 -81	1,3	0.0
-0	525.0 525.0 525.0	1.0	0.057 0.058 0.060			0.152 0.155 0.158			0.000		89.7		0.4 0.4 0.4			-89	0.0	
-0	525.0	1.0	0.061	0.146 0.149 0.151	67.8 67.6	0.158	28.1 28.3 28.5	0.126 0.128 0.130	0,000	0.019	89.7 89.6 89.4 89.2	0.019	0.4	-0,000 -0,000 -0,000	-0.019 -0.019 -0.019	85	1.5	0.0
-0	525 0	1.0	0.065 0.066 0.068	0.154 0.156 0.159	67.4 67.2 67.0 66.9	0.167 0.170 0.173	29.0	0,133 0,135 0,138	0.000	0.019 0.019 0.020	88.9	0.019	0.5	-0.000	-0.019	9.0	1.7	0.0
.0	525.0 525.0 525.0 525.0	1.0	0.068	0,159		0.173 0.204 0.20H	29.2	0.163	0.000 0.001 0.001		88.7 88.4 88.1	0.019 0.020 0.022	0.4	-0.000 -0.001 -0.001 -0.001	-0.019 -0.020 -0.022		.2	0.0
-0	525.0	1.0	0.089	0.192	65.2 65.1 64.9	0.212	16.0 16.1 16.5	0.159	0.001	0.022 0.023 0.023	#7.9 #7.€ #7.4	0.022	0.5	-0,001 -0,001	-0.022 -0.023 -0.023	67	.5	0.0
-0	525.0	1.0 1.0 1.0 1.0	0,094	0.199	64.7 64.6	0.220	26.7	0.175	0.001	0.023	87.1 86.8	0.023	0.5	-0,001 -0,001	-0.023 -0.024	6.0	,1 ,8	0.0
-0	525.0 525.0	1.0	0.098	0.205	64.4 64.2	0.228 0.232 0.232	27.2 27.4	0.181 0.185 0.188	0.001 0.002 0.002	0.024 0.024 0.024	86.3 86.3	0.024 0.024 0.024	0.5	-0.001 -0.002 -0.002	-0.014 -0.014 -0.014		. 6	0.0
.0	525.0 525.0 525.0	1.0	0.103 0.106 0.109	0.213 0.216 0.220	64.1 63.9 63.7	0.236 0.241 0.245	27.7 27.9 26.1	0.192	0.002	0.025	86.0 85.7 85.4	0.025	0.5 0.5	-0.002	-0.024 -0.025 -0.025	63 63	.7	0.0
-0	525.0 525.0 525.0	1.0	0.111 0.114 0.117	0.224 0.228 0.232	63.6 63.4 63.2	0,250 0,255 0,260	28.4 28.5 28.9	0.199 0.203 0.207	0.002 0.002 0.002	0.025	85-1 84-8 84-5	0.025	0.5	-0.002 -0.002 -0.002	-0.025 -0.026 -0.026	84	.8	0.0
-0	525.0	1.0 1.0 1.0 1.0	0.120	0.236	63.1	0.265	29.1	0.211	0.003	0.026	84-2	0.026	0.5	-0.003	-0.026	. 84	-2	0.0
0.0	525.0 525.0 525.0	1.0	0.126 0.130 0.133	0.245 0.249 0.254	62.7	0,276 0,281 0,287	29.6 29.8 30.1	0.219 0.224 0.22#	0.003 0.003 0.003	0.027 0.027 0.027	93.6 93.2 82.9	0.027 0.027 0.028	0.6	-0.003 -0.003 -0.003	-0.027 -0.027 -0.028	93		0.0
0.0	525.0	1.0	0,137	0.259	62.4 62.2 62.0	0.293	30.3	0.233	0.004 0.004 0.004	0.028	#2.6 #2.2	0.028	0.6	-0.004 -0.004	-0.02E -0.02E	82	.6	0.0
-0	525.0	1.0	0.144 0.14H	0.269	61.6	0.305	30.8 31.0	0.243		0.029	#1.5	0.029	0.6	-0.004	-0.029	67	.0	
-0	525.0 525.0 525.0	1.0	0,152 0,156 0,160	0.279 0.285 0.290	61.5 61.3 61.1	0,318 0,325 0,332	31.2 31.5 31.7	0.253 0.258 0.264	0.005 0.005 0.005	0.029 0.030 0.030	#1.2 #0.# #0.4	0.030	0, E 0, E 0, 7	-0.005 -0.005 -0.005	-0.029 -0.030 -0.030	60 60	.2	0.0
-0	525.0	1.0	0.165	0.296	60.9	0.339	32.0 32.2	0.276	0.005	0.030 0.031 0.031	#0.0 79.7 79.3 78.9	0.031	0.7	-0.005 -0.006	-0.030 -0.031 -0.031	71	1.7	0.
.0	525.0 525.0 525.0	1.0 1.0 1.0 1.0	0.174 0.179 0.184	0,30H 0,314 0,321	60.5 60.4	0.354 0.362 0.370	32.4 32.7 32.9	0.282 0.288 0.294	0.006 0.006 0.007	0.031 0.032 0.032		0.032 0.032 0.033	0.7 0.7 0.7	-0.006 -0.006 -0.007	-0.032	76	.9	0.
0.0	525.0	1.0	0.189	0.327	60.0 59.6	0.376	33.2 33.4	0.301	0.007	0.032	78.1 77.7 77.2	0.033	0.7	-0.007	-0.032 -0.033	78	.7	0.0
.0	525.0 525.0 525.0	1.0	0.200 0.206 0.212	0.341 0.349 0.356	59.6 59.4 59.2	0.396 0.405 0.414	33.6 33.9 34.1	0.315 0.322 0.330	0.00% 0.00% 0.00%	0.033 0.034 0.034	77.2 76.8	0.034 0.035 0.035	0.7	-0.008 -0.008 -0.008	-0.033 -0.034 -0.034	71	.8	0.0
0	525.0	1.0	0.218	0.364	59.0	0.424	34.3	0.339	0.009	0.035	76.8 75.4 75.9 75.5	0.036	0.8	-0,009	-0.035	71	. 9	0.
.0	525.0 525.0 525.0	1.0	0,232 0,238 0,246	0,380	58.6 58.4 58.3	0.445 0.456 0.467	34.8 35.0	0.354	0.009	0.035	75.0 74.5 74.1	0.037	0.E	-0.009 -0.010 -0.010	-0.035 -0.036 -0.036	75	.5	0.0
0.0	525.0 525.0	1.0	0,246 0,253 0,261	0,397 0,406 0,415	58.1 57.9	0.47E 0.490	35.3 35.5 35.7	0.372 0.381 0.350	0.010 0.011 0.011	0.036 0.037 0.037	73.6 73.1	0.038 0.038 0.039	0.8	-0.010 -0.011 -0.011	-0.036 -0.037 -0.037	71	.6	0.
0	525.0	1.0	0.259	0,425	58.1 57.9 57.7 57.5 57.3 57.1 56.9	0,503	35.9	0.400	0.012	0,038	72.E	0.040	0.9	-0.012	-0.03E	72	. 6	0.
0	525.0 525.0 525.0	1.0	0,295 0,295 0,304	0.455	57.3	0.529 0.543 0.557	36.4 36.6 36.8	0.421 0.432 0.443	0.013 0.014 0.014	0.039	71.5 71.0 70.5	0.041 0.042 0.042	0.9	-0.013 -0.014 -0.014	-0.039 -0.039 -0.040	71	.0	0.
.0	525.0 525.0 525.0	1.0	0.314	0.478	56.7 56.5 56.3	0.572	37.1 37.3 37.5	0.455	0.015 0.015 0.016	0.040 0.041 0.041	69.9	0.043	1.0	-0.015 -0.015	-0.040	61	. 9	0.0
.0		1.0	0,335 0,346 0,357	0.501	56.3 56.0 55.8	0,603 0,619 0,636	37.5 37.7 38.0	0.480 0.493 0.506		0.041 0.042 0.042	68.8	0.044	1.0	-0.016 -0.017	-0.041 -0.042	6.8	.8	0.0
-0	525.0 525.0 525.0	1.0 1.0 1.0	0.369	0.540	55.6	0,654	38,2 38,4	0.521	0.018 0.018 0.019	0.042	67.6 67.0 66.4	0.046	1.1	-0.018 -0.018 -0.019	-0.043 -0.043 -0.044	67	.6	0.0
-0	525.0 525.0 525.0	1.0 1.0 1.0	0.395 0.416 0.430	0.568 0.593 0.609	55.4 55.2 55.0 54.8	0.692 0.725 0.745	38.6 37.7 37.9	0.535 0.550 0.577 0.593	0.020 0.020 0.021	0.044 0.047 0.047	66.4 65.7 66.5 65.8	0.048 0.051 0.052	1.1	-0.020 -0.020 -0.021	-0.044 -0.047 -0.047	65	.5	0.0
.0	525.0 525.0 525.0	1.0 1.0 1.0	0,430 0,445 0,460	0.625	54.6	0.745	37.9 38.2 38.4	0.593 0.610 0.628	0.021 0.022 0.023	0.047 0.048 0.048	65.8 65.1 64.5	0.053	1.2	-0.022	-0.048	60	.1	0.1
0.0	525.0	1.0	0,476	0.658	54.6 54.3 54.1 53.9	0.812	38.6	0.647	0.024	0.049	63.6	0.055	1.2	-0.024	-0.049 -0.050	63		0.0
-0	525.0	1.0	0.510	0.695 0.714 0.734	53.7 53.5 53.3	0,86Z 0,88E 0,916	39.1 39.3 39.5	0 586	0.026 0.027 0.029	0.050	62.3 61.6 60.8	0.057	1.3			6.3	.6	0.0
-0	525.0 525.0 525.0 525.0	1.0	0,528 0,547 0,567 0,588	0,755	53.3 53.1 52.9		39.5 39.8 40.0	0.707 0.729 0.752 0.752	0.029	0.051 0.051 0.052 0.052	60.8 60.0	0.059	1.3	-0.027 -0.029 -0.030 -0.031	-0.051 -0.051 -0.052 -0.052	80	1.0	0.0
.0	525.0	1.0	0,610	0.777	52.6	0.974 1.006 1.038	40.2	0.775 0.800 0.816	0.033	0.053	58.4	0.062	1.4	-0.033 -0.034	-0.053 -0.053	51	.6	0.0
.0	525.0	1.0	0,657	0.847	52.2	1.105	40.7	0.853	0.035	0.054	55.9	0.065	1.5	-0.035	-0.054	55	.7	0.0
-0	525.0 525.0	1.0	0.709 0.736 0.765	0.699 0.927 0.956	51.6 51.3	1.145	41.1 41.3 41.5	0.911 0.942 0.975	0.039 0.040 0.042	0.055	55.0 54.0 53.1	0.067	1.6	-0.039 -0.040 -0.042	-0.055 -0.055 -0.056	54	.0	0.0
.0	525.0 525.0 525.0	1.0	0.796	1,018	51.3 51.1 50.9 50.7	1,275 1,267 1,312	41.5 41.7 41.9	0.975 1.009 1.044	0.044	0.056	53.1 52.1 51.1	0.070 0.071 0.073	1.7	-0.042 -0.044 -0.046	-0.056	53 53 51	.1	0.0
-0	525.0	1.0	0.861	1,051		1.359	42.4	1.091	0.049	0.057	49.1	0.074	1.9	-0.050	-0.057	50 45	1.1	
0.0	525.0 525.0 525.0	1.0	0,934 0,974 1,015	1,122	50.2 50.0 49.8	1.460 1.514 1.571	42.6 42.8 43.0	1.162 1.205 1.250	0.052 0.054 0.057	0.05# 0.05# 0.05#	48.0 46.9 45.7	0.078 0.079 0.081	2.0 2.0	-0.052 -0.054 -0.057	-0.05E -0.05E	41	.0	0.0
í	525.0	1.0	1,059	1.241	49.5	1,631	43.2	1.298	0.059	0.05#	44.6	0.083	2.1	-0.059	-0.05E	- 44	.6	0.0

	Electric & Magnetic	Field Study Report	Appli	es to	
EMF-OHL-003	•	uly to Blackhillock to New Deer to Peterhead 400 kV			
	Overhead L	ine Project		✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			

