


Beauly to Blackhillock to New Deer to
Peterhead 400 kV Project
Environmental Impact Assessment Report
Volume 5 | Appendices

Appendix 12.1.68 – Woodland Report Parcels 504, 506, 18326 and 20238, Rothes Estate





# APPENDIX 12.1.68 – Woodland Report Parcels 504, 506, 18326 and 20238, Rothes Estate

| 1 | Intro         | oduction                                         | 2  |
|---|---------------|--------------------------------------------------|----|
| 2 | Woo           | odland Property                                  | 2  |
| 3 | Dev           | elopment Requirements                            | 2  |
|   | 3.1           | 400 kV Overhead Line Infrastructure Requirements | 2  |
|   | 3.2           | Access Track Route Design                        | 3  |
| 4 | Woo           | odland Characteristics                           | 3  |
|   | 4.1           | Woodland Composition and Site Conditions         |    |
|   | 4.2           | Kellas Alternative Alignment                     | 4  |
|   | 4.3           | Photo Record – Operational Corridor Assessment   | 5  |
| 5 | Windblow Risk |                                                  | 14 |
| 6 | Woo           | odland Management Impact                         | 14 |
|   | 6.1           | Proposed OHL Alignment                           | 14 |
|   | 6.2           | Kellas Alternative Alignment                     | 14 |
| 7 | Mitio         | gation Opportunities                             | 15 |
|   | 7.1           | Woodland Mitigation Measures                     | 15 |
|   | 7.2           | Kellas Alternative Alignment                     | 15 |
|   | 7.3           | Restructuring                                    | 15 |
|   | 7.4           | Restocking                                       | 15 |
| 8 | Net           | Effect / Summary                                 | 15 |
| 9 |               | npensatory Planting                              |    |

## **Appendix Figures**

Figure 12.1.68a: Parcels 504, 506, 18326 and 20238 Location Map Figure 12.1.68b 1 of 2 Parcel 504, 506 and 18326: Felling Requirement Figure 12.1.68b 2 or 2 Parcel 18326 and 20238: Felling Requirements Figure 12.1.68c: Parcel 18326 Proposed Planting Areas



## 1 Introduction

- 1.1.1 This Appendix presents information relevant to the Beauly to Blackhillock to New Deer to Peterhead 400 kV Overhead Line (OHL) Project (the Proposed Development). It should be read in conjunction with the Environmental Impact Assessment (EIA) Report, specifically **Chapter 12: Forestry**, for full details of the Proposed Development.
- 1.1.2 As part of the EIA, it has been identified that construction of the Proposed OHL Alignment and the associated access tracks would cross several woodland areas within private or publicly owned landholdings.
- 1.1.3 This woodland report has been prepared to assess the potential impacts of the Proposed Development on Woodland, Parcels 504, 506,18326 and 20238, Rothes Estate. It includes the requirements for woodland removal and management recommendations to mitigate the impact of the woodland removal. The report provides an overview of the characteristics of the affected woodland, including woodland composition, site conditions, soil conditions, exposure levels and existing felling approvals. The report also provides details of existing infrastructure, and potential constraints related to forestry operations. It aims to inform decision-making by identifying key environmental and logistical considerations associated with the Proposed Development. Additionally, it evaluates the feasibility of timber extraction and access whilst highlighting necessary mitigation measures to minimise disruption to the woodland ecosystem and surrounding landscape.
- 1.1.4 Field surveys of the woodland areas have been undertaken and have been used to determine the various woodland characteristics, to identify the woodland removal required and recommended. This document also sets out the area quantity hectare (ha) to be compensatory planted to ensure no net loss of woodland is achieved.

## 2 Woodland Property

- 2.1.1 The landholding property boundaries are identified in Figure 12.1.68a: Parcels 504, 506, 18326 and 20238 Location Map. The woodlands are found 12.88 km southwest of Elgin on the west side of the A941 between Elgin and Rothes (East NJ 156181 496495, West NJ 223431 532375) within the Moray Council region and consist largely of productive conifer plantation with a large area of open hill.
- 2.1.2 The woodland parcels are bounded by two main public roads: the A940 to the west and the A941 to the east. These roads provide the primary access routes in the wider area. In addition to these, several single-track, unclassified roads branch off from the main routes and extend into the surrounding rural landscape, providing more direct access to the woodland itself.

