

The time has come to further enhance Scotland's energy infrastructure, providing power for future generations as we move towards net zero.

The shift to a cleaner, more sustainable future is about more than climate change. It's about ensuring future generations have the same opportunities to thrive as we have all had.

Countries around the world are investing in their energy infrastructure to support the demands of modern economies and meet net zero targets. The UK is leading the way in building a modern, sustainable energy system for the future.

We all have a part to play

When it comes to net zero, we have to be in it together. The UK and Scottish governments have ambitious net zero targets, and we're playing our part in meeting them.

We work closely with the National Electricity System Operator to connect vast renewable energy resources—harnessed by solar, wind, hydro and marine generation—to areas of demand across the country. Scotland is playing a big role in meeting this demand, exporting two thirds of power generated in our network.

But there's more to be done. By 2050, the north of Scotland is predicted to contribute over 50GW of low carbon energy to help deliver net zero. Today, our region has around 9GW of renewable generation connected to the network.

At SSEN Transmission, it is our role to build the energy system of the future.

We're investing over £20 billion into our region's energy infrastructure this decade, with the potential for this to increase to over £30 billion. This investment will deliver a network capable of meeting 20% of the UK's Clean Power 2030 target and supporting up to 37,000 jobs, 17,500 of which will be here in Scotland.

Scan the QR code with your smartphone to find out more about how these policies have been assessed and determined.

Who we are

We're responsible for maintaining and investing in the electricity transmission network in the north of Scotland. We're part of SSE plc, one of the world's leading energy companies with a rich heritage in Scotland that dates back more than 80 years. We are also closely regulated by the GB energy regulator Ofgem, who determines how much revenue we are allowed to earn for constructing, maintaining and renovating our transmission network.

What we do

We manage the electricity network across our region which covers a quarter of the UK's land mass, crossing some of the country's most challenging terrain.

We connect renewable energy sources to our network in the north of Scotland and then transport it to where it needs to be. From underground subsea cables and overhead lines to electricity substations, our network keeps your lights on all year round.

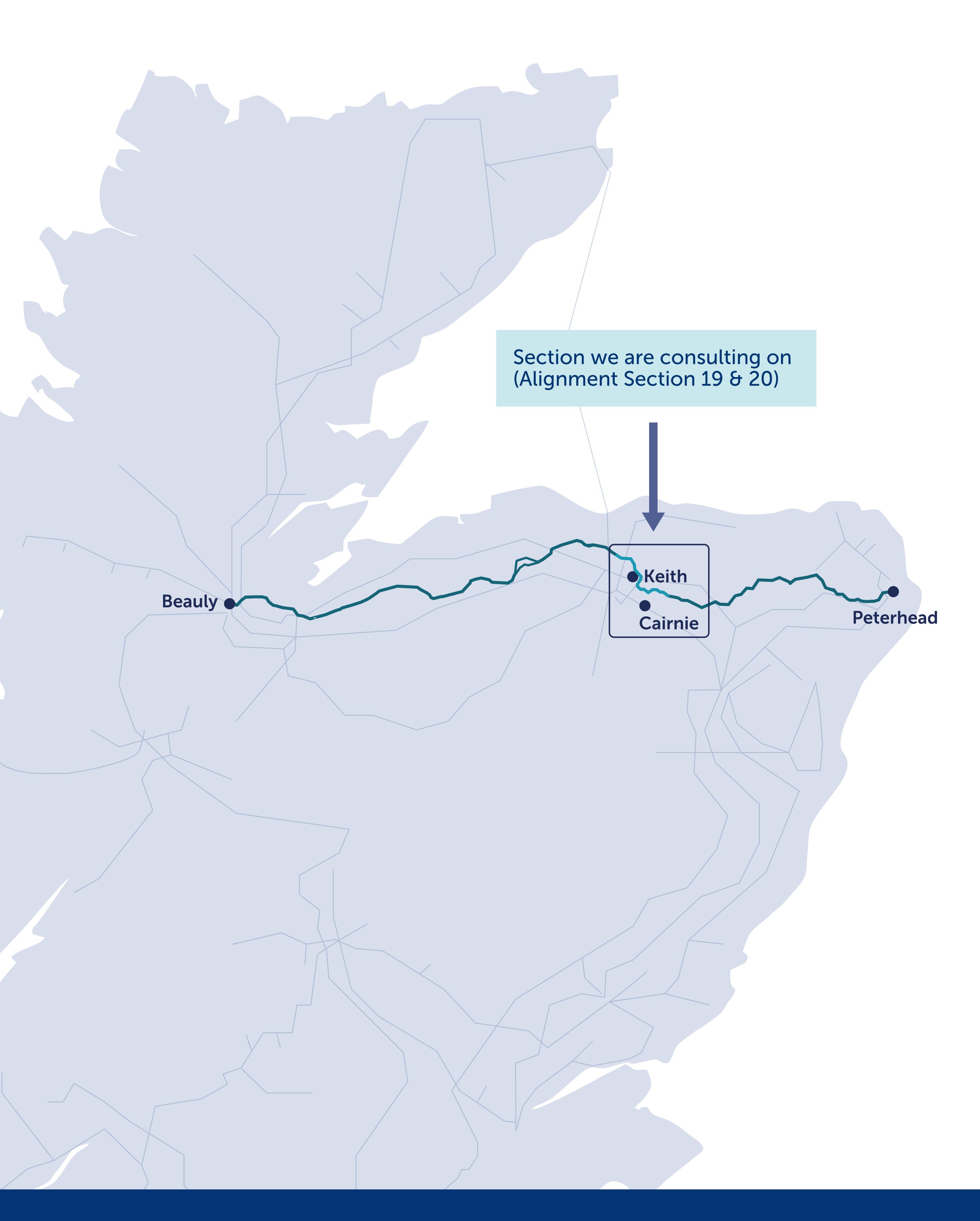
Working with you

We understand that the work we do can have an impact on communities. So we're committed to minimising our impacts and maximising all the benefits that our developments can bring to your area. We're regularly assessed by global sustainability consultancy AccountAbility for how we engage with communities. That means we provide all the information you need to know about our plans and how they will impact communities like yours. The way we consult is also a two-way street. We want to hear people's views, concerns, or ideas and harness local knowledge so that our work benefits their communities: today and long into the future. You can share your views with us at:

ssen-transmission.co.uk/talk-to-us/contact-us

BBNP@sse.com

+44 7586 295 274


Project overview

The proposed Beauly – Peterhead 400kV overhead line project (previously referred to as the Beauly – Blackhillock – New Deer – Peterhead 400kV overhead line project), is a key part of our Pathway to 2030 programme of works investments to update the electricity transmission network across the north of Scotland.