217.0 525.0	1.0	1,105	1.294	49.3	1.694	43.4	1.348	0.062	0.058	43.3	0.085	2.2	-0.062	-0.058	43,3	0.085
216.0 525.0 215.0 525.0	1.0	1.154	1,330 1,378	49.1 48.8	1.761	43.6 43.8	1.401	0.064	0.05E 0.05E	42.1 40.8	0.067	2.2	-0.064 -0.067	-0.058 -0.058	42.1 40.8	0.086
	1.0		1.428			44.0	1.515					2.4 2.5 2.5				0.090
213.0 525.0 212.0 525.0 211.0 525.0	1.0	1.317	1.481 1.537 1.595	48.4 48.1 47.9	1.982 2.064 2.151	44.4	1.642	0.073 0.076 0.079	0.057 0.057 0.056	38.1 36.7 35.2	0.093	2.5	-0.073 -0.076 -0.079	-0.057 -0.057 -0.056	38.1 36.6 35.2	0.095
210.0 525.0 209.0 525.0	1.0	1,511	1,657	47.6 47.4	2.242	44.8	1.784	0.083	0.055	33.6 32.1	0.099	2.€	-0.083 -0.086	-0.055 -0.054	33.6	0.099
	1.0	1,660	1.790	47.2 46.9		45.1 45.3	1.943			30.4	0.104	3.0 3.1	-0.090		30.4	0.104
207.0 525.0 206.0 525.0	1.0	1.742	1.663	46.7	2.550	45.5 45.7	2.029	0.094 0.098	0.051	26.9 25.1	0.107	3.2 3.3	-0.090 -0.094 -0.096	-0.051 -0.050	26.9 25.0	0.107
205.0 525.0 204.0 525.0	1.0	2.020	2.104	46.4	2.767 2.917 3.054	45.9	2,218	0.102	0.045	23.1	0.113	3.5 3.6	-0.102 -0.106 -0.111	-0.048 -0.045 -0.042	25.0	0.112
203.0 525.0	1.0	2.125	2,194	45.7		46.1	2.431	0.111	0.043	19.0	0.119			-0.039	18.9	0.118
201.0 525.0 200.0 525.0	1.0	2.357	2.390	45.4	3.357	46.5 46.7	2.671	0.120	0.036	16.8	0.125	4.0	-0.120 -0.125	-0.036 -0.032	16.7	0.125
199.0 525.0 199.0 525.0	1.0	2,422	2,610	44.9 44.6	3.699	46.9 47.1	2.944	0.130	0.032	12.2	0.133	4.4	-0.130	-0.027 -0.022	11.9	0.132
	1.0			44.3	3.699 3.888 4.090	47.3	2.944 3.094 3.255		0.028 0.023 0.018	12.2 9.7 7.2	0.141	4.4 4.6 4.8	-0.130 -0.135 -0.140		11.9 9.3 6.6	0.136
196.0 525.0 195.0 525.0	1.0	3,095	2,993 3,138	44.0 43.8	4.305	47.5 47.7	3,426	0,145	0.012	3.2	0.145	5.1	-0.145	-0.010 -0.002	0.9	0.145
	1.0		3,291	43.5 43.2 42.9	4.783 5.048 5.332				0.011 0.018 0.018	3.9 5.4 9.6		5.6 5.9 6.1	-0.155 -0.150 -0.165		-2.2 -5.5 -8.9	0.155
193.0 525.0 192.0 525.0 191.0 525.0	1.0	3.681 3.907 4.151	3,629	42.9 42.6	5.332	48.1 48.3	4.017 4.243	0.160	0.016	9.6	0.161	5.1	-0.165	0.015	-5.5	0.161
191.0 525.0 190.0 525.0 189.0 525.0 188.0 525.0 187.0 525.0	1.0	4.416	4.013	42.3	5.967	48.5 48.7	4.4E7 4.74E 5.030	0.170 0.175 0.179	0.039 0.052 0.067	13.0 16.7	0.175	5.4 5.7	-0,170 -0,174 -0,178	0.051	-12.5 -16.3	0.182
188.0 525.0	1.0	5.011	4.225	41.9 41.6	€.321 €.702 7.114	48.9	5.334	0.182		20.€	0.191	7.0	-0.182 -0.184	0.082	-20.2 -24.3	0.190
	1.0	5.347	4.693	41.3		49.3	5.661	0.185	0.102	28.8 33.2 37.7	0.223	7.6 7.9 8.1	-0.184	0.100	-28.6 -33.0 -37.6	0.210
183.0 525.0 184.0 525.0	1.0	6,109 6,543 7,015	5.229	40.6	8.042	49.6	6,399 6,815 7,266	0,167	0.145	42.4	0.252	8.1	-0.186 -0.187 -0.186	0.144	-37.6 -42.3 -47.1	0.236 0.251 0.263
184.0 525.0 183.0 525.0 183.0 525.0 181.0 525.0 180.0 525.0	1.0	7,532	5,844	39.8	9,131	49.9 50.0	7.756		0.198	42.4 47.1 52.0	0.270	8.4 8.6 8.8 8.9		0,169	-52.0	0.289
181.0 525.0 180.0 525.0	1.0	8.098	6,551	39.0	10.416	50.1 50.2	8.289 8.870	0.179 0.171 0.160	0.264	57.0 62.0	0.291 0.314 0.341	8.9 9.1	-0.178 -0.170 -0.158	0.262	-57.1 -62.2	0.312
179.0 525.0	1.0	9.401 10.152	7,365	38.1	11.942	50.3	9,503 10,196 10,954	0.145 0.125 0.101	0,343	67.1	0.373	9.2 9.3 9.4	-0.142 -0.121 -0.093	0.342	-67.4 -72.7 -79.0	0.370
178.0 525.0 177.0 525.0	1.0		9.300	37.6 37.1	12.813	50.3	10.954	0.101		72.2		9.4	-0.093	0.438	-79.0	0.447
176.0 525.0 175.0 525.0	1.0	11.896	8.820 9.376	36.6	14.809	50.1 49.9	11.785 12.697	0.073	0.494	81.6 84.5	0.499	9.5	-0.057 -0.011	0.492	-83.4 -88.9	0.495
174.0 525.0 173.0 525.0 172.0 525.0	1.0	14,033 15,281 16,671	9.973 10.610 11.292	35.4 34.8 34.1	17.216 15.604 20.135	49.7 49.3 48.9	13.700 14.804 16.023	0.077 0.139 0.225	0.617 0.686 0.759	#2.9 78.5 73.5	0.622 0.700 0.792	9.7 9.7 9.#	0.047 0.119 0.209	0.615 0.684 0.757	85.7 80.1 74.5	0.617 0.594 0.785
172.0 525.0	1.0	16,671	11,292	34.1	20,135	48.9	16.023	0.225	0.759	73.5	0.792	9.6	0.209	0.757	74.5	0.785
171.0 525.0 170.0 525.0 169.0 525.0	1.0	18,220 19,951 21,686	12.019 12.793 13.616	33.4 32.7 31.9	21.628 23.700 25.776	48.3 47.6 46.6	17,370 18,860 20,512	0.335 0.472 0.641	0.837 0.917 1.000	68.2 62.8 57.4	1.032	9.E 9.E	0.320 0.457 0.625	0.834	69.0 63.5 57.9	1.022
168.0 525.0 167.0 525.0	1.0	24.053	14.486	31.1	28.079 30.637	45.8 44.7	22.344 24.360	0.847 1.098	1.084	57.0	1.376	9.7 9.5 9.2	0.830 1.079	1.081	52.5 47.2	1.362
	1.0		16.372	29.3		43.3				46.8		8.9	1.300	1.244	42.0	1.858
165.0 525.0 164.0 525.0	1.0	32,255		28.3	36.641 40.151	41.6	29.158 31.951 35.045	1.767	1.324	36.8	2.505	8.4 7.9	2.174	1.318	37.1	2.165
	1.0	39.472 43.694	19.529	26.3	44.039 48.329 53.029	38.3	38.459	2.717	1.444 1.482 1.501	28.0	3.632	7.3 6.7	2,683 3,274 3,949	1.438 1.475 1.493	28.2	3.044
162.0 525.0 161.0 525.0 160.0 525.0	1.0	53 396	21.803	24.3	53.029	34.1	42,199	3,999 4,760	1.501	20.6 17.5	4,271	5.3		1.493	20.7	4.222
159.0 525.0 159.0 525.0	1.0	59.770 64.362	24.152	22.3	69,540	29.5	50,563	5,590	1,469	14.8	5.770 6.573	4.6	5,505	1.460	14.9	5.695 6.482
157.0 525.0	1.0	69,957	26 524	20.8	74 916	24.5	59.537	7.220	1.416	12.4		3.4	7.111	1.329	10.6	7 234
156.0 525.0 155.0 525.0	1.0	69.957 75.271 79.971	27.705	19.9	80.208 85.026	19.6	63.827	7,906 8,394	1.242	#.9 7.7	8.003	2.9	7.111 7.780 8.254	1,233	9.0 7.7	7,877
154.0 525.0 153.0 525.0	1.0	#3.735 #6.33# #7.709	30,052 31,225 32,408	19.7	91.911 93.505	17.2 14.9	70,796 73.061	8,610 8,515	1.012 0.886 0.754	5.9	8.669 8.561	2.1 1.6 1.7	#.462 #.365 7.970	0.873	€.7 €.0	#.521 #.411
	1.0	87.709 87.950	32.408		94,155				0.754	5.3		1.7	7,970		5.3	
151.0 525.0 150.0 525.0 149.0 525.0	1.0 1.0 1.0	87.950 87.288 86.008	33,615 34,861	20.9 21.8 22.8	94.155 93.992 93.302	10.9 9.2	74.926 74.797 74.246	7.457 6.617	0.612	4.7	7.482 6.633 5.683	1.8 2.2	7.321 6.490	0,583 0,410 0,209	4.5 3.5 2.2	7.344 6.503
149.0 525.0 146.0 525.0 147.0 525.0	1.0	84.385 82.646	35.165 37.550 39.037	24.0	92.362 91.402	6.5	73.499 72.735	5.674 4.694 3.725	0.313 0.263 0.428	3.2 3.2 6.6	4.701 3.750	3.3 5.5 10.0	5.553 4.572 3.594	-0.029 -0.311	-0.4	5.557 4.572 3.608
146.0 525.0	1.0	80,960	40,648 42,401	26.7 28.1	90.591	4.9	72.090		0.725	14.5	2.892	19.0 37.1	2.646	-0.644 -1.034	-13.7 -30.7	2.723
146.0 525.0 145.0 525.0 144.0 525.0 143.0 525.0 142.0 525.0	1.0	80,950 79,437 78,136 77,076 76,239	44,309	29.6	90.591 90.045 89.825	4.5	72.090 71.655 71.460 71.581 71.939	1,209	1.549		2.234		2.646 1.739 0.875	-1.487		
143.0 525.0 142.0 525.0	1.0	77,076	44,309 46,373 48,579	31.0	90.401	4-4 4-7 5-2	71.581	1,082	2.058	68.6 67.9	2.221	37.8 19.4	-0.742	-2.008 -2.597	-58.6 74.1	2.008
140 0 525 0	1.0	13.013	50.889 53.229 55.483 57.488	34.0	91.109 91.961 92.783 93.346	6.1 7.2	72,502	1,693				10.2	-1.505 -2.239 -2.937 -3.591	-3.251	65.2	3,582
139.0 525.0 138.0 525.0	1.0	74.366 73.543 72.344 70.557	55,493	36.7	92,783	8.6 10.3 12.3	72.502 73.180 73.834 74.283 74.306 73.680 72.225	3,039	4.030 4.770 5.492	59.6 57.5 56.3 55.4	4.675 5.655 6.605	3.3 2.2 1.8	-2,937	-4.695 -5.394	57.9	5.529 6.475
137.0 525.0	1.0	72.344	59.037 59.908 59.907	39.2	93.376 92.590 90.761	12.3	74,306	4,228 4,682	6.137 6.632	55.4 54.8	7.452	1.8	-4.146 -4.603 -4.920	-6.026 -6.509 -6.779	55.5	7.914 7.972 8.376
136.0 525.0 135.0 525.0	1.0		59.907	41.3	90.761	14.5	72.225				8,118 8,527	1.7	-4,920	-£,779	54.0	8.376
134.0 525.0 133.0 525.0 132.0 525.0	1.0	65,067 61,337 57,165	58,930 56,995	42.2	87,786 83,730	19.5 22.3 25.1	69.858 66.630 62.713	5,152	6.927 6.677 6.195	53.4 52.4 51.1	8,633 8,429 7,959	2.1 2.5 2.9	-5.080 -5.081	-6.794 -6.549	53.2	#.483 #.289
131.0 525.0	1.0	57,165 52,769 48,354	54.247 50.909 47.233	43.5 44.0 44.3	78,807 73,324 67,595	29.1	58.349 53.790	4,996 4,734 4,399	5.548 4.811	67.6	7,959 7,294 6,519	3.5 4.1	-4,939 -4,686 -4,362	-6,078 -5,444 -4,720	50.9 49.3 47.3	7.832
130.0 525.0	1.0	48,354	47,233	44.5	67.595		53.790	4.399	4.811	47.6	6.519	4.1	-4.362	-4.720	47.3	6.427
129.0 525.0 128.0 525.0 127.0 525.0	1.0	44.080 40.050 36.315	43.439 39.701 36.133	44.6 44.7 44.9	61.887 56,393 51,229	34.2 37.3 40.4	49.248 44.876 40.767	4.076 3.642 3.266	4.051 3.321 2.652	45.2 42.4 39.1	5.712 4.529 4.207	4.9 5.6 5.4	-3.996 -3.618 -3.247	-3.973 -3.253 -2.592	44.8 42.0 38.6	4.865 4.155
126.0 525.0 125.0 525.0	1.0	32.890 29.765	32.605 29.749	44.9	46.453 42.082	43.5 46.7	36,966 33,488	2,910	2.062	35.3	3.566	7.3	-2.895 -2.568	-2.008 -1.505	34.7	3.523 2.977
	1.0			45.1		49.9	30,326		1 131	26.4				-1.082	25.5	2.514
123.0 525.0 122.0 525.0	1.0	24.325	24.477	45.4	34.509 31.254	53.2 56.7	30,326 27,461 24,871	2.008 1.764	0.781	21.3	2.154	9.9 10.8	-1.999 -1.757	-0.732 -0.445	14.2	1,812
121.0 525.0 120.0 525.0 119.0 525.0	1.0	19.787 17.792 15.951	18.486	45.7	28.313 25.657 23.257	64.1	22.531 20.417 18.507	1.547 1.355 1.196	0.289 0.167 0.183	10.6 7.0 8.8	1.366	11.5	-1.541 -1.350 -1.192	-0.214	7.9	1.356
	1.0		16.925	46.7		68.2 72.5	16,783		0.183	14.2	1.200	12.3	-1.035	0.118	-5.7 -12.7 -19.6	1.188
117.0 525.0 116.0 525.0 115.0 525.0	1.0	12.662	14.347	49.6	19,135	76.6	16,783 15,227 13,828	0.909 0.79#	0.263	14.2 20.5 26.8	0.970	12.0	-0.907	0.324	-19.6	0.963
115.0 525.0 114.0 525.0	1.0	9.807	12.392	51.6		78.5	12.575	0.703	0.453	22.8	0,836	10.4	-0.796 -0.702	0.447	-26.3 -32.5 -38.0	0.791
113.0 525.0	1.0	6.229	10,967	56.3	14.467 13.189 12.151 11.304 10.662	64.5 53.9	10.495	0.557	0.492	43.1	0.762	9.2 7.8 5.4	-0.538 -0.558 -0.506	0.518	-42.9 -46.9	0.761
111.0 525.0	1-0	5.250 4.431	10,011	62.3 65.4	11.304	42.2	8.996 8.465	0.463	0.557	50.3	0.725	4.8 3.3	-0.466 -0.436	0.556	-50.0 -52.3	0.725
110.0 525.0 109.0 525.0 108.0 525.0	1.0	3.845	9,69H 9,491 9,391	67.9 69.1	10.741	16.9	8.149	0.435	0.573	53.9	0.709	1.6	-0.421	0.572	-53.6 -54.1	0.715
	1.0	3.731		66.3		16.9 3.7 9.6	8.149 8.001 8.045	0.418 0.412 0.418	0.573 0.575 0.573		0.709 0.707 0.709	1.6	-0.431 -0.416 -0.421	0.572 0.574 0.571		0.710
106.0 525.0 105.0 525.0	1.0	4.233 5.001	9.510 9.733	66.0 62.6	10.409	22.9 35.9	8,283	0.435	0.557	52.5	0.715	3.3	-0.438	0.553	-52.2 -49.9	0.715
	1.0	3,953	10.068 10.521 11.096	59.4 56.2 53.4	11.697 12.658 13.816		9,308 10,073 10,994		0.541 0.520 0.491	47.0 43.0 38.2	0.740 0.763 0.794	5.4 7.9 9.2	-0,506 -0,559 -0,624	0.539 0.517 0.486	-45.8 -42.7 -37.9	
103.0 525.0 102.0 525.0 101.0 525.0	1.0	8.231	11.096	53.4	13,816	60.5 71.6 80.5	10.994	0,558	0.491	38.2	0.794	9.2	-0.624	0.486	-37.9	0.761 0.791 0.833
100.0 525.0	1.0	9.522 10.911	11,800 12,643	51.1 49.2	15.163 16.700 18.431	84.9	12.067 13.290	0.704 0.800 0.911	0.452 0.402 0.338	32.7 26.7	0.837	10.4	-0.704 -0.798 -0.909	0.445 0.392 0.322	-32.3 -26.1	0.889
99.0 525.0 99.0 525.0	1.0	12.403 14.007 15.735	14.787	47.7 46.6 45.7	20.367	82.8 77.8 72.4	14.667 16.208 17.924	1.040	0.261	20.4	0.972 1.072 1.202	12.0 12.3	-1.037 -1.194	0.231	-19.5 -12.6 -5.6	0,964 1,062 1,190
97.0 525.0 96.0 525.0	1.0	17,403	13.634 14.787 16.116 17.638	45.1	22,523 24,919 27,580	67.4	19,830	1,199	0.192	14.1 8.7 7.0	1,368	12.2		+0.031		1.353
95.0 525.0 94.0 525.0 93.0 525.0	1.0	19.630	19,372	44.6	30,532	62.8 58.6	21.947	1.550	0.291	10.€ 15.9 21.3	1,577	11.4	-1,544 -1,760	-0,216 -0,448 -0,734	14.3	1.559
93.0 525.0 92.0 525.0	1.0	21,837 24,247 26,888	23,560	44.2	33,508	58.6 54.7 51.0	25.904	2,011	0.504	21.3	2.158	9.9	-2.002	-0.734 -1.085	14.3 20.1 25.5	2.132
91.0 525.0 90.0 525.0	1.0	29.787 32.972	28.836 31.916	44.1 44.1	41.458 45.889	47.5 44.0	32,991	2.5#4	1,556	31.1	3.017	8.2	-2,571 -2,896	-1.508 -2.011	30.4	2.961
89.0 525.0	1.0	36.464	35,286	44.1	50.742 56.004	40.7	40.379	3.269	2.655	39.1	4.211	5.4 5.6	-3.251	-2,595	38.6	4.159
87.0 525.0 87.0 525.0	1.0	40.274 44.387	38.916 42.740	44.0	61.619	37.3	49.035	4.030	4.054	45.2	5.716	4.9	-4.000	-3.255 -3.975	41.9	4.670 5.635
86.0 525.0 85.0 525.0	1.0	48.751 53.262	46.646 50.463	43.7	67.472 73.371	30.8	53.693 58.387	4.403	4.814 5.551	49.5	6.524 7.298	4.1 3.5	-4,366 -4,692	-4.723 -5.446	47.2	6.431 7.189
84.0 525.0 83.0 525.0	1.0	57.758 62.029	56,906	43.1 42.5	79.047 84.177 86.447	24.6	62.904 66.986	5.000	6.196	51.1 52.4 53.3	7.963 8.434	2.9	-4.944 -5.085 -5.085	-6.080 -6.552 -6.797	52.2	7.837 8.294
	1.0		59.045		91.629	18.8	70,384	5,157	6,930	53.3	8.533	2.1		-6.797 -6.782	53.2	8.294 8.489 8.382
80.0 525.0 79.0 525.0	1.0	69,052 71,539 73,341	60,435	41.1 40.2 39.2	93,649	13.8	74.524	4,688	6.635	54.8 55.4	H.124 7.459	1.9 1.7 1.8	-4.609 -4.154	-6.782 -6.512 -6.029	54.0 54.7 55.4	8.382 7.978 7.321
78.0 525.0 77.0 525.0	1.0	74.579 75.424	58,371 56,511	38.0	94.706	9.6 7.9	75,365 74,998	3.677 3.048	5.495 4.773	56.2 57.4	6.612	2.2	-3,589 -2,946	-5.398 -4.688	56.4 57.9	6.482 5.537
	1.0		54.378 52.138	35.6	93.496	6.5	74 401		4.034	59.5	4.663	5.6		-3.959 -3.255	60.4	4,554
74.0 525.0	1.0	76.633 77.280	49,910	34.2	91.996	4.5	73.758 73.209	1.703	2.663	67.7	2.878	10.1	-1,517 -0,755	-2.601	73.6	2.708
73.0 525.0 72.0 525.0	1.0	79,094	45,770	30.1	91.537 91.376	3.9	72.842	1,198	1.552	52.3	1,961	37.5 57.2	0.036	-2.011 -1.491	-89.0 -60.0	1.721
71.0 525.0	1.0	80.327	43,892	28.7	91.537	4.1	72.842	1,930	1,104	29.8	2,223	37.5	1.724	-1.037	-31.0	2.012