# 3 Development Requirements

## 3.1 400 kV Overhead Line Infrastructure Requirements

- The Study Area for this assessment initially focussed on a 100 m width either side of the centreline of the Proposed OHL Alignment and ancillary infrastructure, where relevant, prior to the identification of an Operational Corridor (OC). The Applicant defines the OC as the area in which it has rights to remove woodland for the purposes of the safe construction, resilience and continued maintenance of OHLs, or protection of electrical plant as required by the Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002<sup>1</sup> and The Electricity Act 1989<sup>2</sup>. The OC is defined based on two different factors as follows:
  - The first factor in which the OC is determined is with reference to the distance at which a tree could fall and cause damage to the OHL, resulting in a supply outage. As a result, the OC width would be based on the safety distance required to allow for a mature tree falling towards the OHL at the mid-point on an OHL span

<sup>&</sup>lt;sup>1</sup> UK Gov (2002). The Electricity Safety, Quality and Continuity Regulations 2002. Available at: The Electricity Safety, Quality and Continuity Regulations 2002.

<sup>&</sup>lt;sup>2</sup> UK Gov (1989). Electricity Act 1989. Available at: <u>Electricity Act 1989</u>



TRANSMISSION

- between two towers, taking account of topography and tree height at maturity. Standard falling distance for a mature conifer tree is considered to be a minimum of 45 m. Where the OC passes through areas of broadleaved woodland, it is noted that the width of woodland removal is likely to be reduced, due to the general lower height and characteristics of the tree species present.
- The second factor that is considered is the maximum distance that the OHL conductors can blow out from the tower under a 1 in 50-year return period wind condition, plus the required electrical clearance distance. This is to ensure that the OHL conductors do not come into contact with, or come close enough to, any object that could result in an electrical clearance infringement. This conductor blowout distance varies between each tower dependent on span length and must therefore be considered on a span-by-span basis.
- 3.1.2 The typical OC required within areas of commercial conifer forestry for a 400 kV OHL is 90 m (i.e. 45 m either side of the centre line). Where the OC passes through areas of broadleaved woodland, it is proposed that the extent of woodland removal is likely to be reduced due to the lower height of the tree species present. The OC for the Proposed OHL Alignment through areas of broadleaved woodland has been reduced to 70 m (i.e. 35 m either side of the centre line of the OHL). This has been based on the likely height of the woodland at maturity. Where any woodland removal within the OC is proposed to be reduced from the 45 m either side of the line, a site-specific assessment must be carried out to confirm that the conductor blowout does not exceed the OC width. If the conductor blowout exceeds the OC, then the width of the OC must be increased to meet the requirements of the blowout assessment as a minimum. This will ensure compliance with ESQCR requirements and that the required safety clearances are maintained.
- 3.1.3 A resilient OC of 70 m in width is required throughout the native woodland and 90 m within the commercial woodlands within Woodland Parcels 504, 506, 18326 and 20238 taking into account the requirements of the conductor blowout assessment. The OC is illustrated in Figures 12.1.68b 1 of 2 Parcel 504 506 18326 Proposed Felling Requirement and 12.1.68b 2 of 2 Parcel 18326 20238 Proposed Felling Requirement.

## 3.2 Access Track Route Design

3.2.1 Permanent and temporary access tracks will be created along the length of the OC to link up with existing forest roads. These will be upgraded to facilitate access during operations.

#### 4 Woodland Characteristics

### 4.1 Woodland Composition and Site Conditions

- 4.11 The OC comes onto Rothes Estate from the forest blocks at Dallas in the west, traverses just south of the Glenlatterach Reservoir, and continues east into Parcel 650 before crossing the A941.
- 4.1.2 In between the woodlands in the west and in the east, the OC traverses a significant area of open hill. The landform in the western section consists of rolling hills whilst in the eastern section of the OC it is characterised by significant gullies with steep banks. Glenlatterach reservoir is found amongst these steep gullies.
- 4.1.3 The larger forest blocks in the east of the ownership consist mainly of productive Sitka spruce (SS). The majority being semi-mature to mature, unthinned and of good form and growth. On the better draining soils on the slopes along the gullies Scots pine (SP) has been planted. In the far eastern section of the property, a plateau containing restock of SS is found. West of CB10-11 (141-3), an area of young second rotation crop coincides with the OC.
- 4.1.4 The forest blocks in the western end of the ownership consist of productive conifer. The majority of this has been felled and restocked in recent years whilst some mature elements remain.