These investments, which are required to support the delivery of clean power and energy security targets, are part of a wider upgrade of the electricity grid across Great Britain.

What does the project involve?

The project will involve the construction of a new approx. 185km long, 400kV overhead line between new proposed substations near Beauly, New Deer and Peterhead, using steel lattice towers likely to average around 58m in height. We have been engaging with stakeholders and local communities on this project since 2022, ensuring meaningful engagement with stakeholders potentially affected by our development proposals. We are now consulting on proposed changes to our project in the Keith area.

BBNP@sse.com

+44 7586 295 274

Project overview

Removal of Coachford from project scope

Following detailed ground investigation works which revealed technical challenges at the site of the proposed Coachford Substation, we will no longer be proceeding with the construction of the proposed substation at Coachford as part of the Beauly to Peterhead 400kV overhead line (OHL) project. The results of our ground investigation work created an opportunity to reassess how, when and where the objectives of Coachford could be delivered, taking future development opportunities in the area into consideration.

Following the decision to remove the substation from the Beauly to Peterhead 400kV OHL project, we will now start exploring alternative options to deliver the initial needs of Coachford—informed by community feedback and development insights gathered so far—at a new site.

What that means for the Beauly to Peterhead 400kV project

The Beauly to Peterhead 400kV OHL project will now comprise three new substations rather than four, alongside the overhead line infrastructure, and still fully deliver the power transmission and grid connectivity requirements identified under our Pathway to 2030 projects.

The proposed OHL alignment has been carefully considered and assessed through an extensive routeing process to minimise impacts and therefore it is proposed that the OHL alignment will remain largely unchanged.

However, to the east and southeast of Keith, adjustments to the OHL design are required to adapt to the removal of the proposed Coachford Substation, including a new 'diamond crossing' of the existing Blackhillock to Rothienorman 400kV OHL.

Read more about the decision to remove Coachford Substation from the scope of the project via the QR code below or via our project webpage:

ssen-transmission.co.uk/coachford

Why we're here today

The purpose of this consultation is to share our amended design and proposed alignment for the development in this section following the removal of Coachford Substation from the project scope, including details on how decisions were taken.

We have been developing these design updates and will present the changes to the overhead line around the Coachford area (Section 19–20) within this consultation.

We have identified and assessed 3 alignment options within this area, and we are seeking stakeholder feedback on our proposals within Sections 19 and 20.

To allow for the engagement with stakeholders and inclusion of these changes in our Environmental Impact Assessment, our Section 37 application for the proposed overhead line will now be submitted in early Autumn 2025.

For more information about the project, including our previous proposals and engagement events, please visit our project webpage:

ssen-transmission.co.uk/BBNP

Why we're here today

About the overhead line changes

Removal of diversion

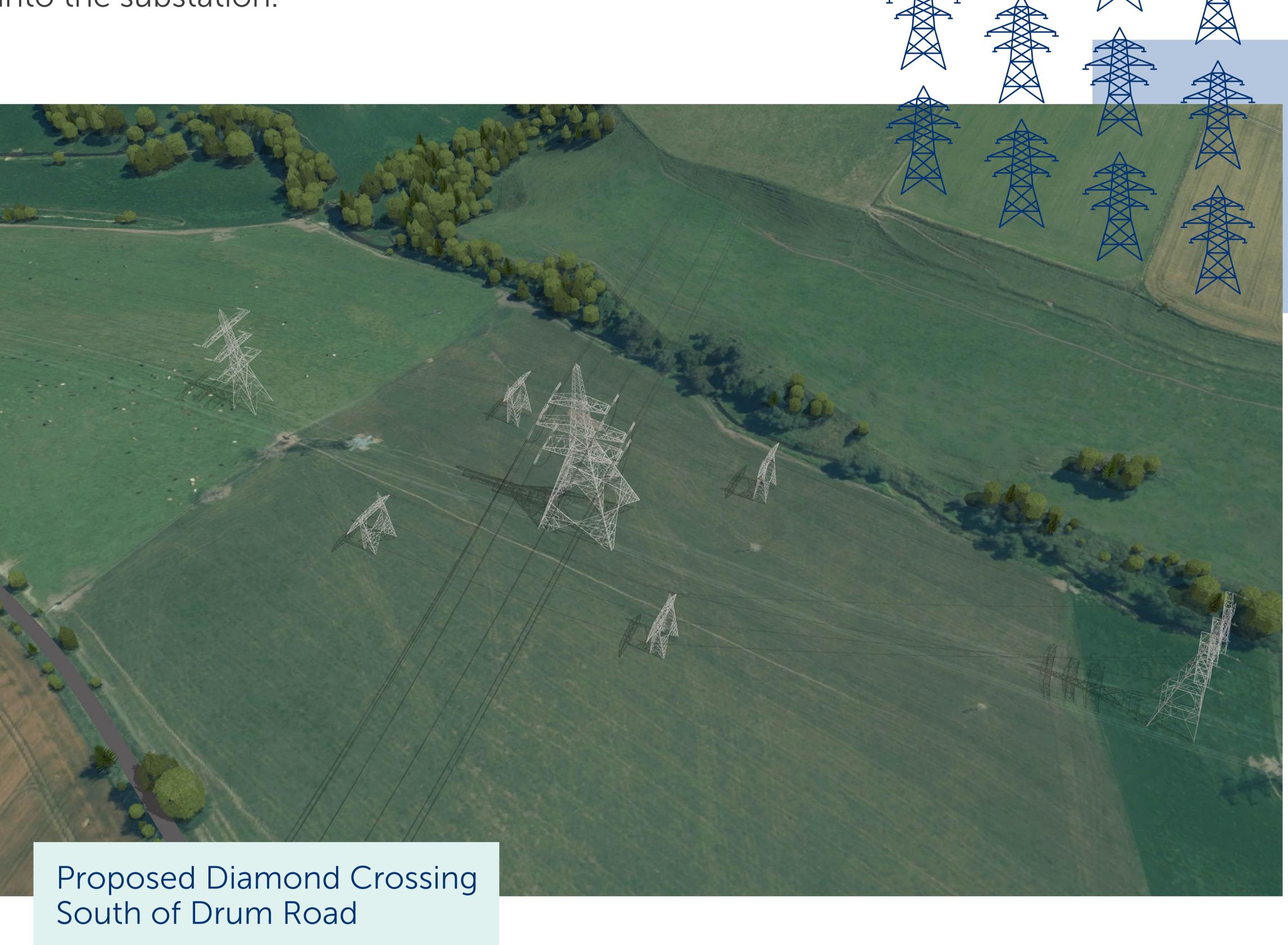
The original project design included a diversion of the existing Blackhillock to Rothienorman 400kV OHL into and out of Coachford Substation. As Coachford Substation is being removed from the project scope, this diversion is no longer needed.