	Electric & Magnetic	Field Study Report	Appli	es to	
EMF-OHL-003	•	uly to Blackhillock to New Deer to Peterhead 400 kV			
	Overhead L	ine Project		✓	
Revision: 2.00	Classification: Public	Issue Date: September 25			

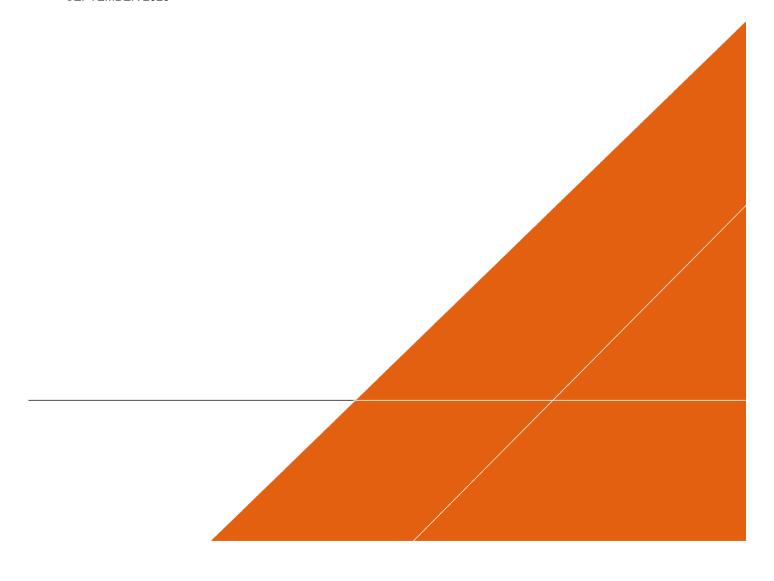
The color	81.761 42.170 81.264 31.170 81.264 31.170 81.264 31.170 81.268 31.1774 81.268 31.	21.1 91.986 0	4.6 73,268 4.6 73,268 5.1 74,401 7.9 74,409 7.9 74,509 7.	1,744	14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878 2.878 14.6 2.878 14.6 2.878 14.6 2.878 14.6 2.878	3-1	148 (-), 681 113 (-), 681 113 (-), 681 113 (-), 683 113 (-), 683 113 (-), 783 113 (-13.6 3.708 -0.4 4.504 -0.1 4.504 -0.1 4.504 -0.1 4.504 -0.1 5.6 6.702 -0.1 6.8 8.409 -0.1 1.7 7.189 -0.1 1.7 7.189 -0.1 1.7 7.189 -0.1 1.7 7.189 -0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Section Sect	7.211 4.820 6.791 4.825 6.039 3.728 6.039 3.728 7.730 3.7480 7.730 3.7480 7.730 3.7480 7.740 2.750 7.740 2.750 7.750 2.750 2.750 7.750 2.750 2.750 7.750 2.750 2.750 7.750 2.7	22.6.2 8,264 23.1.3 8,264 23.1.4 7,214 23.1.5 9,666 23.1.6 1,714 23.1.6 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 23.1.7 1,714 24.1.7 1,714 25.1.	49.8 4.919 49.4 6.992 49.4 9.993 49.4 9.994 49.1 9.994	0.112 0.288 0.251	85.4 0.211	8.4 -2. 8.2 -2. 8.2 -1. 9.5 -1. 9.8 -0. 9.8 -0. 9.7 -0. 9.7 -0. 9.1	0303 C. 146 131 C. 121 140 C. 121	-77.7 0,535 -81.6 0,526 -81.6 0,526 -81.6 0,526 -81.6 0,526 -72.3 0,129 -72.3 0,129 -72.3 0,129 -72.3 0,129 -72.5

EMF-OHL-003	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
			Distribution	Transmission
				V
Revision: 2.00	Classification: Public	Issue Date: September 25		