TRANSMISSION

- All woodlands are covered under an active Rural Development Contract (RDC) Forest Plan (4886376) which expires in 2026. The only area currently approved for felling within the OC is a coupe directly east of the Gedloch Burn between towers CB10-11 (141-3) and CB10-12 (142).
- Considering the large extent of the woodland in this ownership, exposure levels vary significantly. On the high ground in the west of the ownership exposure is moderate with a maximum Detailed Aspect Method of Scoring (DAMS) score of  $16^3$ . In the eastern part exposure is slightly lower with very sheltered areas in the gullies. On average exposure here is still moderate.
- The Ecological Site Classification (ESC)<sup>4</sup> identifies the site as having a cool, moderately exposed, and wet climate. 4.1.7 The soils have a wet moisture status and very poor nutrient status.
- The National Soil Map of Scotland<sup>5</sup> indicates soil conditions are mixed with poor drainage and therefore poor 4.1.8 rooting on the flat areas and better drainage on undulating ground. The majority of the western sections are characterised by peaty gleys and peaty podzols with potentially some deeper peats in the remaining Sitka / lodgepole plantation. The woodlands do not appear in the Native Woodland Survey of Scotland<sup>6</sup>
- The Proposed OHL Alignment consists of a section of OC between towers CB9-5A and CB10-18. 4.1.9
- 4.1.10 There is good existing forest infrastructure into most of the block. Access into the eastern block can be gained from the A941 coming off at the Gedloch quarry. Access to the far eastern section of the property can be gained further south on the A941 across the neighbouring parcel (650). Due to landform some of the forests between the steep gullies is hard to access. The blocks in the western section are well facilitated by the infrastructure used for the existing windfarms in this area.
- 4.1.11 The majority of the operations in the mature crops can be carried out by harvester / forward combinations but some hand felling and potentially winch work might be required for the steep sections. The restocks coinciding with the OC in the eastern section and the western section will require mulching.
- 4.1.12 The closest forest road suitable for haulage within the ownership is the A941 to east This is classed as an Agreed<sup>7</sup> Route by the Timber Transport Forum<sup>8</sup>.

#### 4.2 Kellas Alternative Alignment

- 4.2.1 The alternative route starts at CB9C-10A and meets the main route at CB10-8.
- 4.2.2 Between towers CB9C-10 to CB9C-13, an area of productive semi-mature conifer will be intersected by the OC.
- 4.2.3 The section of OC within this ownership intersects the Buinach and Glenlatterach Site of Special Scientific Interest (SSSI)<sup>9</sup> just north of the Glenlatterach Reservoir in parcel 20238 between towers CB9C-28A and CB9C-29B, which is designated for Upland oak woodland, Upland birch woodland and Lowland dry heath. The area of intersection is approximately 0.04 ha.

<sup>&</sup>lt;sup>3</sup> Forest Research (2025). Available at: http://www.forestdss.org.uk/geoforestdss/\_(accessed 01/05/2025). The Detailed Aspect Method of Scoring (DAMS) is a system used to assess wind exposure in forestry and land management. It provides a numerical score that quantifies the level of exposure a site experiences based on factors such as elevation, topography, and aspect (the direction a slope faces). The DAMS score helps foresters predict wind risk, which is crucial for understanding tree stability, growth potential, and the likelihood of windthrow (trees being uprooted or broken by wind) The scoring system ranges from 0 to 24, with higher scores indicating more exposure to wind.