This will reduce the number of new OHLs to the southeast of Keith, between the A96 and the Balloch Hill, **from three,to one.** Removal of a section of the existing 400kV OHL is also no longer proposed.

Diamond crossing

To the southeast of Keith, the existing Blackhillock to Rothienorman 400kV OHL runs in a south-westerly/ northeasterly direction and the new OHL is designed to run roughly north/south. Without the need for the diversion of the existing OHL into Coachford Substation, the proposed new OHL needs to cross over the existing line. At the point where the two lines meet, the design solution proposed is referred to as a 'diamond crossing'. This enables one of the OHLs to pass under the other in a 'diamond' configuration.

Passing through Coachford


At the Coachford Substation site itself, the proposed alignment will pass straight through the site, rather than connecting into the substation.

New location of transposition towers

Due to the line being over 100km long, we need to switch the positions of the wires (called conductors) twice along the route. This helps keep the electricity flowing evenly, preventing potential network issues.

To do this, we use special towers called transposition towers. These include two towers with longer cross arms, placed about 100m apart. We'll need to install these at two points along the route to make the swaps possible.

As a result of the removal of Coachford Substation, we have had to amend the location of the proposed transposition towers, to ensure they are located at distances of one third and two thirds along the length of the alignment between Fanellan and Greens substations. The new locations of the transposition towers are available to view in the materials available at these events and on our webpage:

Project timeline

2022 **Spring:** Connection options appraisal Summer: Corridor optioneering studies 2023 September: Public consultation events (Corridor) Bird surveys Early 2023: Route development Spring: Public consultation events (Route) 2024 Late 2023: Further route refinement Feb/March: Public engagement and alignment development events (Refined route) Alignment development Environment Impact Assessment: ongoing May/June: Public engagement events (Potential alignment)

2025

Land negotiations ongoing

Complete

Ongoing

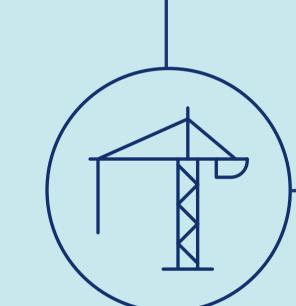
- February: Public engagement events - final Proposed Alignment
 - May: Removal of Coachford confirmed
- June: Coachford update - Public engagement events
- Early Autumn: Submit Section 37 application

2026

Autumn 2026: Receive consents decision

Environment Impact

Assessment: ongoing

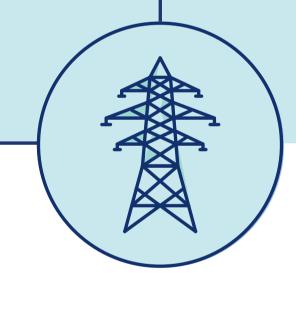

Land negotiations: ongoing

• Further alignment refinement

and environmental studies

Ongoing ground investigations

Late 2026: Condition Discharge and commence construction if planning consent granted


2027-2029

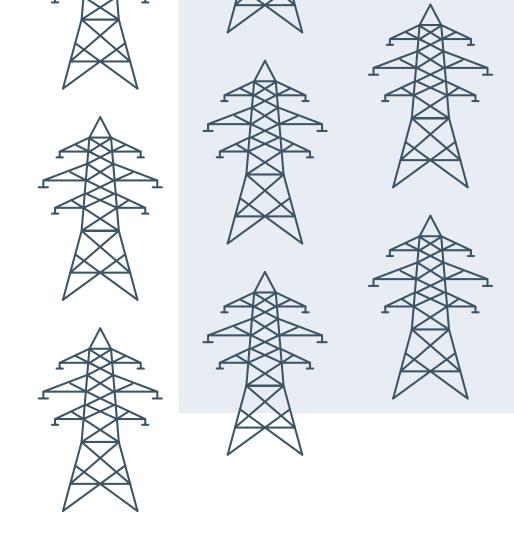
Phased construction: ongoing

2030

Spring 2030: Construction complete

• Summer 2030: Commissioning

*Future dates are indicative and subject to change.