	0.078 0.076 0.074
-44.0 253.0 1.0 0 1.055 0.446 22.8 1.446 41.5 0.212 0.506 0.006 2.1 0.056 1.4 0.057 0.050 2.7 -4.6 0.056 2.1 0.057 0.050	0.073 0.071 0.070
-88.0 22.0 1.0 0.952 0.386 22.2 1.006 40.2 0.709 0.802 0.002 1.1 8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 1.8 0.802 0.002 0.802 0.002 1.1 8 0.002 0	0.067 0.066 0.065
-81.0 52.0 1.0 0.000 0.316 21.1 0.0607 -0.000 -1.1 0.050 0.000 1.1 0.050 1.3 0.067 -0.000 -1.1 0.050 1.3 0.067 -0.000 -1.1 0.050 1.3 0.067 -0.000 -1.1 0.050 1.3 0.050	0.062
-88.0 25.0 1.0 0.000 0.5	0.057
	0.054
-1112.0 525.0 1.0 0.486 0.176 1.79 0.503 3.8.2 0.415 0.089 0.008 11.1 0.046 0.0 0.9 0.089 -0.089 -1.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.048 0.048 0.047
-1112.0 525.0 1.0 0.486 0.176 1.79 0.503 3.8.2 0.415 0.089 0.008 11.1 0.046 0.0 0.9 0.089 -0.089 -1.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.044
-115.0 52.0 1.0 0.460 0.166 19.7 0.469 35.7 0.160 0.000 0.000 0.100 0.0000 0.0000 0.000 0.000 0.0000 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0	0.042
-122,0 525,0 1.0 0.374 0.125 15.0 0.485 31.0 0.322 0.333 0.030 18.3 0.032 0.33 0.031 1.7 0.325 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	0.039
-122,0 525,0 1.0 0.374 0.125 15.0 0.485 31.0 0.322 0.333 0.030 18.3 0.032 0.33 0.031 1.7 0.325 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	0.037 0.037 0.036
-117.0 252.0 1.0 0.134 0.115 18.4 0.362 22.7 0.288 0.300 0.00 18.3 0.032 0.7 0.00 -0.00 -181717. 0.252.0 1.0 0.349 0.115 18.5 0.364 22.4 0.282 0.300 0.00 18.3 0.232 0.7 0.300 -0.00 -181817. 0.252.0 1.0 0.354 0.116 18.4 0.344 32.2 0.270 0.300 0.00 18.3 0.232 0.7 0.302 0.7 0.300 -0.00 -1818181818181818.	0.035
-1830 533.0 1.0 0.0238 0.110 18.4 0.248 32.2 0.077 0.089 0.011 19.1 0.031 0.7 0.089 -0.011 -151510.0 523.0 1.0 0.0350 0.100 18.3 0.322 31.7 0.248 0.089 0.011 19.1 0.030 0.7 0.089 -0.011 -151510.0 523.0 1.0 0.0350 0.100 18.2 0.332 31.7 0.248 0.089 0.011 20.4 0.030 0.7 0.089 -0.011 -201510.0 523.0 1.0 0.0300 0.100 18.2 0.332 31.5 0.258 0.088 0.011 20.4 0.030 0.7 0.089 -0.011 -201510.0 523.0 1.0 0.0300 0.100 18.2 0.332 31.5 0.258 0.088 0.011 20.4 0.050 0.6 0.089 -0.011 -201510.0 523.0 1.0 0.0300 0.100 18.2 0.332 31.5 0.088 0.089 0.011 21.0 0.089 0.8 0.089 0.	0.033 0.032 0.032
-132.0 525.0 1.0 0.050 0.099 18.2 0.318 31.2 0.253 0.089 0.011 21.2 0.350 0.6 0.08 -0.011 -21132.0 525.0 1.0 0.099 0.099 18.1 0.115 31.6 0.424 0.027 0.011 21.3 0.099 0.6 0.029 0.6 0.027 0.011 21.3 0.099 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0	0.031
-135.0 825.0 1.0 0.261 0.064 17 7 0.276 96 0.216 0.025 0.011 23.6 0.027 0.6 0.025 -0.011 -23.	0.029 9 0.029 2 0.029
-140,0 525,0 1.0 0,250 0,002 17.6 0,270 29.3 0,215 0.024 0.011 23.9 0,027 0.6 0.024 -0.011 -23.	0.027
-140,0 523,0 1.0 0.259 0.082 17.4 0.270 29.3 0.225 0.025 0.025 0.025 0.027 0.025 0.025 0.021 0.025 0.0	0.026
-141.0 525.0 1.0 0.234 0.073 17.3 0.241 27.5 0.195 0.023 0.031 25.4 0.025 0.5 0.5 0.52 -0.011 -25141.0 525.0 1.0 0.230 0.072 17.3 0.241 27.5 0.195 0.022 0.031 25.7 0.025 0.5 0.5 0.022 -0.011 -25.	0.025 0.025 0.024
-444.0 255.0 1.0 0.257 0.066 17.2 0.258 2.4 26.0 0.718 0.022 0.011 25.8 0.024 0.5 0.021 -0.01 -26.	0.024
-153.0 525.0 1.0 0.203 0.642 17.0 0.212 26.2 0.169 0.010 0.511 27.6 0.023 0.5 0.20 -0.011 -27. -154.0 525.0 1.0 0.189 0.641 14.9 0.208 28.0 0.146 0.010 0.011 27.9 0.022 0.5 0.50 -0.010 -27.	0.023
-150.0 529.0 1.0 0.106 0.656 16.9 0.204 25.8 0.163 0.207 0.000 28.2 0.022 0.4 0.202 -20.10 -281516.0 525.0 1.0 0.152 0.666 20.1 0.173 29.2 0.138 0.017 0.009 28.4 0.020 0.5 0.017 -0.009 -281516.0 525.0 1.0 0.159 0.056 20.1 0.703 29.0 0.138 0.017 0.009 28.4 0.020 0.5 0.017 -0.009 -281516.0 525.0 1.0 0.159 0.057 20.1 0.703 29.0 0.138 0.017 0.009 28.9 0.019 0.5 0.017 -0.009 -281516.0 525.0 1.0 0.157 0.057 20.1 0.704 28.5 0.105 0.017 0.009 28.9 0.019 0.5 0.017 -0.009 -281516.0 525.0 1.0 0.154 28.5 0.105 0.017 0.009 28.9 0.019 0.4 0.017 -0.009 -281516.0 525.0 1.0 0.154 28.5 0.018 0	0.019
-158,0 525,0 1.0 0.157 0.057 20.1 0.167 28.8 0.133 0.017 0.099 28.9 0.109 0.5 0.507 -0.099 -28159,0 525,0 1.0 0.154 0.055 20.1 0.544 28.5 0.139 0.017 0.099 28.9 0.1099 0.4 0.017 -0.099 -28160,0 315,0 1.0 0.154 0.055 20.2 0.161 28.3 0.128 0.016 0.099 28.2 0.1099 0.4 0.017 -0.099 -28160,0 315,0 1.0 0.155 0.055 20.2 0.161 28.3 0.128 0.016 0.099 28.2 0.1099 0.4 0.017 -0.099 -28160,0 315,0 1.0 0.155 0.055 20.2 0.161 28.3 0.128 0.018 0.099 28.2 0.1018 0.4 0.018 -0.089 -25162,0 315,0 1.0 0.148 0.048 0.052 20.2 0.155 27.8 0.124 0.018 0.099 30.0 0.018 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.019
-165.0 525.0 1.0 0.138 0.051 20:2 0.147 27.2 0.117 0.015 0.009 30.7 0.018 0.4 0.015 -0.009 -30.7 0.018 0.4 0.015 -0.009 -30.0 0.009 30.9 0.018 0.4 0.015 -0.009 -30.0 0.009 30.9 0.018 0.4 0.015 -0.009 -30.0 0.009 30.9 0.018 0.009 30.9 0.018 0.009 30.9 0.015 -0.009 -30.0 0.009 30.9 0.009	0.01H 0.01H
-169,0 523.0 1.0 0,129 0,046 20.3 0,137 26.3 0,109 0,014 0,009 31.6 0,017 0,4 0,014 -0,009 -31. -170.0 525.0 1.0 0,127 0,047 20.3 0,133 25.0 0,106 0,014 0,009 31.6 0,017 0,4 0,014 -0,009 -31. -171.0 525.0 1.0 0,125 0,046 20.3 0,123 25.8 0,166 0,014 0,009 32.0 0,017 0,4 0,014 -0,009 -32.	0.017
-171.0 525.0 1.0 0.130 0.039 16.7 0.136 25.1 0.108 0.033 0.007 26.4 0.015 0.3 0.013 -0.007 -26. 171.0 525.0 1.0 0.138 0.088 16.6 0.134 24.9 0.107 0.013 0.007 26.6 0.015 0.3 0.013 -0.007 -26. 0.015 0.3 0.013 -0.007 -26.	0.015
-178.0 225.0 1.0 0.121 0.035 16.3 0.126 23.9 0.100 0.013 0.007 27.3 0.014 0.3 0.013 -0.007 -27. -178.0 225.0 1.0 0.119 0.035 16.2 0.124 23.7 0.099 0.012 0.006 27.5 0.014 0.3 0.012 -0.006 -27.	0.014
-183.0 525.0 1.0 0.112 0.032 15.9 0.117 22.7 0.092 0.012 0.006 28.2 0.013 0.3 0.012 -0.006 -28184.0 525.0 1.0 0.111 0.31 15.9 0.115 22.5 0.092 0.012 0.006 28.3 0.013 0.3 0.012 -0.006 -28.	0.014
-185.0 525.0 1.0 0.109 0.031 15.8 0.112 22.2 0.090 0.032 0.006 28.5 0.033 0.3 0.312 -0.006 -28185.0 525.0 1.0 0.108 0.030 15.7 0.112 22.0 0.089 0.031 0.006 28.6 0.033 0.3 0.31 -0.006 -28.	0.013 E 0.013 E 0.013
-190,0 525.0 1,0 0.102 0.028 15.4 0.106 21.1 0.084 0.011 0.006 29.3 0.012 0.3 0.011 -0.006 -29.	
-195.0 525.0 1.0 0.094 0.025 15.1 0.099 19.9 0.077 0.010 0.006 20.2 0.012 0.2 0.10 -0.006 -30195.0 525.0 1.0 0.094 0.025 15.0 0.097 19.6 0.077 0.010 0.006 20.2 0.012 0.2 0.010 -0.006 -30.	0.012 0.012 0.012 0.012
-197.0 525.0 1.0 0.093 0.025 14.9 0.096 19.4 0.076 0.010 0.096 39.3 0.022 0.2 0.20 0.006 -70198.0 525.0 1.0 0.091 0.051 0.052 14.8 0.095 15.2 0.075 0.010 0.096 39.4 0.011 0.2 0.010 -0.096 -70198.0 525.0 1.0 0.095 0.054 14.8 0.095 15.2 0.075 0.010 0.096 39.4 0.011 0.2 0.010 -0.096 -70198.0 525.0 1.0 0.0990 0.054 14.8 0.095 18.9 0.075 0.076 0.010 0.096 39.4 0.011 0.2 0.010 -0.096 -70198.0 525.0 1.0 0.0990 0.054 14.8 0.095 18.9 0.075 0.075 0.010 0.096 39.8 0.011 0.2 0.010 -0.086 -7070707070707070.	0.011 6 0.011
-201.0 523.0 1.0 0.087 0.073 14.6 0.090 18.3 0.071 0.009 0.006 31.0 0.011 0.2 0.009 -0.006 -31. -203.0 523.0 1.0 0.086 0.072 14.5 0.098 18.0 0.070 0.009 0.006 31.0 0.011 0.2 0.009 -0.006 -31.	0.011
-261.0 523.0 1.0 0.084 0.021 14.4 0.086 17.6 0.069 0.090 0.006 31.4 0.031 0.2 0.009 -0.086 -31261.0 523.0 1.0 0.083 0.021 14.3 0.085 17.3 0.088 0.099 0.090 31.5 0.031 0.2 0.090 -0.086 -31261.0 525.0 1.0 0.083 0.021 14.2 0.084 17.1 0.087 0.099 0.090 0.006 31.5 0.031 0.2 0.090 -0.086 -31261.0 525.0 1.0 0.083 0.021 14.2 0.084 17.1 0.087 0.099 0.090 0.005 31.8 0.000 0.2 0.090 -0.080 -31261.0 525.0 1.0 0.080 0	
-211.0 525.0 1.0 0.079 0.020 14.0 0.081 16.4 0.065 0.009 0.003 33.0 0.010 0.2 0.009 -0.005 -23. -211.0 525.0 1.0 0.078 0.019 13.9 0.080 16.2 0.064 0.009 0.005 32.1 0.010 0.2 0.009 -0.005 -23. -212.0 525.0 1.0 0.077 0.019 13.9 0.079 16.0 0.063 0.008 0.005 32.2 0.010 0.2 0.008 -0.005 -22.	0.010 1 0.010 2 0.010 3 0.010
-214.0 525.0 1.0 0,075 0,016 13.7 0,077 15.5 0,061 0,006 0,005 32.4 0,010 0.2 0,006 -0.006 -22. -215.0 525.0 1.0 0,074 0,074 0,016 13.6 0,076 15.3 0,061 0,006 0,005 32.5 0,010 0,2 0,006 -0.005 -22. -216.0 525.0 1.0 0,073 0,016 13.6 0,075 15.1 0,060 0,006 0,005 32.5 0,010 0,2 0,006 -0.005 -23. -217.0 525.0 1.0 0,073 0,017 13.5 0,074 14 0,075 0,080 0,005 32.6 0,010 0,2 0,006 -0.005 -23.	0.010
-218.0 525.0 1.0 0.072 0.027 13.4 0.074 14.6 0.059 0.000 0.005 32.9 0.009 0.2 0.009 -0.005 -32218.0 12.0 0.071 0.073 13.4 0.073 14.4 0.058 0.000 0.005 33.0 0.009 0.2 0.009 -0.005 -32218.0 12.0 0.071 0.073 13.4 0.073 14.4 0.058 0.000 0.005 33.0 0.009 0.009 0.0 0.009 0.000 0.00	
-223.0 525.0 1.0 0.068 0.016 13.1 0.069 13.5 0.055 0.007 0.005 33.4 0.009 0.2 0.007 -0.005 -33. -224.0 525.0 1.0 0.067 0.015 13.0 0.069 13.3 0.055 0.007 0.005 33.5 0.009 0.2 0.007 -0.005 -33.	0.009
-221.0 525.0 1.0 0.666 0.0315 12.8 0.088 13.1 0.004 0.007 0.005 33.6 0.009 0.2 0.007 -0.005 -23.1 -221.0 525.0 1.0 0.066 0.035 12.8 0.087 0.077 0.005 33.7 0.009 0.2 0.007 -0.005 -23.1 -221.0 525.0 1.0 0.009 0.2 0.007 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.009 0.005 12.8 0.005 12	0.009

	Electric & Magnetic Field Study Report Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line Project		Applies to	
EMF-OHL-003			Distribution	Transmission ✓
Revision: 2.00	Classification: Public	Issue Date: September 25		

Appendix E Arcadis Complex EMF Assessment Report



SSEN BEAULY TO BLACKHILLOCK TO NEW DEER TO PETERHEAD PROJECT

Electric and Magnetic Fields in Overhead Line Duck-Under Scenarios

6096/134/R/HN/05

SEPTEMBER 2025

ARCADIS CONTACT

Arcadis

3rd Floor, Aurora Building 120 Bothwell Street Glasgow, G2 7JS United Kingdom

CLIENT CONTACT

Scottish and Southern Electricity Networks/ SSEN Transmission plc

Prime View, Unit 11, Prime Four Business Park, Kingswells, AB15 8PU, United Kingdom

Arcadis Consulting (UK) Limited is a private limited company registered in England & Wales (registered number 02212959). Registered Office at 80 Fenchurch Street, London, EC3M 4BY. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS.

SSEN BEAULY TO BLACKHILLOCK TO NEW DEER TO PETERHEAD PROJECT

Electric and Magnetic Fields in Overhead line Duck-Under Scenarios

Report No 6096/134/R/HN/05

Date SEPTEMBER 2025

VERSION CONTROL

Version	Date	Author	Changes
A	05/08/2025		First Issue – Project specific report produced based on 6096/134/R/HN/02C as per Clients request.
В	18/09/2025		Second Issue – Administrative changes at Clients Request

This report dated 05 August 2025 has been prepared for Scottish and Southern Energy Networks/ SSEN Transmission plc (the "Client") in accordance with the terms and conditions between the Client and **Arcadis Consulting (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

.

CONTENTS

EXE(CUTIVE SUMMARY	1
1.	INTRODUCTION	3
Figure	e 1. SSEN Pathway to 2030 Transmission Network	3
2.	ELECTRIC & MAGNETIC FIELD (EMF) RISKS	4
2.1	How EMF Strengths Decrease with Distance	
Fiaure	e 2: General Rate of Decrease of Magnetic Fields from Different Sources	
2.2	EMF Limits	
•	COMPUTATION COSTINADE	•
3.	COMPUTATION SOFTWARE	6
4.	OHL DUCK-UNDER SCENARIOS	7
Figure	3: OHL Crossing 1	7
Figure	4: OHL Crossing 2 and 3	8
Figure	5: OHL Crossing 4	8
Figure	e 6: OHL Crossing 5	9
Figure	7: OHL Crossing 6	9
5.	DATA FOR CDEGS MODEL	.10
5.1	Soil Resistivity	10
5.2	Conductor Data	10
5.3	OHL Voltage Levels and Load Current	
5.4	OHL Phasing	
Figure	e 8: Possible Phase Arrangements -Double Circuit OHL	11
6.	EMF CALCULATIONS	.12
Figure	9: Crossing 1	12
Figure	e 10: Crossing 2	13
Figure	e 11: Crossing 3	14
Figure	e 12: Crossing 4	15
Figure	e 13: Crossing 5	16
Figure	e 14: Crossing 6	17

SSEN PATHWAY TO 2030 PROJECT

7.	CONCLUSIONS	.18
8.	RECOMMENDATIONS	.18

APPENDICES

APPENDIX A

ASTI 400 kV OHL Tower (Information Only)
ASTI 400 kV OHL Phase and Earth Wire
Duck-under Parameters and Phasing

APPENDIX B

CDEGS (HIFREQ) Results

Executive Summary

Scottish and Southern Electricity Networks/ SSEN Transmission plc ("SSEN") is proposing to construct and operate approximately 158 kilometres (km) of new double circuit 400 kilovolts (kV) overhead transmission line (OHL) between the proposed Fanellan and Greens 400kV substations and 28km of new double circuit 400 kV OHL between the proposed Greens and Netherton 400kV substation.

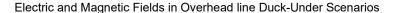
In July 2022, National Grid ESO (as of 1 October 2024 now known as the National Energy System Operator (NESO)) published the Pathway to 2030 Holistic Network Design (Pathway to 2023 HND), setting out the electricity transmission network infrastructure required to enable the forecasted growth in renewable electricity across Great Britain, in light of the UK and Scottish Government's 2030 offshore wind allocations of 50 gigawatt (GW) and 11 GW (through the Crown Estate and ScotWind leasing rounds) which are the main driver for these upgrades.

The proposed 400 kV overhead line (OHL) will consist of steel lattice towers using a new tower series known as the ASTI SSE400 or AS4 for short. These towers are expected to average 57 m in height across the routes. The conductor system is proposed to be 3 x 700 mm 2 AAAC Araucaria with 500 mm bundle spacing. The circuit is designed to function up to 90°C while maintaining a minimum ground clearance of 9 m under normal conditions. Although it is capable of operating at to 90°C, it is not currently intended to be used at this maximum rating.

This report details the EMF assessment in OHL duck-under scenarios (see Section 4). In the context of OHL, a duck-under describes a configuration where one transmission line passes beneath another, typically to prevent routing conflicts or ensure adequate clearances in constrained spaces. The primary objective of this report is to provide an EMF assessment for the general public exposure at a height of 1 m above ground at the crossing of the proposed Beauly Blackhillock New Deer Peterhead and other SSEN overhead lines. This report details the input data, EMF limits, and EMF calculations conducted using the CDEGS software package, alongside a risk assessment based on industry guideline.

Main Results

Arcadis carried out an EMF assessment of the proposed 400 kV OHL duck under scenario with existing SSEN 400 kV, 275 kV and 132 kV OHL's using CDEGS (HIFREQ). All six scenarios are listed below. The calculation profile was placed at the OHL duck-under 1 m above ground. The power flow on both circuits was considered in same direction. The study acknowledges the limitation in accurately modelling insulator end fittings and conductor assembly hardware in HIFREQ; however, this does not impact EMF calculation at ground level itself.