 $Forest\ Research.\ Available\ online\ at: \\ \underline{http://www.forestdss.org.uk/geoforestdss/}\ (accessed\ 01/05/2025)$ 

Scottish Government (2024). Available online at: https://soils.environment.gov.scot/maps/soil-maps/national-soil-map-of-scotland/ (accessed 01/05/2025)

<sup>&</sup>lt;sup>6</sup> Scottish Government (2024). Available online at: https://soils.environment.gov.scot/maps/soil-maps/national-soil-map-of-scotland/ (accessed 01/05/2025)

Roads which can be used for timber haulage without restriction other than as regulated by the Road Traffic Act 1988. "A" roads (e.g. the A9) are classified as Agreed Routes by default unless covered by one of the other categories (e.g. Consultation Route).

B The Timber Transport Forum. Introduction to Agreed Routes Map. Available at: https://timbertransportforum.org.uk/agreed-routes-map/introduction-to-agreedoutes-map/ (accessed 01/05/2025)

<sup>9</sup> Nature Scot (1988). Available online at: https://sitelink.nature.scot/site/270 (accessed 01/05/2025)

- TRANSMISSION
  - 4.2.4 In the northern section of the alternative route between towers CB9C-29B and CB9C-30A, a small area of native woodland planting is found with a mixture of native broadleaves and Scots pine. This was planted under the Scottish Forestry Rural Development Contract (RDC) in 2022 (Case no. 4883934). This was a Forestry Grant Scheme (FGS) administered by Scottish Forestry under the Scottish Rural Development Programme (SRDP) between 2014 and 2020. The FGS aimed to reduce the impacts of climate change, provide timber for industry, enhance the environment, and offer public enjoyment of Scotland's forests.
  - 4.2.5 Access into the area of woodland coinciding with the alternative route is good with a high-quality track leading to the Glenlatterach Reservoir. Considering the age of the crop, mulching will be required to remove the trees in this area.

## 4.3 Photo Record - Operational Corridor Assessment

4.3.1 The following photographs provide a visual record of key locations along the OC. Each image illustrates existing vegetation types, land use, and notable landscape features relevant to the planning and management of the corridor. Particular attention has been given to areas of mature woodland, natural regeneration, and locations where proposed works may intersect with ecologically or visually sensitive habitats. The photos are intended to support site assessments and inform mitigation strategies.

Photo 1: Crop at CB10-10 (NJ 220311 532212, looking southwest)





Photo 2: Sporadic open grown lodgepole pine between CB10-10 and CB10-11 at Gedloch Burn (NJ 221151



Photo 3: Windfirm edge north of CB10-11 (NJ 222372 532446, looking east)





TRANSMISSION

Photo 4: Windfirm edge south of CB10-11 (NJ 222761 531877, looking southeast)



Photo 5: Ride with potential water pipeline north-south at CB10-12 (NJ 225311 530506, looking north)





Photo 6: Gully system east of CB10-12 looking north (NJ 226491 534432, looking north)



Photo 7: Potential windfirm edge in Sitka spruce south of CB10-12/CB10-13 (NJ 227318 535491, looking southeast)





Photo 8: Windfirm edge between Scots pine and Sitka spruce, north of CB10-14 (NJ 230621 538201, looking east)



Photo 9: Gully slopes with Scots pine and Sitka spruce on the top looking west towards CB10-14 (NJ 232041 538342, looking southwest)





TRANSMISSION

Photo 10: Scots pine crop on slopes south of CB10-15 (NJ 232702 538711, looking south)



Photo 11: Sitka spruce crop at CB10-15 through to CB10-17 (NJ 235008 541121, looking west)





TRANSMISSION

Photo 12: Existing access to reservoir south of CB10-15 demonstrating steep slopes on right (NJ 235562 538031, looking west)



Photo 13: Unthinned Sitka spruce at CB9-11A, lodgepole pine plantation on peaty soils (NJ 159811 500412, looking west)





TRANSMISSION

Photo 14: Sitka/lodgepole restocks at tower CB9-5A with remaining mature larch and pine plantation (NJ 152681 484332, looking northeast)



Photo 15: Native broadleaves north of Glenlatterach Reservoir (NJ 195012 532991, looking northwest)





Photo 16: Scots pine east of Glenlatterach Reservoir (NJ 196871 532911, looking northeast)



Photo 17: Plantation and infrastructure at CB9-11A (NJ 162011 501542, looking north)