BBNPasse.com

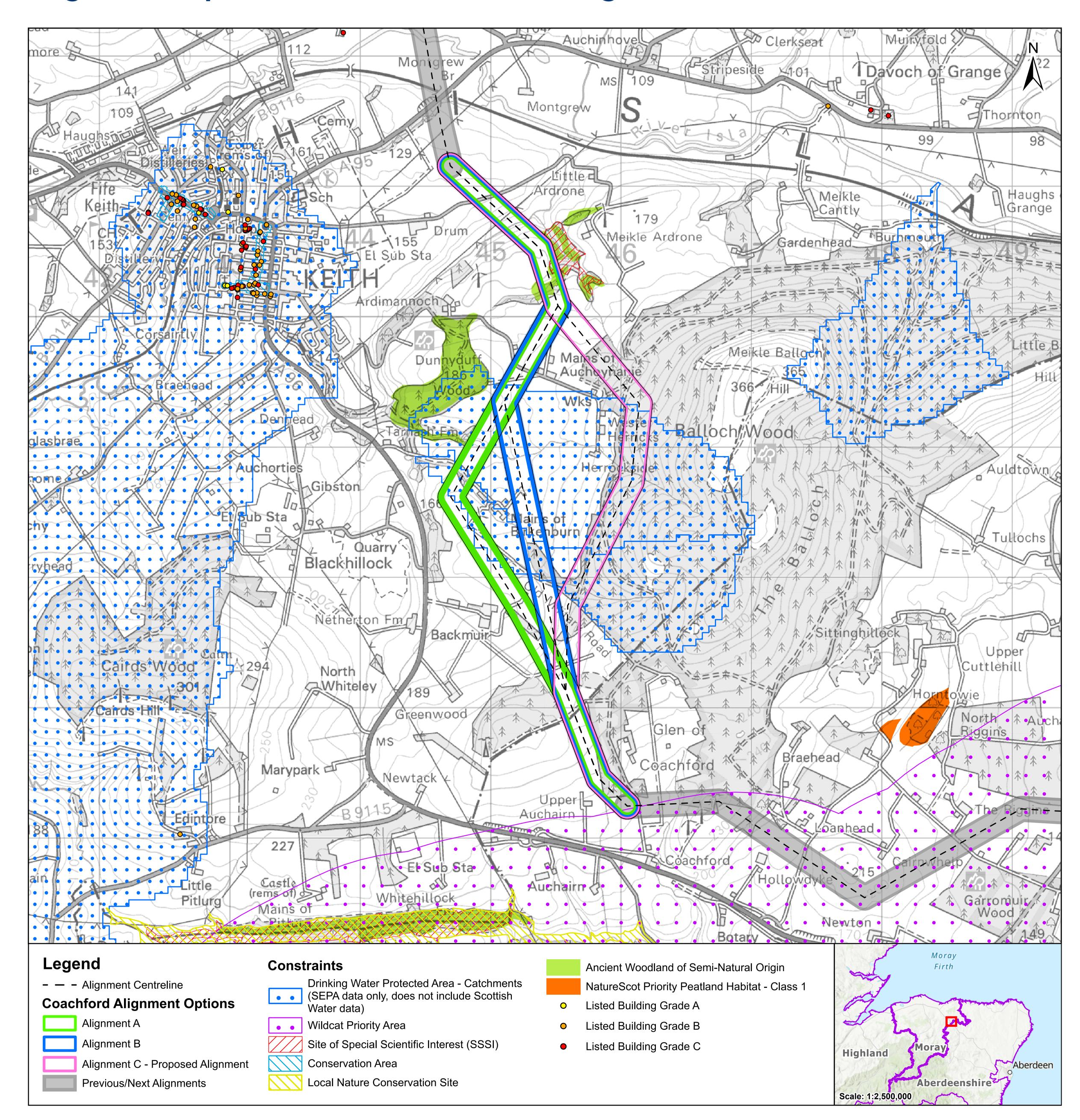
07586 295 274

Alignment selection outcomes

Following the removal of the Coachford Substation from the Beauly to Peterhead 400kV project and the resulting changes to requirements, the overhead line (OHL) design in this area has been revised. Three alignment options—A, B, and C—were assessed in detail, with Alignment C identified as our proposed alignment.

Alignment A

Alignment A begins to the east of Keith and to the south of the A95 and the River Isla. It travels southeast to pass over the existing 400kV OHL, then south over Mill Wood. To the south of Mill Wood, Alignment A travels southwest, passing to the east of Dunnyduff Wood. To the south of Dunnyduff Wood, it turns to a southeasterly direction, until it connects to the proposed alignment to the east of Glen of Coachford.


Alignment B

Alignment B begins at the same location as Alignment A, travelling southeast to pass over the existing 400kV OHL then south over Mill Wood. South of Mill Wood, it travels southwest, to the east of Dunnyduff Wood. Here Alignment B changes direction to travel south, passing Mains of Birkenburn, until it connects to the proposed alignment to the east of Glen of Coachford.

Proposed Alignment: Alignment C

Alignment C begins at the same location as Alignment A, travelling southeast to pass over the existing 400kV OHL then south over Mill Wood. South of Mill Wood, it travels southeast into Balloch Wood. At Wester Herricks, it changes direction to pass in a southerly direction to the east of the properties at Wester Herricks, through Balloch Wood. Once the alignment has passed these houses, it travels southwest until it reaches the old military road. From here it travels south until it connects to the proposed alignment to the east of Glen of Coachford.

Alignment options - environmental designations and constraints

Alignment options considerations

The revised alignment options have been further assessed against a range of environmental, technical and cost considerations. We have also taken into account previous community and landowner feedback in this area to reach a decision on the most appropriate alignment to take forward as part of our Section 37 application. The key findings of our assessments are as follows:

Environmental considerations

Alignments A and B are very similar in comparison for the majority of environmental topics. Alignment A is slightly less constrained due to having the least cultural heritage assets and the least amount of forestry to be removed, and from a visual perspective it avoids crossing in front of a number of residential properties.

Alignment C passes through areas of mature commercial woodland and would require a larger area of tree removal than the other alignment options. Alignment C also has a greater potential for impacts to protected species, due to the larger areas of native woodland habitats. There are a number of Scottish Water drinking water abstractions and two private water supplies close to this alignment, however impacts to these abstractions can be avoided through sensitive tower placement and construction mitigation measures. Alignment C also crosses over more core paths and through Balloch Wood, which is used recreationally by walkers.