- i) OHL Crossing 1
- ii) OHL Crossing 2
- iii) OHL Crossing 3
- iv) OHL Crossing 4
- v) OHL Crossing 5
- vi) OHL Crossing 6

To ensure public exposure remains within safe limits, set exposure thresholds at 9 kV/m for electric fields and $360 \mu T$ for magnetic fields were used.

The calculation considers all duck-under configuration for the 275 kV and 132 kV OHLs, maintaining a statutory clearances (6.7 m for 132 kV, 7.0 m for 275 kV). The exception was made for 400 kV OHL duck-under scenario where actual ground clearance from PLS-CADD model were used. At the crossing location, the ground clearance of the oversailing ASTI 400 kV overhead lines was modelled using a conservative approach, bounded between a minimum clearance of 9 meters and the conductor sag profile derived from PLS-CADD simulations, as detailed in Appendix A.

The EMF was assessed using CDEGS (HIFREQ), with all calculated values for the various duck-under scenarios remaining within the safe threshold with the exception of crossing 5. Crossing 5 exceeds the UK exposure limit for electric field which is 9 kV/m. Although this crossing exceeds this limit, it does however still comply with the EMF public exposure guidelines as the location in which this crossing occurs is not deemed by SSEN to be an area where members of the public spend significant time.

SSEN PATHWAY TO 2030 PROJECT

As exposure can be deemed not to be for a significant period of time, the ICNIRP occupational guidelines apply in which this crossing remains in compliance with.

It should be noted that this analysis is considered conservative and further work shall be progressed within the detailed design stage to further reduce the electric field magnitude at this crossing as low as reasonably practicable through phasing adjustments or increase of ground clearance however the current proposal remains compliant with the Code of Practice.

The corresponding graphs are shown in Appendix B.

Recommendations

It is advisable for SSEN to review all input data and assumptions outlined in the report during the detailed design stage to ensure compliance with public EMF exposure limits.

1. Introduction

Scottish and Southern Electricity Networks/ SSEN Transmission plc ("SSEN") is proposing to build a number of projects including new high-voltage electricity 400 kV transmission lines, 400 kV Substations and HVDC (high voltage direct current) link to deliver the UK Government's 50 GW offshore wind by 2030 target. This has been set out as part of the Pathway to 2030 Holistic Network Design. Figure 1 illustrates the SSEN Pathway to 2030 projects.

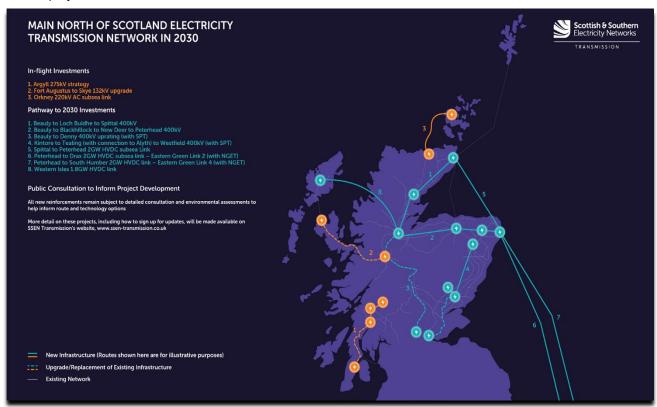


Figure 1. SSEN Pathway to 2030 Transmission Network

The Beauly Blackhillock New Deer Peterhead 400 kV overhead line (OHL) will consist of steel lattice towers using a new tower series known as the ASTI SSE400 or AS4 for short. These towers are expected to average 57 m in height across the routes. The conductor system is proposed to be 3x700 mm² AAAC Araucaria with 500 mm bundle spacing. The circuit is designed to function up to 90°C while maintaining a minimum ground clearance of 9 m under normal conditions. Although it is capable of operating at 90°C, it is not currently intended to be used at this maximum rating.

Arcadis Consulting (UK) Ltd ("Arcadis") has been commissioned by SSEN to conduct an electric and magnetic fields (EMFs) assessment for the ASTI 400 kV OHL tower. Arcadis completed a report summarising the EMF calculations for AS4 tower [1].

This report details the EMF assessment in OHL duck-under scenarios (see Section 4). In the context of OHL, a duck-under describes a configuration where one transmission line passes beneath another, typically to prevent routing conflicts or ensure adequate clearances in constrained spaces. The primary objective of this report is to provide an EMF assessment for the general public exposure at a height of 1 m above ground at the crossing of the Beauly Blackhillock New Deer Peterhead OHL and other SSEN existing overhead lines. This report details the input data, EMF limits, and EMF calculations conducted using the CDEGS software package, alongside a risk assessment based on industry guideline. Sections 2 of the report remains unchanged from previous Arcadis report 6096/134/R/HN/01B^[1].

6096/134/R/HN/05A- 18/09/2025

^[1] Arcadis Report 6096/134/R/HN/01B- SSE ASTI Project - 400 kV Overhead Line Tower Electric and Magnetic Fields, 18th February 2025

2. Electric & Magnetic Field (EMF) Risks

The electromagnetic field (EMF) from power lines consist of electric field and magnetic field. The electric fields are produced by voltage. Electric fields are measured in volts per metre (v/m). Magnetic fields are produced by current, which is the flow of electricity. Generally, the higher the current, the higher the magnetic field. Magnetic fields are measured in microtesla (μT).

Alternating magnetic fields induces electric fields which will produce currents in a conductive medium. The human body is conductive and hence alternative magnetic fields will induce very weak voltages and currents in the human body. If these voltages and currents are high enough, it is possible to result in physiological effects on excitable tissues of the body, mainly nerve and muscle cells. Similar, direct exposure of alternating electric fields can induce very weak voltages and currents in the human body. Again, if these voltages and currents are high enough, it is possible to result in physiological effects on excitable tissues of the body, mainly nerve and muscle cells.

An active implantable medical device (AIMD) is any medical device which is intended to be totally or partially introduced, surgically or medically, into the human body, and which is intended to remain after the procedure. The commonest are pacemakers and defibrillators (together described as "implanted heart devices"). The electronic medical implants use electrical component in their construction. Under certain circumstances some implants may be susceptible to interference from electromagnetic field. This situation could lead to improper function of medical implants e.g.; a heart pacemaker disturbance can pose a health & safety threat. It should be noted that the Medicines and Healthcare products Regulatory Agency (MHRA) are aware of no instance of a patient having their implanted heart device interfered with by a high-voltage power line [2].

The two internationally recognised exposure guidelines are established by the Institute of Electrical and Electronics Engineers (IEEE)^[3] and International Commission on Non-Ionising Radiation Protection (ICNIRP) and ^[4].

2.1 How EMF Strengths Decrease with Distance

EMF decreases with distance from the source. Generally, at a distance from the source d, the fields will decrease as follows [5]:

- Single-phase current 1/d,
- Single circuit or double circuit un-transposed 1/d², and
- Double circuit transposed (assuming symmetrical geometry) or coil 1/d³.

Figure 2 shows this rate of decrease from different sources. In practice, factors such as unequal currents, zero sequence currents, tapered towers, geometrical deviations on the structure, and very close proximity to sources will result in rates of decrease which are less than the above. Furthermore, magnetic field profiles are typically shown horizontally along the ground (at one metre above ground), perpendicular to the conductor and typically at midspan where the conductors are closest to the ground.

^[2] https://www.emfs.info/

^[3] IEEE (2019) Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Std C95.1, New York

^[4] International Commission on Non-ionizing Radiation Protection (2010): Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99 (6), pp.818-836. Erratum in Health Phys 100 (1), p.112 (2011). https://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf and International Commission on Non-ionizing Radiation Protection (1998): Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic Fields and Electromagnetic Fields (up to 300 GHz). Health Phys 74 (4), pp.494-522. https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf

 $^{^{[5]}}$ CIGRE TB 806, Responsible management of electric and magnetic fields (EMF) - 2020.

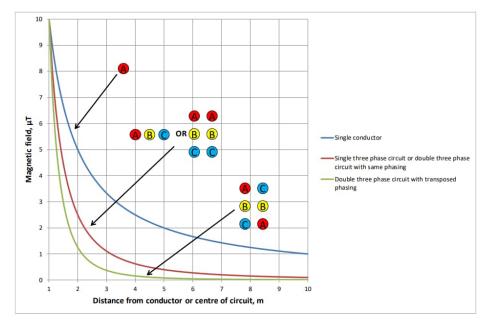


Figure 2: General Rate of Decrease of Magnetic Fields from Different Sources

2.2 EMF Limits

The EMF limits within the regulations ^[6], the EMF limits within the regulations are the exposure limits values (ELVs), and there are two levels: the Sensory ELVs and Health ELVs. The Sensory ELVs can be exceeded if are range of conditions are met, but the health ELVs must not be exceeded. For occupational exposure the first level of exposure limits for the unperturbed fields are the Sensory Action Levels which are.

- Magnetic field: 1 mT or 1000 μT (18 mT for exposure only to limbs)
- Electric field: 10 kV/m

The regulations allow for the sensory effects ELVs to be exceeded under the following conditions: i) They are only exceeded temporarily. ii) Hazardous spark discharges and contact currents in excess of 1 mA are prevented through the provision of information and training and the use of suitable technical and personal protection measures. iii) Adequate information is provided to the employee on the possibility of sensory effects related to time varying magnetic fields, including retinal phosphenes. iv) Where any of those sensory effects are reported to the employer, the risk assessment is updated where necessary. Providing the above conditions are complied with, the Regulations allow exposure up to a High Action Levels (which ensure the health ELV are not exceed), which are:

- Magnetic field: 6 mT or 6000 μT (18 mT for exposure only to limbs)
- Electric field: 20 kV/m

To ensure public exposure remains within safe limits, general public exposures in the UK should adhere to the ICNIRP 1998 guidelines, as outlined in the voluntary Code of Practice [7]. In practical terms, this mean:

- An electric field of 9 kV/m.
- A magnetic field of 360 μT.

^[6] The Control of Electromagnetic Fields at Work Regulations 2016, see https://www.legislation.gov.uk/uksi/2016/588/contents

^[7] Power Lines: Demonstrating compliance with EMF public exposure guidelines – A voluntary Code of Practice, published by DECC in February 2011.

3. Computation Software

The EMF was calculated using HIFREQ (Electromagnetic Fields Analysis) module of the SES CDEGS software suite. HIFREQ is an optimal computation tool for tackling complex electromagnetic problems involving any system of conductors, which can be comprised of various materials and assembled in various configurations, and which may include metallic plates, coaxial or multi-core cables, GIS/GIL, transformers, and assorted lumped components (e.g. resistors, inductors, and capacitors, etc.). HIFREQ is the only computation module that can provide accurate solutions to transient and steady state problems in the frequency range of zero to hundreds of megahertz, for the analysis of buried and aboveground conductors. It computes electric and magnetic fields in the air and soil, as well as conductor and soil potentials, and the current distribution in the soil and in the conductors.

More information on HIFREQ module https://sestech.com/en/Product/Module/HIFREQ

Limitations: This study acknowledges the limitation in accurately modelling insulator end fittings and conductor assembly hardware in CDEGS. Accurate modelling can be attained by applying 3D electric field design and analysis software featuring Boundary Element Method (BEM) technology.

Electric fields near the surface of a conductor are very sensitive to the shape of the conductor. HIFREQ can be used to compute electric fields by modelling the OHL tower and phase conductors, however, the conductors are represented as wire filaments and the exact shape of a conductor (for example the steel members of a tower), and insulators cannot be modelled. It is important to note that electric fields computed with HIFREQ at points located far away (i.e., several conductor radii away) from the conductors should nonetheless be accurate.

4. OHL Duck-Under Scenarios

The proposed Beauly Blackhillock New Deer Peterhead OHL involves the construction of approximately 158 kilometres (km) of new double circuit 400 kilovolts (kV) overhead transmission line (OHL) between the proposed Fanellan and Greens 400kV substations and 28km of new double circuit 400 kV OHL between the proposed Greens and Netherton 400kV substation.

Special arrangements are required to facilitate the crossing of the Proposed Development with existing 132 kV, 275 kV and 400kV OHLs. As part of the Proposed Development, six special arrangements are proposed. The location of these and each of the proposed arrangements that are part of the EMF assessment are shown in the figures below.

The circuit data for the proposed 400 kV OHL and crossing arrangement is shown in Section 5 and 6.

Figure 3: OHL Crossing 1

Figure 4: OHL Crossing 2 and 3

Figure 5: OHL Crossing 4

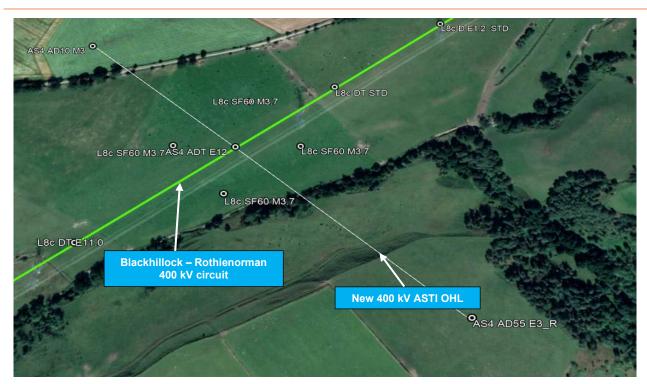


Figure 6: OHL Crossing 5

Figure 7: OHL Crossing 6

5. Data for CDEGS Model

This section details the input data for the proposed Beauly Blackhillock New Deer Peterhead 400 kV circuits that was used to develop a computer model to calculate EMF as requested by SSEN.

5.1 Soil Resistivity

The soil resistivity along the OHL route was considered 500 Ω m. The magnitude was chosen based on the Arcadis engineering experience within SSEN network area. The above soil model will be used in all future subsequent analysis to represent the soil conditions.

5.2 Conductor Data

The Beauly Blackhillock New Deer Peterhead 400 kV OHL route will consist of steel lattice towers using a new tower series known as the ASTI SSE400 or AS4 for short. A 400 kV tower drawing is detailed within the Appendix A of this report. For each crossing the tower type, span length and sag was designed in a PLSCAD model and information shared by SSEN [8]. The conductor system is proposed to be 3 x 700 mm² AAAC Araucaria with 500 mm bundle spacing. The phase and earth wire data sheets are attached in Appendix A.

At OHL duck-under scenarios, the existing OHL phase and earth wire data was based on the information attached in Appendix A of this report.