#### 5 Windblow Risk

- 5.1.1 It is acknowledged that the creation of the OC would result in wider potential indirect effects on the surrounding woodland areas. These areas would be subject to potential increased risk of damage (windblow). The Woodland Report identifies further areas of felling to a windfirm edge, defined as 'Management Felling' (categorised as an indirect secondary impact). Any felling undertaken outwith the OC would be solely under the control of the relevant landowner (and not the Applicant). It is the intention of the Applicant to encourage the landowners to follow this good practice in terms of redesign of their current long-term Forest Plans which in-turn would aim to follow UK Forestry Standard (UKFS)<sup>10</sup> for the implementation of the works required.
- 5.1.2 Windblow risk is variable across the property depending on soil conditions, crop conditions and exposure. In the mature crops in the east and west there is significant risk of windblow. In restocked areas and along the sides of the gullies in the east, windblow risk is much lower as a result of reduced tree height for restocked areas and increased shelter and rooting for areas on slopes.
  - Within the Kellas Alternative Alignment, there is a significant risk of windblow in the commercial woodland to the southwest between towers CB9C-10 and CB9C-13.

## 6 Woodland Management Impact

## 6.1 Proposed OHL Alignment

- 6.1.1 The Proposed Development will have a negative impact on the woodland management. The OC cuts through several areas of productive forestry and as a result will lead to early felling. This will lead to reduced income, have a limiting impact on the future felling sequence, and might result in windblow. As regenerating crops are generally above the 2 m threshold there will be no adjacency issue created by the felling. The exception of this is the section of Sitka spruce from CB10-15 to CB10-17 where average height is not yet 2 m. Adjacent felling here can likely be kept to a minimum mitigating this issue.
- 6.1.2 The OC will not be useable for productive forestry in the future along with a small area of spruce south of CB10-14 as this will likely be too small to be a viable management unit.
- 6.1.3 The infrastructure built for this section of the OHL could provide a benefit to the landowner for future forest management, as it could provide long-term access into currently poorly accessible areas, however access throughout the property is generally good.
- 6.1.4 As part of construction works, dedicated crossing points and long-term access opportunities should be discussed with the landowner(s).
- 6.1.5 The Proposed OHL Alignment furthermore introduces an electrical hazard, but the constraint associated with the electrical hazard will be reduced by regular maintenance of the OC which will avoid the incidences of "Red Zone" trees (Forestry Industry Safety Accord, FISA 804 "Electricity at Work: Forestry"

  11).
- 6.1.6 The total loss of Native Broadleaved woodland resulting from the Proposed Development is 0.15 ha.

## 6.2 Kellas Alternative Alignment

6.2.1 The Kellas Alternative Alignment will have a negative impact on the woodland management. The OC cuts through several areas of productive forestry and as a result will lead to early felling. This will lead to reduced income, have a limiting impact on the future felling sequence, and might result in windblow.

<sup>&</sup>lt;sup>10</sup> Scottish Forestry (2024), UK Forestry Standard (UKFS). Available online at: <a href="https://www.forestry.gov.scot/publications/sustainable-forestry/uk-forestry-standard-ukfs">https://www.forestry.gov.scot/publications/sustainable-forestry/uk-forestry-standard-ukfs</a> (accessed 01/05/2025)

<sup>(</sup>accessed 01/05/2025)

11 Forest Industry Safety Accord (2020), FISA 804 Electricity at Work: Forestry. Available at: https://ukfisa.com/Safety/Safety-Guides/fisa-804 (accessed 01/05/2025)



- TRANSMISSION
  - 6.2.2 In the area next to Glenlatterach Reservoir future woodland management impact will be limited due to the current size of the crop and likely long-term objectives.
  - 6.2.3 The total loss of Native Broadleaved woodland resulting from the Kellas Alternative Alignment is 0.41 hectares (ha).

## 7 Mitigation Opportunities

## 7.1 Woodland Mitigation Measures

7.1.1 To mitigate the landscape impact on this section of the Proposed Development, a replanting has been set out in Appendix 7.6 Forestry Landscape Mitigation Principles as demonstrated in Figure 12.1.68c: Parcel 18326 Proposed Planting Areas.