From a visual perspective, Alignment C is considered to be less constrained for residential receptors in the immediate vicinity, as it passes behind a number of properties and maintains more open vistas across farmland in near-distant views. It is also less constrained from an agricultural perspective.

Community feedback considerations

Community feedback from our previous engagement events indicated that there was a preference to keep infrastructure away from the community of Keith to reduce the impact this would have on residential properties, agricultural land, and local people within the area. We have taken this feedback into consideration during our design and routeing process of the three alignment options presented, this feedback has significantly influenced our proposed route. Our proposed alignment takes the same route as the previously proposed Rothienorman to Coachford OHL diversion and passes through woodland on the lower slopes of Balloch Wood.

Engineering considerations

All alignment options must cross the Blackhillock to Rothienorman 400kV OHL at the same location, requiring a new 'diamond crossing' arrangement to the east of Keith. Alignments A and C require one crossing of the existing Moray West underground cable route, whereas Alignment B requires three crossings of this cable.

Alignment C crosses elevated terrain for a longer distance than Alignments A and B, but with a maximum elevation of 260m this is well within the design capability of the proposed towers. Alignment C also crosses slightly steeper side slopes where it crosses the lower side of the Balloch, however constructability surveys have not identified any concerns in this area.

All alignment options have reasonable access for both construction and maintenance. Alignment C has a slight benefit due to the existing forestry track that provides good access along a section of Alignment C.

Alignments A and B require five angle towers whereas Alignment C requires seven.

Alignments A and B both pass within close proximity of three residential properties, whereas Alignment C remains further than 170m from all properties. Alignment A also comes close to a small wind turbine that would likely need to be removed, whereas Alignments B and C have no turbines in close proximity.

Cost considerations

Alignment B has the lowest estimated capital cost. All alignment options are within 120% of the lowest cost option and are therefore considered acceptable from a capital cost perspective.

Alignment C has highest estimated operational cost due to increased resilience felling requirements compared with Alignments A and B.

Have your say

We value community and stakeholder feedback. Our alignment proposals are the result of extensive engagement with a wide range of different stakeholders and we believe the proposed alignment strikes a balance between the various different considerations that we must take into account.

As part of the Section 37 application process, we are expected to hold at least two pre-application consultation events prior to submitting the application. This is the second and final event providing the opportunity for members of the public to respond to the proposed alignment and consider our responses to the feedback we have received from our previous consultation events.

Earlier, additional public consultation was also undertaken at the corridor, route and route refinement, and potential alignment stages.

Submitting your final comments to us:

We intend to submit our application for consent in Autumn 2025. Prior to this, you can submit your final formal comments to us before our feedback period closes on Friday 18th July. We welcome final comments from members of the public, statutory consultees and other key stakeholders regarding our proposals until such time as we submit our consent application.

Once an application for consent has been submitted, there will be an opportunity for the public to make formal representations directly to the Scottish Government's Energy Consents Unit before it takes a decision.

What we're seeking views on

During our public consultation events in February and March 2025, we presented our proposed alignment. We are now presenting our proposed alignment in this section with the necessary design changes following the decision to not proceed with the proposed Coachford Substation site. We are asking for any final comments or feedback ahead of submitting our Section 37 consent application for the Beauly to Peterhead 400kV OHL project. It would be helpful to share any opportunities to deliver a local community benefit or biodiversity projects you would like us to consider.

How to provide feedback

Submit your feedback online by scanning the QR code on this page or via the form on our project webpage at:

ssen-transmission.co.uk/BBNP

Email the feedback form to the Community Liaison Manager, or write to us enclosing the feedback format the back of this booklet.

Our Community Liaison team

Each project has a dedicated Community Liaison Manager who works closely with community members to make sure they are well informed of our proposals and that their views, concerns, questions, or suggestions are put to our project teams.

Throughout the life of our projects, you will hear from us regularly. We aim to establish strong working relationships by being accessible to key local stakeholders such as community councils, residents' associations, and development trusts, and regularly engage with interested individuals.

Community Liaison Manager

Kirsty McNamara



10 Henderson Road, Inverness, IV1 1SN

Additional information:

BBNP@sse.com

The best way to keep up to date is to sign up to project updates via the project webpage:

ssen-transmission.co.uk/BBNP

You can also follow us on social media:

@SSETransmission

BBNP@sse.com

07586 295 274

The Pathway to 2030

Building the energy system of the future will require delivery of significant infrastructure over the next few years. In partnership with the UK and Scottish governments, we're committed to meeting our obligation of connecting new, renewable energy to where it's needed by 2030.