5.3 OHL Voltage Levels and Load Current

The steady state coupling in this report considers the proposed Beauly Blackhillock New Deer Peterhead 400 kV OHLs operating at maximum pre fault continuous winter rating of 5000 A and maximum 400 kV voltage.

At OHL duck-under scenarios, the duck under OHL rating was based on the information attached in Appendix A of this report. At the crossing location, the ground clearance of the oversailing ASTI 400 kV overhead lines was modelled using a conservative approach, bounded between a minimum clearance of 9 meters and the conductor sag profile derived from PLS-CADD simulations, as detailed in Appendix A. The sag of duck under OHL was modelled such that these phase approaching statutory clearance 6.7 m for 132 kV, 7.0 m for 275 kV as given in the Electricity Safety, Quality and Continuity Regulations 2002 (see https://www.legislation.gov.uk/uksi/2002/2665/contents). The exception was made for 400 kV OHL duck-under scenario where actual ground clearance from PLS CADD model were used.

The report does not consider fault conditions. As per CIGRE guidelines, in extreme cases, lightning and electrical faults can create very brief, large, fault currents in equipment and conductors/cables, and consequently elevated magnetic fields in the vicinity. Fault current events are of very short duration (typically a few cycles), rare (typically a few times per year or less) and have a low probability of coincidence with someone being in very close proximity at the time. This is a somewhat similar scenario to lightning strikes. ICNIRP 2010 does not provide specific guidance on fault currents. IEEE [3] states that the averaging time for assessing exposures is 200 ms or ten cycles. Faults currents that exceed ten cycles are typically on low-voltage distribution systems or remote from the protection. In these cases, the current is typically lower. In any case where such faults occur the electricity system is designed to immediately isolate the fault and thereby eliminate any exposure. Therefore, electrical networks are compliant with the general principle that when a danger is identified it is eliminated as soon as possible, and all reasonable attempts are made to avoid its occurrence.

 $^{^{\}rm [8]}$ Email from SSEN, "RE: Special Arrangement Models - SF60s for EMFs" 20th February 2025.

5.4 OHL Phasing

Similar to the phase and earth wire, the phase arrangement of the OHL on a double circuit tower can impact EMF. SSEN have provided data on the proposed phasing for both the existing and proposed OHL which is shown within Appendix A. The Beauly Blackhillock New Deer Peterhead OHL will have optimal phasing with a "centre points symmetrical" phase arrangement, similar to that illustrated in Figure 8. The existing OHL phasing has been modelled as per the information provided in Appendix A.

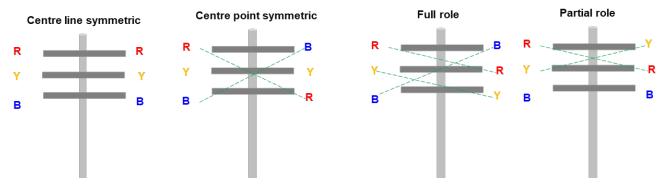
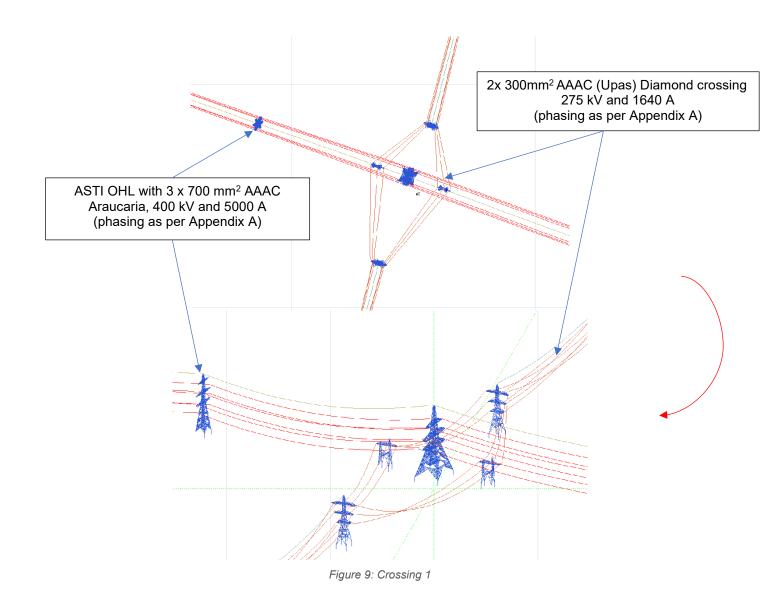


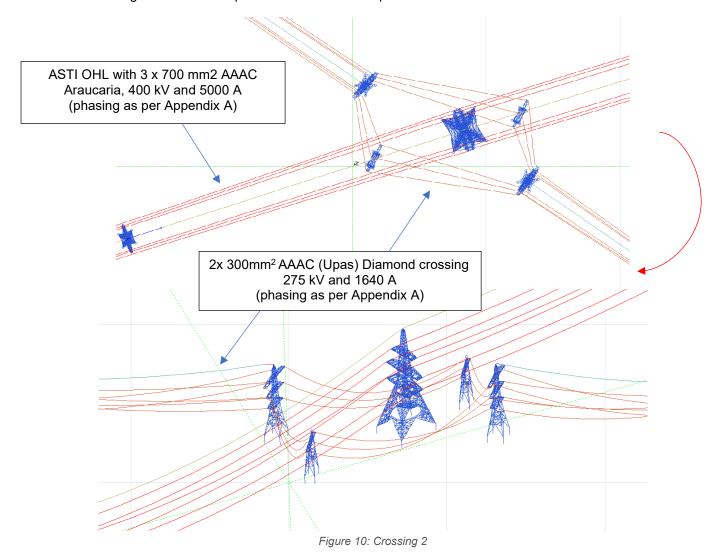
Figure 8: Possible Phase Arrangements -Double Circuit OHL



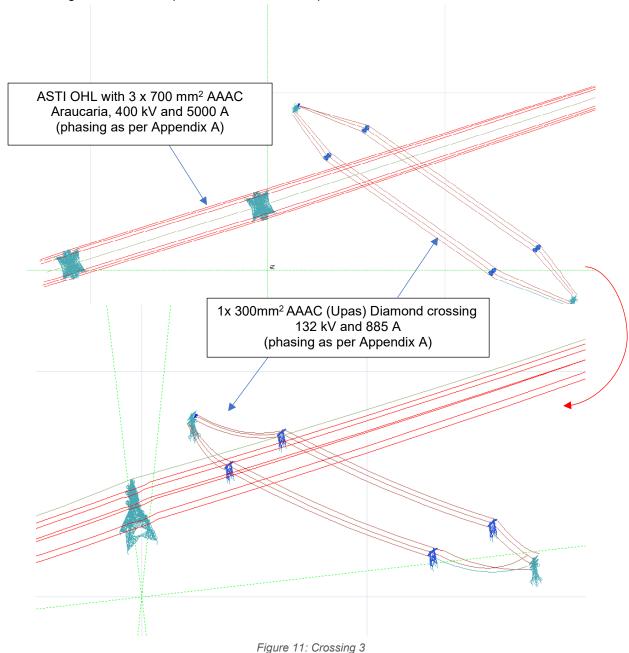
6. EMF Calculations

This section details the calculations and interpretations of EMF using HIFREQ along the CDEGS model at the proposed crossing. The OHL tower, phase, and earth wires were modelled using the data, in Section 4. Two spans were modelled, and calculation profile were placed at OHL duck-under 1 m above ground. The power flow on both circuit was considered in same direction. As stated before, this study acknowledges the limitation in accurately modelling insulator end fittings and conductor assembly hardware in HIFREQ. The insulators were omitted, and conductors were modelled at respective locations at the tower crossarm, it should be noted however that as the conductor is sagged to achieve 9m clearance to ground or to the designed ground clearance for the 400kV crossing the insulator length has negligible impact.

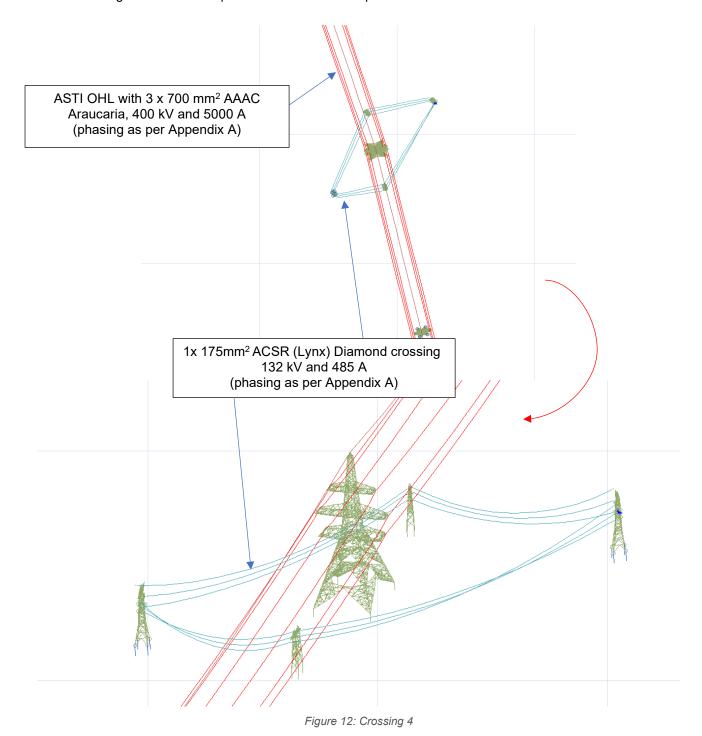
Special Arrangement 1 Knocknagael - Dallas/Berryburn 275 kV Circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.


- An electric field 6.98 kV < safe threshold of 9 kV/m
- A magnetic field 60.16 μT < safe threshold 360 μT

Special Arrangement 2 Blackhillock-Dallas/Berryburn 275 kV Circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.

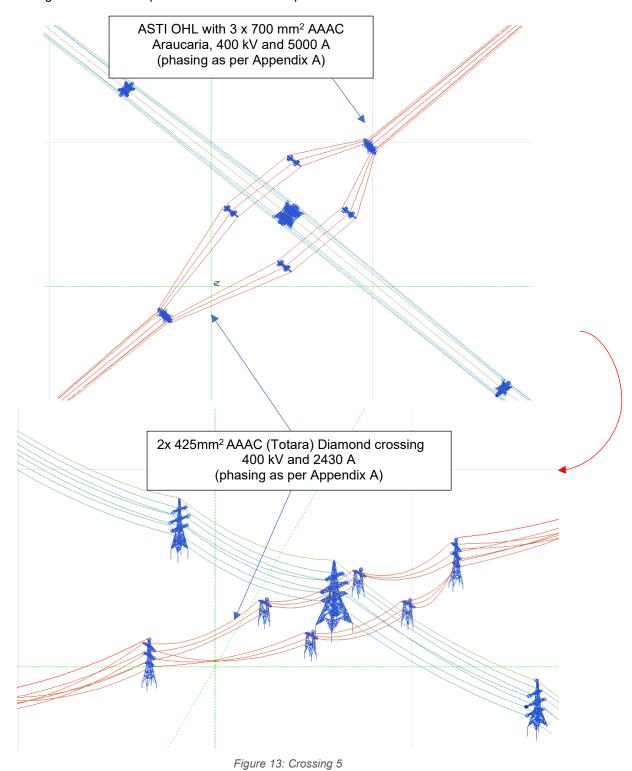

- An electric field 7.44 kV < safe threshold of 9 kV/m
- A magnetic field 65.97 μT < safe threshold 360 μT

Special Arrangement 3 Elgin - Keith 132 kV Circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.


- An electric field 4.11 kV < safe threshold of 9 kV/m
- A magnetic field 46.99 μT < safe threshold 360 μT

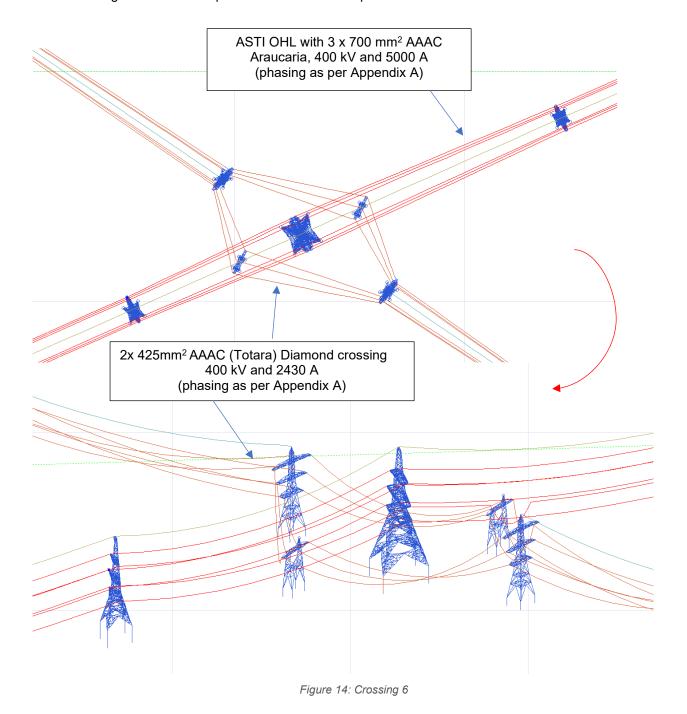
Special Arrangement 4 Keith - Macduff 132 kV Circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.

- An electric field 3.70 kV < safe threshold of 9 kV/m
- A magnetic field 34.03 μT < safe threshold 360 μT



6096/134/R/HN/05A- 18/09/2025

Special Arrangement 5 Blackhillock – Rothienorman 400 kV circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.

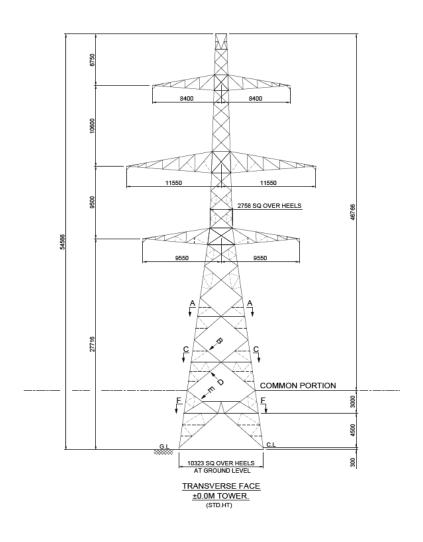

- An electric field 9.52 kV > safe threshold of 9 kV/m
- A magnetic field 78.42 μT < safe threshold 360 μT

Special Arrangement 6 Blackhillock – Rothienorman 400 kV circuit: According to the CDEGS model, the maximum electric and magnetic field values are presented below, with the corresponding CDEGS plot provided in Appendix B.