## 7.2 Kellas Alternative Alignment

7.2.1 The Kellas Alternative Alignment crosses Glenlatterach Reservoir to the north. The towers on either side of Leanoch Burn are proposed to be placed on higher ground relative to the depth of the burn. This area will be crown reduced to minimise the disturbance to the woodland structure. It is furthermore assumed that the willow found within this section can be retained due to the low terminal height of the species. For the area calculations in this block, it has been assumed that the area within the SSSI will be crown reduced. This area constitutes 0.41 ha

## 7.3 Restructuring

- 7.3.1 Within the forest management unit, structure is varied with existing areas of mature forest and restocks. The proposed felling is a relatively small section of the wider management unit and cuts through a variety of age classes. As such the impact on structure in the block is limited.
- 7.3.2 The felling of the OC for the Proposed Development will create new green edges, which will allow the landowner to work to in the future if that is desired. In the long term this might benefit forest structure.

## 7.4 Restocking

- 7.4.1 In case the management felling of the OC takes place there will be a restock obligation on the landowner.
- 7.4.2 As set out in the **Chapter 7: Landscape and Visual Effects** under the 'Landscape Replanting Proposals', restocking can potentially take place within the OC to mitigate the visual impact of the OC. Restocking within the OC will be carried out by the applicant. Detail shown in **Figure 12.1.68c: Parcel 18326 Proposed Planting Areas.**

## 8 Net Effect / Summary

- 8.1.1 **Tables 8.1 to 8.4** outline the operational requirements for forestry management within the OC between towers CB9-5A and CB10-18.
- 8.1.2 The Kellas Alternative Alignment starts at CB9C-10A and meets the main route at CB10-8 and is listed in **Tables**8.5 to 8.8 below.
- 8.1.3 These tables detail the areas designated for clear felling, both within the OC and additional recommended Management Felling outside the OC to address windthrow risks and forest design considerations.



Table 8.1: Woodland removal for Infrastructure, within OC (Proposed OHL Alignment).

| ltem                         | Woodland Type                      | Area (ha) |
|------------------------------|------------------------------------|-----------|
| Operational corridor felling | Conifer Plantation (90 m)          | 28.83     |
| Operational corridor felling | Native Broadleaved Woodland (70 m) | 0.15      |
| Access Track Felling         |                                    | 0.00      |
| Total Area                   |                                    | 28.98     |

Table 8.2: Compensatory Planting (Proposed OHL Alignment)

| ltem                          | Woodland Type                      | Area (ha) |
|-------------------------------|------------------------------------|-----------|
| Compensatory Planting<br>Area | Conifer plantation                 | 28.83     |
| Compensatory Planting<br>Area | Native Broadleaved Woodland (70 m) | 0.15      |
| Total Area                    |                                    | 28.98     |

Table 8.3: Woodland Removal Impact of Infrastructure (Proposed OHL Alignment)

| ltem                             | Area (ha) |
|----------------------------------|-----------|
| Total Loss of Woodland Area      | 28.98     |
| Total Compensatory Planting Area | 28.98     |
| Total Net Loss of Woodland Area  | 0.00      |

Table 8.4: Woodland removal for Management Felling, outwith OC (Proposed OHL Alignment)

| Item                                     | Woodland Type             | Area (ha) |
|------------------------------------------|---------------------------|-----------|
| Management Felling                       | Conifer plantation (90 m) | 26.25     |
| Replanting / Restocking<br>Opportunities | Conifer plantation (90 m) | 26.25     |
| Net Loss of Woodland Area                |                           | 0.00      |

Table 8.5: Woodland removal for Infrastructure, within OC (Kellas Alternative Alignment)

| Item                                   | Woodland Type                     | Area (ha) |
|----------------------------------------|-----------------------------------|-----------|
| Crown Reduction /<br>Selective Felling | Native Broadleaved Woodland (70m) | 0.41      |
| Operational corridor felling           | Conifer Plantation (90 m)         | 10.89     |
| Access Track Felling                   |                                   | 0.00      |
| Total Area                             |                                   | 11.30     |