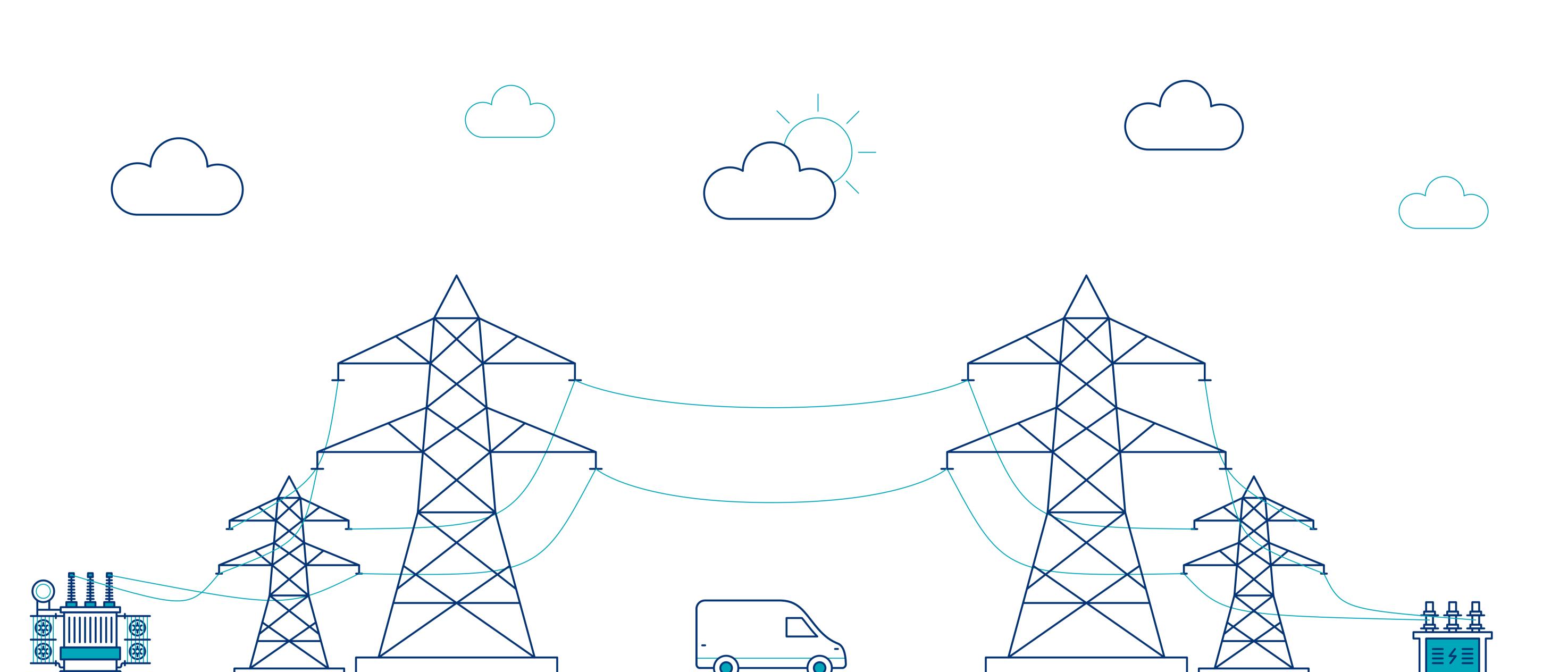
Achieving Net Zero

By 2030, both the UK and Scottish governments are targeting a big expansion in offshore wind generation of 50GW and 11GW respectively. The Scottish Government has also set ambitious targets for an additional 12GW of onshore wind by 2030.

Across Great Britain, including the north of Scotland, there needs to be a significant increase in the capacity of the onshore electricity transmission infrastructure to deliver these 2030 targets and a pathway to net zero.

Securing our energy future

And it's not just about net zero. It's also about building a homegrown energy system, so that geopolitical turmoil around the world doesn't severely impact the UK and push up energy prices.


The UK Government's British Energy Security Strategy further underlines the need for this infrastructure, setting out plans to accelerate homegrown power for greater energy independence. The strategy aims to reduce the UK's dependence on and price exposure to global gas wholesale markets through the deployment of homegrown low carbon electricity generation supported by robust electricity network infrastructure.