- An electric field 7.50 kV < safe threshold of 9 kV/m
- A magnetic field 78.89 μT < safe threshold 360 μT

7. Conclusions

- a) Arcadis carried out an EMF assessment of the proposed Beauly Blackhillock New Deer Peterhead 400 kV OHL duck under scenario with existing SSEN 400 kV, 275 kV and 132 kV using CDEGS (HIFREQ). The calculation profile was placed at OHL duck-under 1 m above ground. The power flow on both circuits was considered in same direction. The study acknowledges the limitation in accurately modelling insulator end fittings and conductor assembly hardware in HIFREQ however this does not impact EMF calculation at ground level itself.
- b) To ensure public exposure remains within safe limits, set exposure thresholds at 9 kV/m for electric fields and 360 μ T for magnetic fields were used.
- c) The EMF was assessed using CDEGS (HIFREQ), with all calculated values for various duck-under scenarios remaining within the safe threshold except for crossing 5. Crossing 5 exceeds the UK exposure limit for electric field with a value of 9.52 kV/m. Although this crossing exceeds this limit, it does however still comply with the EMF public exposure guidelines as the location in which this crossing occurs is not deemed by SSEN to be an area where members of the public spend significant time. As exposure can be deemed not to be for a significant period of time, the ICNIRP occupational guidelines apply in which this crossing remains in compliance with. The corresponding graphs are shown in Appendix B.


8. Recommendations

a) It is advisable for SSEN to review all input data and assumptions outlined in the report during the detailed design stage to ensure compliance with public EMF exposure limits. Crossing 5 ground clearance should be increased to meet the required EMF exposure thresholds. Alternatively, the overhead line (OHL) phasing should be reassessed.

Appendix A

ASTI 400 kV OHL Tower (Information Only)

ASTI 400 kV OHL Phase and Earth Wire

data sheet

LF AAAC Araucaria EHC

AAAC 820mm²

Version 1, 23-02-2008

Conductor

Code name	LF AAAC Araucaria EHC									
Mechanical specifications		Vetri	c (S	l)			Imperial			
Nominal aluminium equivalent area	mm²			61		in ²		1,1	79	
Nominal cross sectional area of aluminium alloy	mm²		8.	21,1		in ²		1,2	73	
Number, diameter and type of central wire	#, mm	1	4,14	R	Alloy	#, in	1	0,163	R	Alloy
Number, (eq.) diameter and type of wire in layer	#, mm	6	4,14	R	Alloy	#, in	6	0,163	R	Alloy
Number, (eq.) diameter and type of wire in layer	#, mm	12	4,14	R	Alloy	#, in	12	0,163	R	Alloy
Number, (eq.) diameter and type of wire in layer	#, mm	18	4,14	R	Alloy	#, in	18	0,163	R	Alloy
Number, (eq.) diameter and type of wire in layer	#, mm	24	4,14	R	Alloy	#, in	24	0,163	R	Alloy
Diameter tolerance of aluminium wires (Al or Alloy)	mm		±	0,03		in		± 0,	001	
Lay ratio of inner layer(s)		10-16				10-16				
Lay ratio of outer layer			1	3-14				10-	14	
Overall diameter	mm		3	7,26		in		1,4	67	
Rated tensile strength of conductor (RTS)	kN		2	12,2		klbf		54	,5	
Nominal mass per unit length - total	kg/km		23	50,5		lb/kft	1579.5			
Nominal mass per unit length - total bare	kg/km		22	71,5		lb/kft		1526,4		
Nominal mass per unit length - grease	kg/km		7	9,0		lb/kft		53	,1	
Coefficient of linear expansion below thermal kneepoint	/ K		0,00	0023	00	/ °F		0,0000	0127	8
Modulus of elasticity below thermal kneepoint	GPa		5	6,6		Msi		8,2	20	
Geometric mean radius	mm		1	4.5		ft	0.0476			

Electrical specifications	Met	Imperial		
Nominal DC resistance at 20 °C (tolerance ± 2%)	Ohm/km	0,0381	Ohm/mile	0,0612
Temperature coefficient		0,00403		0,00403
Frequency	Hz	50	Hz	60
Nominal AC resistance at 20 °C (tolerance ± 2%)	Ohm/km	0,0401	Ohm/mile	0,0659
Nominal AC resistance at 25 °C (tolerance ± 2%)	Ohm/km	0,0408	Ohm/mile	0,0671
Nominal AC resistance at 50 °C (tolerance ± 2%)	Ohm/km	0,0445	Ohm/mile	0,0729
Nominal AC resistance at 75 °C (tolerance ± 2%)	Ohm/km	0,0482	Ohm/mile	0,0787
Nominal AC resistance at 100 °C (tolerance ± 2%)	Ohm/km	0,0519	Ohm/mile	0,0846
Maximum allowable continuous operating temperature (surface)	*C	90	*F	194
Inductive reactance: Xa (conductor part)	Ohm/km	0,1914	Ohm/mile	0,3696
Shunt capacitive reactance: X'a (conductor part)	MOhmkm	0,1204	MOhmmile	0,1003

Individual wires	M	Imperial				
Maximum resistivity of aluminium alloy at 20 °C, minimum IACS	nOhmm, %	30,50	57%	nOhmft, %	100,07	57%
Minimum tensile strength, aluminium alloy wire	MPa	29	5	psi	427	86
Minimum elongation for aluminium alloy wire.	% 3,5		%	3,5		

Standard applied for conductor manufacturer: TS 3.4.2 - Issue 5 - juni 2004

Page 1

ASLH-V(2S)bbb 96 SMF (AL3/A20SA 109/209)

08.04.2024, Ja TK 14988-10 Rev. 00

Optical Ground Wire (OPGW)

according to IEC \$0794-4-10

- · Stranding direction of outer layer: right hand (Z-stranding)
- Greasing acc. to EN 50182 A.2 / Grease acc. to EN 50326, type A
- Entire conductor greased except outer layer
- Wires acc. to EN 50183 / EN 61232
- Maximum fibre capacity per steel tube: 48 x 250µm Ø / 66 x 200µm Ø
- Fibres coloured acc, to colour code 048 F TIA-598-D
- Fibres acc. to G.652.D
- Tube marking: #1: none #2: 1 2 2

		ati	

Center	1 A20SA - Wire	3,50 mm	
Layer 1	4 A20SA - Wires	3,40 mm	
	+ 2 Stainless Steel Tubes with 48 SMF	3,00 / 3,40 mm	
Layer 2			
	12 A20SA - Wires	3,40 mm	
Layer 3	12 AL3 - Wires	3,40 mm	
	6 A20SA - Wires	3,40 mm	

Mechanical Data

Cable Diameter	23,9 mm
Cable Weight	1798 kg/km
Supporting Cross Section	318,3 mm²
Rated Tensile Strength (RTS)	278,6 kN
Modulus of Elasticity	126,1 kN/mm²
Thermal Elongation Coefficient	14,5 10 6/K
Permissible Maximum Working Stress (50% RTS)	437,7 N/mm² (139,3kN)
Recommended Everyday Stress (20% RTS)	175,1 N/mm2 (55,7kN)
Ultimate Exceptional Stress (80% RTS)	700.3 N/mm ² (222.9kN)

Electrical Data

DC Resistance (20°C)		0,176 Ω/km
Conductivity		30,8% IACS
Short Time Current	(1,0s; 20-200°C)	25,8 kA
Short Time Current	(0,5s; 20-200°C)	36,5 kA
Short Time Current Capacity I*t	(20-200°C)	665,4 kA2s

Application

Maximum Permissible	Installation Force	83,6	kN
Minimum Bending Rad	ius static	299	mm
	dynamic	359	mm
Normal Delivery Length	1	3000	m
Temperature Range	Installation	-10	to +50°C
	Transportation and Operation	-40	to +85°C

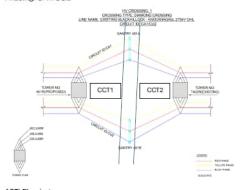
All Sizes and Values are Nominal Values. The latest edition of referenced documents applies. opgw_pro8.xism, Ver. 23.
www.AFLglobal.com

AFL Telecommunications Gm

Duck-under Parameters and Phasing

LT37 Special Arrangement 1

Conductor type:


- Existing conductor: 2x 300mm² AAAC (Upas)
- New conductor: 2x 300mm² AAAC (Upas)

Circuit rating:

- Voltage: 275kV
- For 2x Upas @ 65°C: Winter Pre Fault 1640A

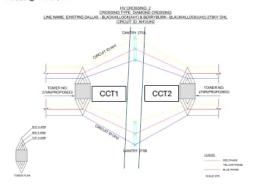
	Thermal Over ivity 30.5 nΩ.m				lömm" U	pas AAA
			R	ated Temp	erature:	65 °C
ALL RATINGS ARE	Winter		SPRING / AUTUM N		Summe	r
PER CIRCUIT	Amps	MVA	Amps	MVA	Amps	MVA
Pre-Fault Continuous	1640	785	1550	740	1390	665
Post-Fault Continuous	1960	935	1850	880	1660	790

Phasing: CA1/CU2

Min Clearance AS4 to ground CB1-10 to CB1-11 – 14.65m Min clearance AS4 to ground CB1-11 to CB1-12 – 18.06m

LT37 Special Arrangement 1

Conductor type:


- Existing conductor: 2x 300mm² AAAC (Upas)
- New conductor: 2x 300mm² AAAC (Upas)

Circuit rating:

- Voltage: 275kV
- For 2x Upas @ 65°C: Winter Pre Fault 1640A

			ngs for 275 kV, 2x300mm² Upas AAA/ om 1997 onwards)					
			R	ated Temp	erature:	65 °C		
ALL RATINGS ARE	Winter		SPRING N	SPRING / AUTUM N		r		
PER CIRCUIT	Amps	MVA	Amps	MVA	Amps	MVA		
Pre-Fault Continuous	1640	785	1550	740	1390	665		
Post-Fault Continuous	1960	935	1850	880	1660	790		

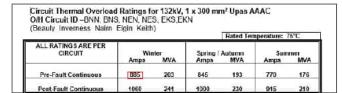
Phasing: AH1/UH2

Min Clearance AS4 to ground CB12-5 to CB12-6 – 10.20m

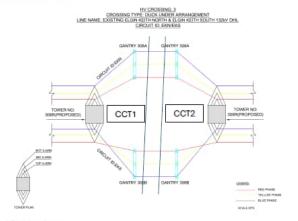
Min Clearance AS4 to ground CB12-6 to CB12-7 – 25.66m

LT37 Special Arrangement 3

Conductor type:


Existing conductor: 1x 300mm² Upas AAAC

New conductor: 1x 300mm² Upas AAAC


Circuit rating:

Voltage: 132kV

For Upas @ 75°C: Winter Pre Fault 885A

Phasing: EKN/EKS

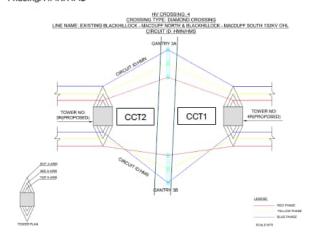
ASTI Phasing:

Min Clearance AS4 to ground CB12-7 to CB12-8A - 18.98m

LT37 Special Arrangement 4

Conductor type:

Existing conductor: 1x 175mm² ACSR (Lynx)
 New conductor: 1x 175mm² ACSR (Lynx)


Circuit rating:

Voltage: 132kV

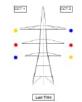

For Lynx @ 50°C: Winter Pre Fault 485A

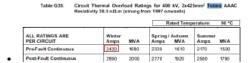
Table C1: Circuit Thermal Ove	rload Ratings f	or 132 kV	1x175mm	Lynx AC	SR	
				Rate	Temperat	ture: 50 °
ALL RATINGS ARE	Winter	Winter Spring/Autumn		Summer		
PER CIRCUIT	Amps	MVA	Amps	MVA	Amps	MVA
Pre-Fault Continuous	485	111	450	103	390	89
Post-Fault Continuous	580	132	540	123	465	106

Phasing: HMN/HMS

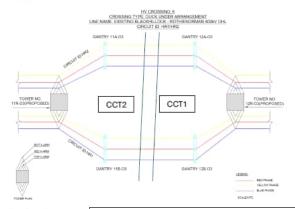
ASTI Phasing:

Min Clearance AS4 to ground CB15-14A to CB15-15 - 12.65m

Min clearance AS4 to ground CB15-15 to CB16-1 - 16.22m


LT37 Special Arrangement 5

Conductor type:


- Existing conductor: 2x 425mm² AAAC (Totara)
- New conductor: 2x 425mm² AAAC (Totara)

Circuit rating:

- Voltage: 400kV
- For 2x Totara @90°C: Winter Pre Fault = 2430A

Phasing: HR1/HR2

ASTI Phasing:

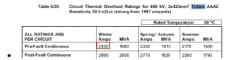
Min Clearance AS4 to ground CB16-2 to CB16-3 - 11.46m

Min clearance AS4 to ground CB16-3 to CB16-4 - 15.07m

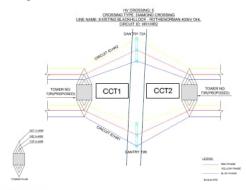
Min clearance undersailing line 11R-O3 to 11A-O3 to 12A-O3 to 12R-03 - 11.97m, 7.98m, 10.74m

Min clearance undersailing line 11R-O3 to 11B-O3 to 12B-O3 to 12R-03 - 14.22m, 10.39m, 13.81m

LT37/359 - BBNP


LT359 Special Arrangement 1

Conductor type:

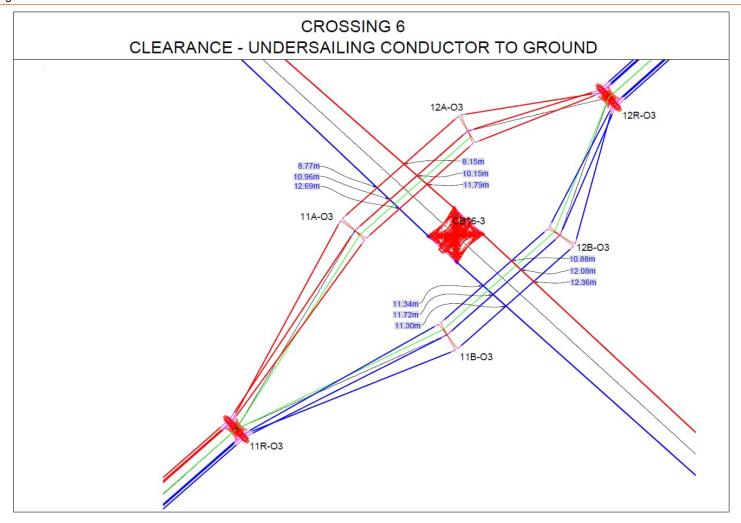

- Existing conductor: 2x 425mm² AAAC (Totara)
- New conductor: 2x 425mm² AAAC (Totara)