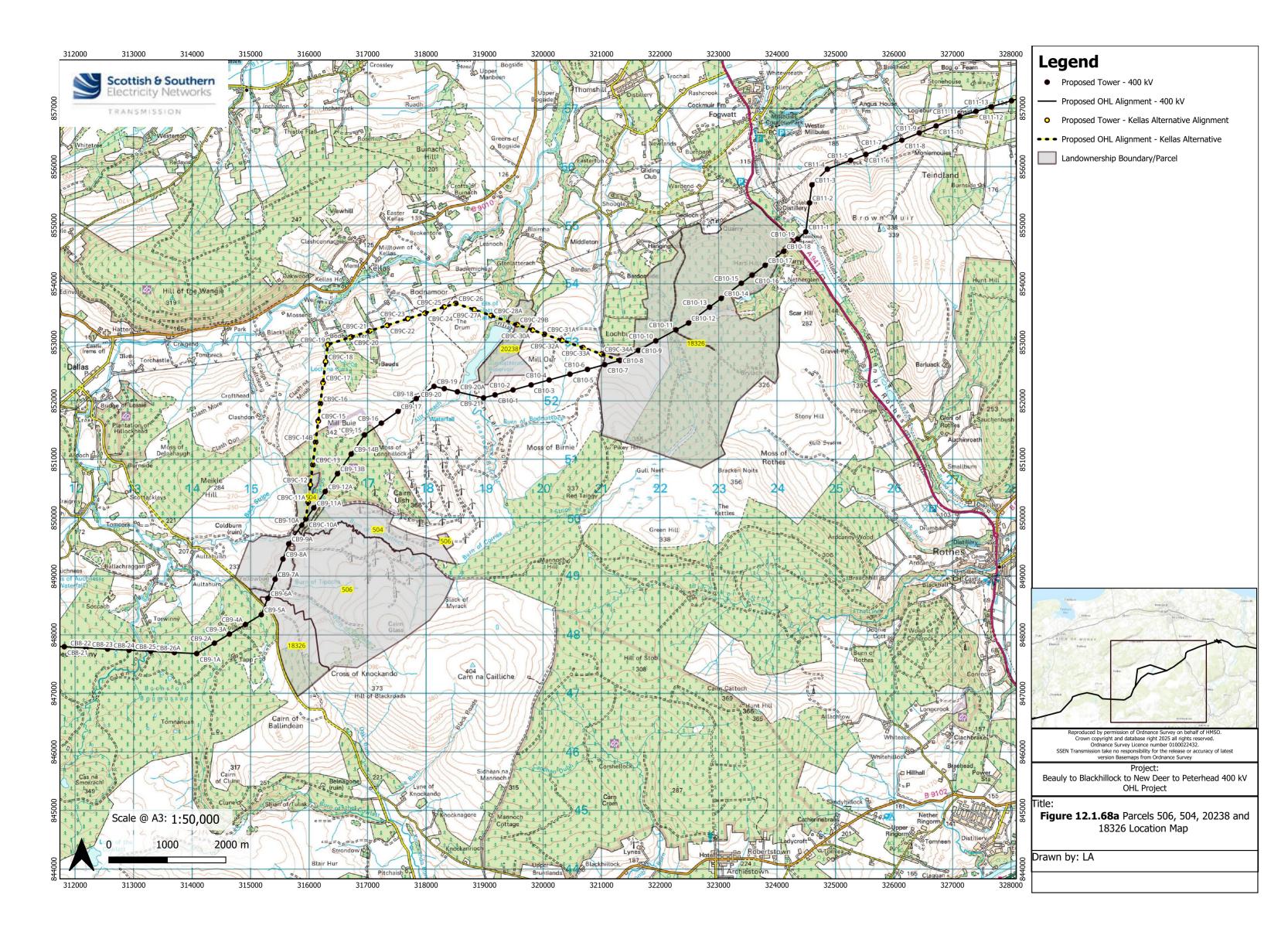
Table 8.6: Compensatory Planting (Kellas Alternative Alignment)