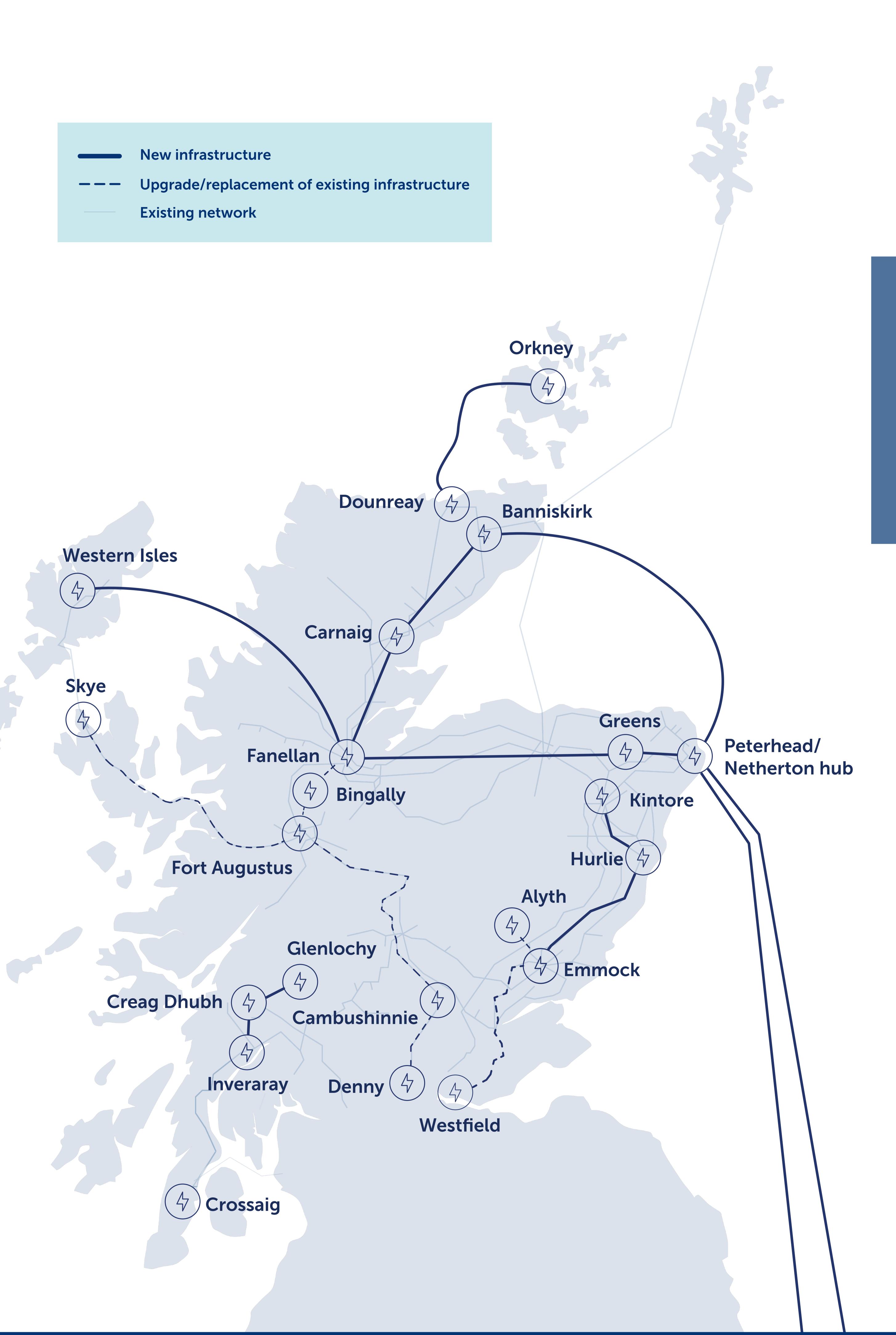
Meeting our 2030 targets

In July 2022, the National Energy System Operator (NESO), published the Pathway to 2030 Holistic Network Design (HND). This set out the blueprint for the onshore and offshore transmission infrastructure that's required to support the forecasted growth in the UK's renewable electricity. It's an ambitious plan that will help the UK achieve net zero.

What does this mean for the North East of Scotland?

The HND confirmed the requirement for a nonshore 400kV connection from Beauly to New Deer and on to Peterhead. This will enable the significant power transfer capability needed to take power from large scale renewable generation connecting from the Western Isles and from connections north of Beauly to the east at Peterhead and then transport this power to where it is required. The connection point near New Deer is needed to pick up power from additional large scale onshore and offshore low carbon renewable generation required to connect into the north-east of Scotland for onward transportation to demand centres.