Circuit rating:

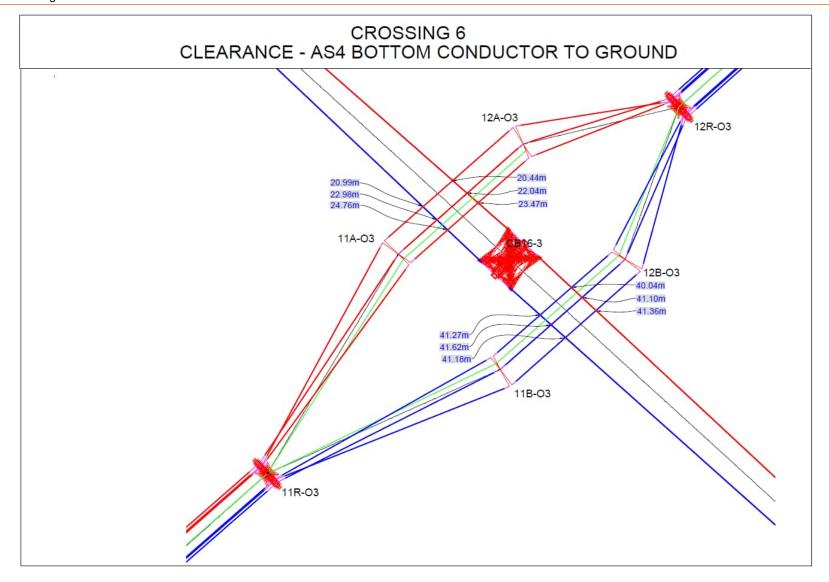
- Voltage: 400kV
- For 2x Totara @90°C: Winter Pre Fault = 2430A

Phasing: HR1/HR2

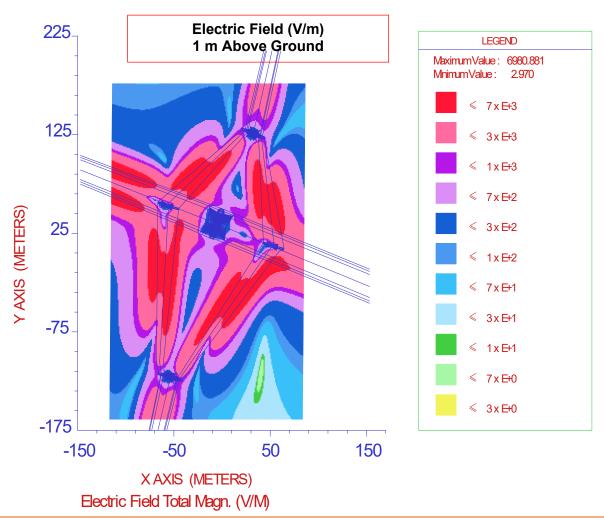
ASTI Phasing:

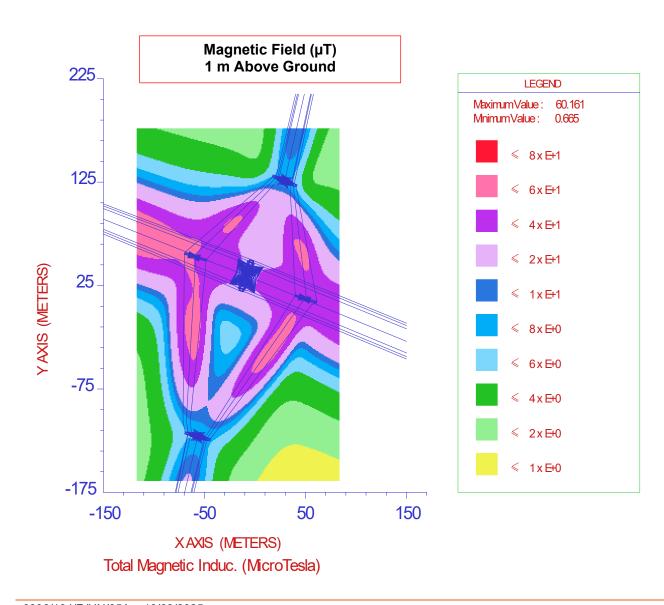

Min Clearance AS4 to ground BN4-1 to BN4-2 - 24.13m

Min clearance AS4 to ground BN4-2 to BN4-3 - 19.7m


Min clearance undersailing line 72R to 72B to 73R - 10.1m and 8.68m

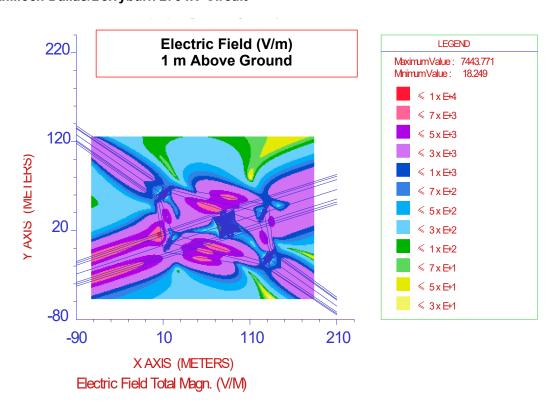
Min clearance undersailing line 72R to 72A to 73R - 8.32m and 8.12m

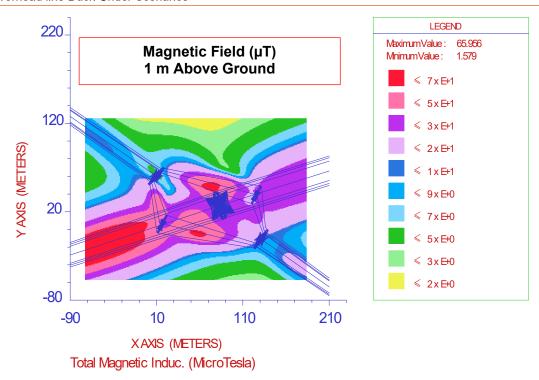



Appendix B

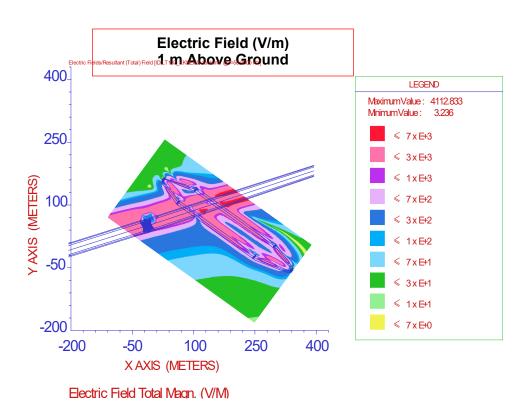
CDEGS (HIFREQ) Results

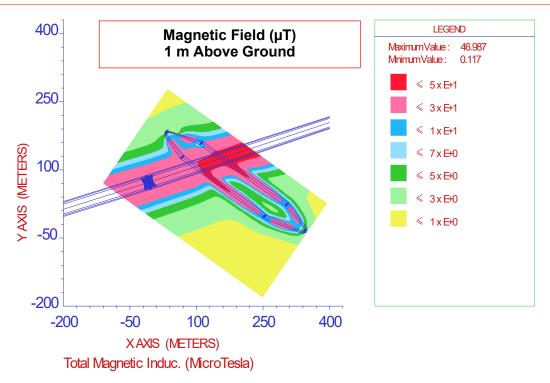
i) Crossing 1 Knocknagael - Dallas/Berryburn 275 kV Circuit



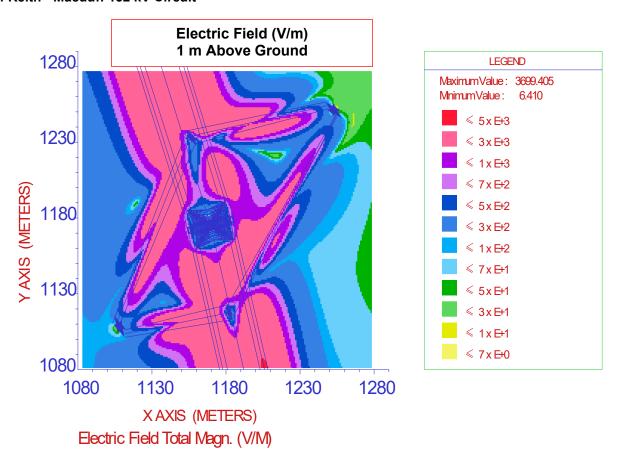


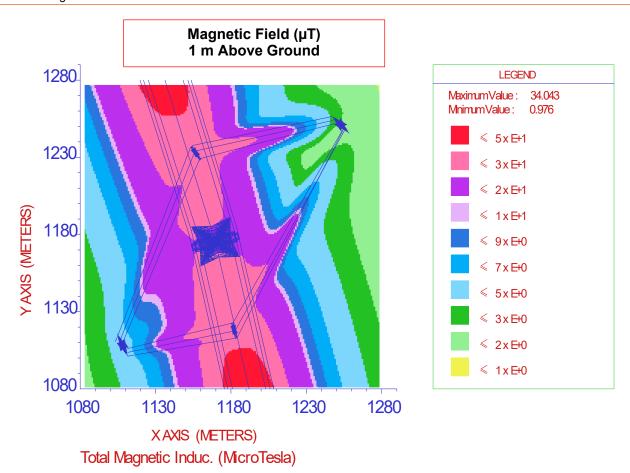
ii) Crossing 2 Blackhillock-Dallas/Berryburn 275 kV Circuit



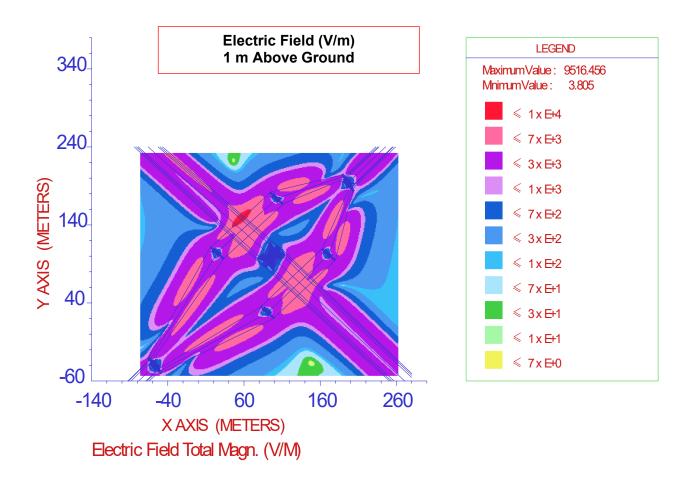


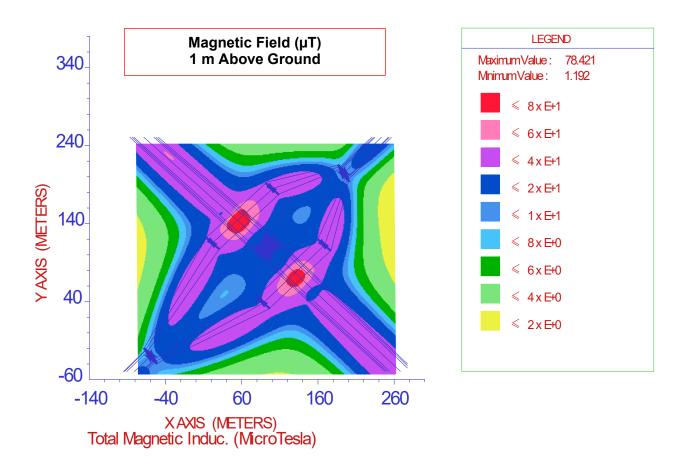
iii) Crossing 3 Elgin - Keith 132 kV Circuit



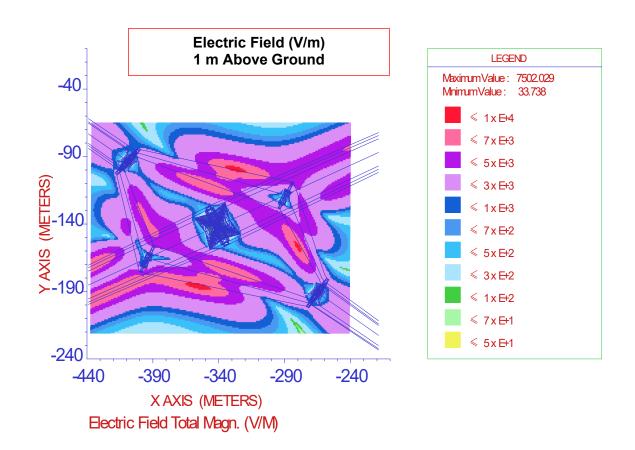


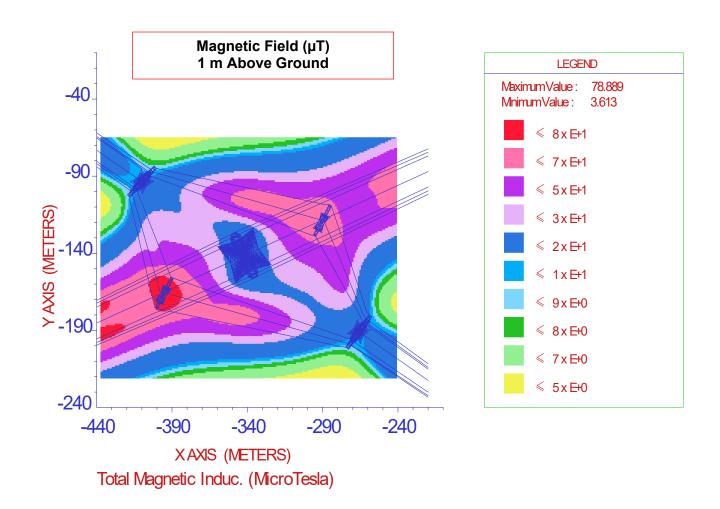
iv) Crossing 4 Keith - Macduff 132 kV Circuit





v) Crossing 5 Blackhillock - Rothienorman 400 kV circuit





vi) Crossing 6 Blackhillock - Rothienorman 400 kV circuit

Arcadis Consulting (UK) Limited

3rd Floor, Aurora Building 120 Bothwell Street Glasgow, G2 7JS United Kingdom

T: +44 (0) 141 343 9000

arcadis.com