The Pathway to 2030

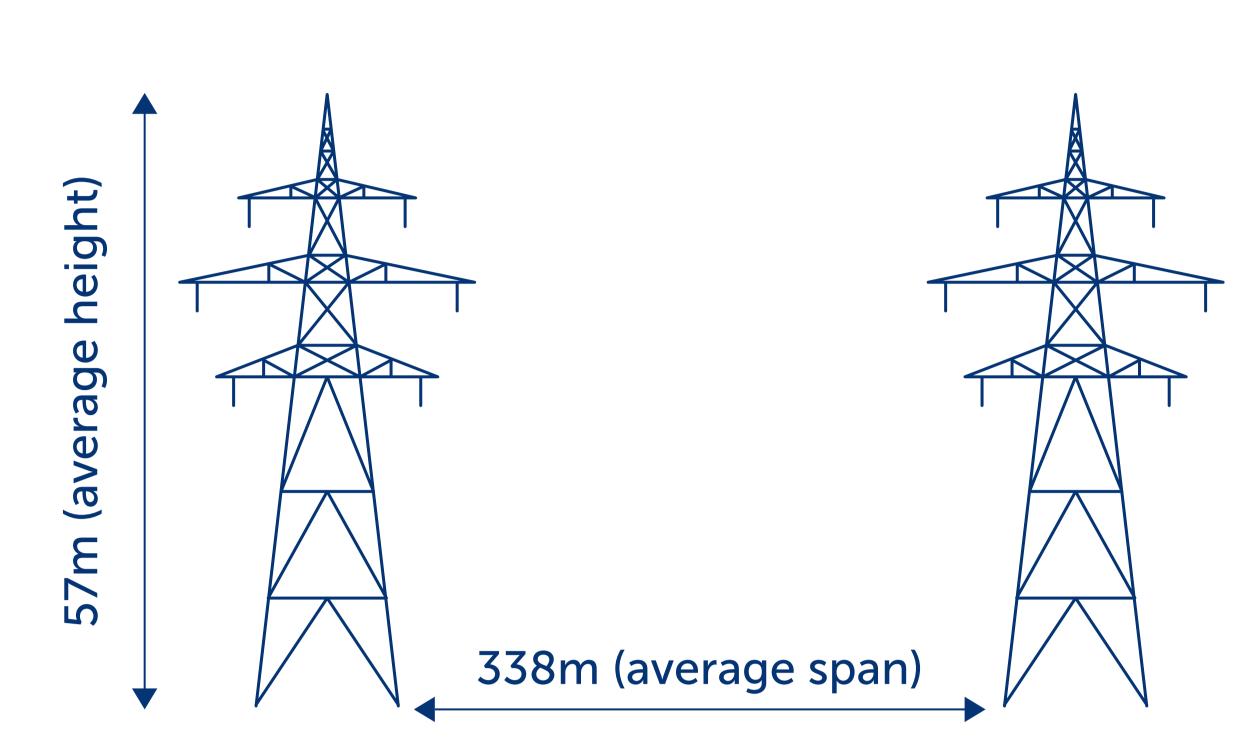

Future network investment requirements

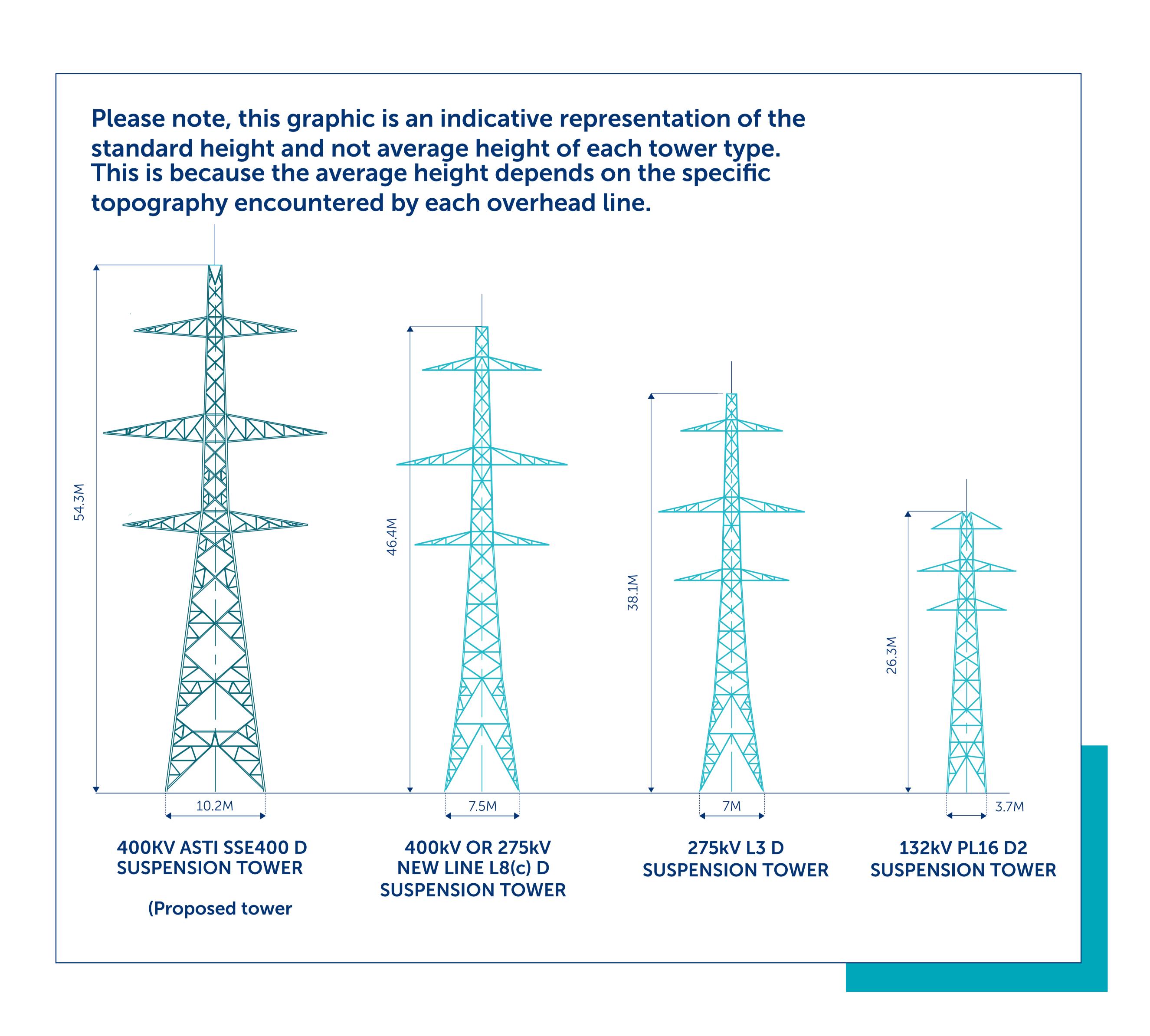
To deliver energy security and net zero, further additional investment in new low carbon electricity generation and the enabling electricity transmission network infrastructure will be required across Great Britian, including the north of Scotland.

In March 2024, the independent National Energy System Operator's (NESO) published its 'Beyond 2030' report, which confirmed the need for several new, replacement and upgraded transmission infrastructure

projects in the north of Scotland. In December 2024, Ofgem approved the next phase of regulatory funding to take these projects through the development phase.

These additional investments will soon be subject to extensive public consultation and engagement to help inform their development, with early consultation and engagement expected to take place during 2025.


About the overhead line


400kV double circuit overhead line

The required technology for the new 400kV link between Beauly to Peterhead has been determined to be a new double circuit 400kV HVAC (High Voltage Alternating Current) overhead line.

The overhead line would consist of steel lattice towers with an average height of approx. 58m which would support six conductor bundles on six cross arms and an earth wire between the peaks for lightning protection. The average distance between towers is expected to be 338m. Tower height and the distance between them will vary dependent on several factors such as altitude, climatic conditions and topography.

This is similar to our Beauly—Denny line, where 80% of its 600-plus towers are below 57m, ranging from 42m to 65m in height.

Technology choice

The challenges with undergrounding at 400kV

The environmental, technical, and operational constraints associated with undergrounding at 400kV make it extremely challenging to deliver in many areas of Scotland. For underground cables at this capacity, longer than 1–2km, additional substation infrastructure would also be needed, enlarging the project's footprint.

Underground cables at 400kV are estimated to be between 5 and 10 times more expensive than overhead lines, and since these costs are reflected in

consumer bills, it's a factor that needs to be considered. To deliver the necessary capacity, up to 30 parallel cables will be required. To achieve the required spacing, a trench of over 40m wide would need to be excavated, typically between 1m and 7m deep. During construction, a working corridor of over 70m wide is required for cable installation. This can result in significant land use constraints, typically more so than overhead line construction activities, particularly for farming operations.

Trench of OVER 40M WIDE AND 1-7M DEEP would need to be excavated

UPTO
30
Parallel cables required

BETWEEN 5-10x

More expensive than overhead lines

OVER 70M WIDE working corridor, which can result in significant land use constraints

Why can't the development be placed offshore?

In its assessment of what is required to meet 2030 targets, the National Energy System Operator (NESO), concluded there is a need for both onshore and offshore projects.

Overhead lines can carry roughly three times more power than subsea cables, making them more efficient and cost effective for energy bill payers, whilst technical challenges and constraints limit the use of only offshore solutions.

Moreover, onshore energy infrastructure helps support local electricity needs and improves the network's reliability across northern Scotland.

Visit our Frequently Asked Questions page to find out more about our engineering and technology considerations including more details regarding underground and offshore cables:

ssen-transmission.co.uk/2030faqs

Managing construction impacts

We are committed to minimising the impact of construction through avoiding potential issues by designing them out, undertaking thorough environmental assessments and working closely with the local community.

Our focus includes mitigating effects, for example to people, biodiversity, water, soil, and traffic disturbances. A Construction Environment Management Plan will be set up, to ensure mitigation is put in place and its effectiveness is monitored throughout the construction phase.

During construction, expected short-term impacts may include noise and traffic disruptions. Before starting, we'll have a plan to manage these, including organising deliveries and travel to avoid busy times and sensitive areas.

We'll work closely with community groups and contractors to ensure adherence to mitigation measures. Typically, most project components will take around four years to complete, however these works will be phased across the length of the overhead line with bursts of activity and quiet periods.

BBNP@sse.com

07586 295 274