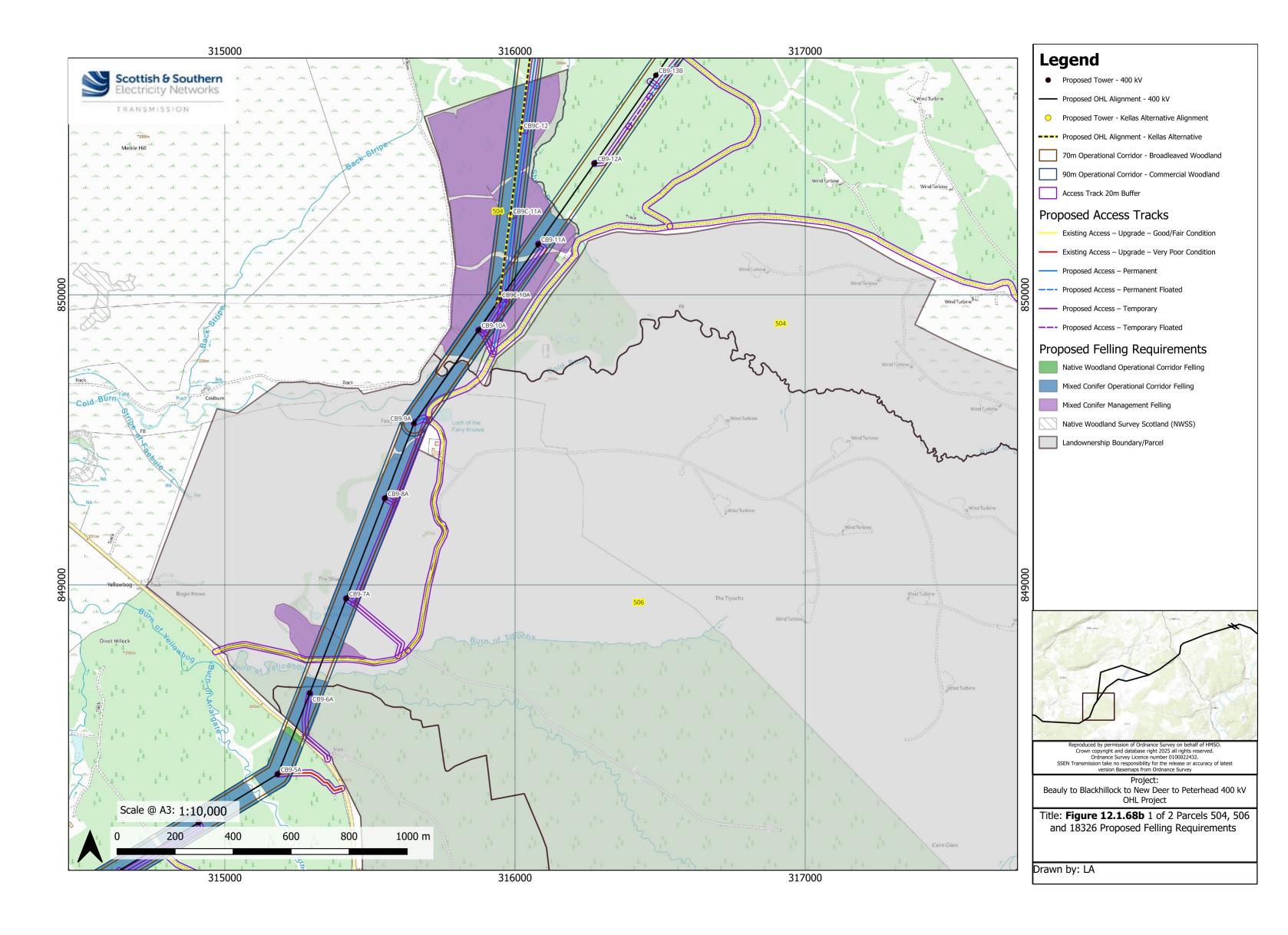
| Item                          | Woodland Type                     | Area (ha) |
|-------------------------------|-----------------------------------|-----------|
| Compensatory Planting<br>Area | Native Broadleaved Woodland (70m) | 0.41      |
| Compensatory Planting<br>Area | Conifer plantation (90m)          | 10.89     |
| Total area                    |                                   | 11.30     |

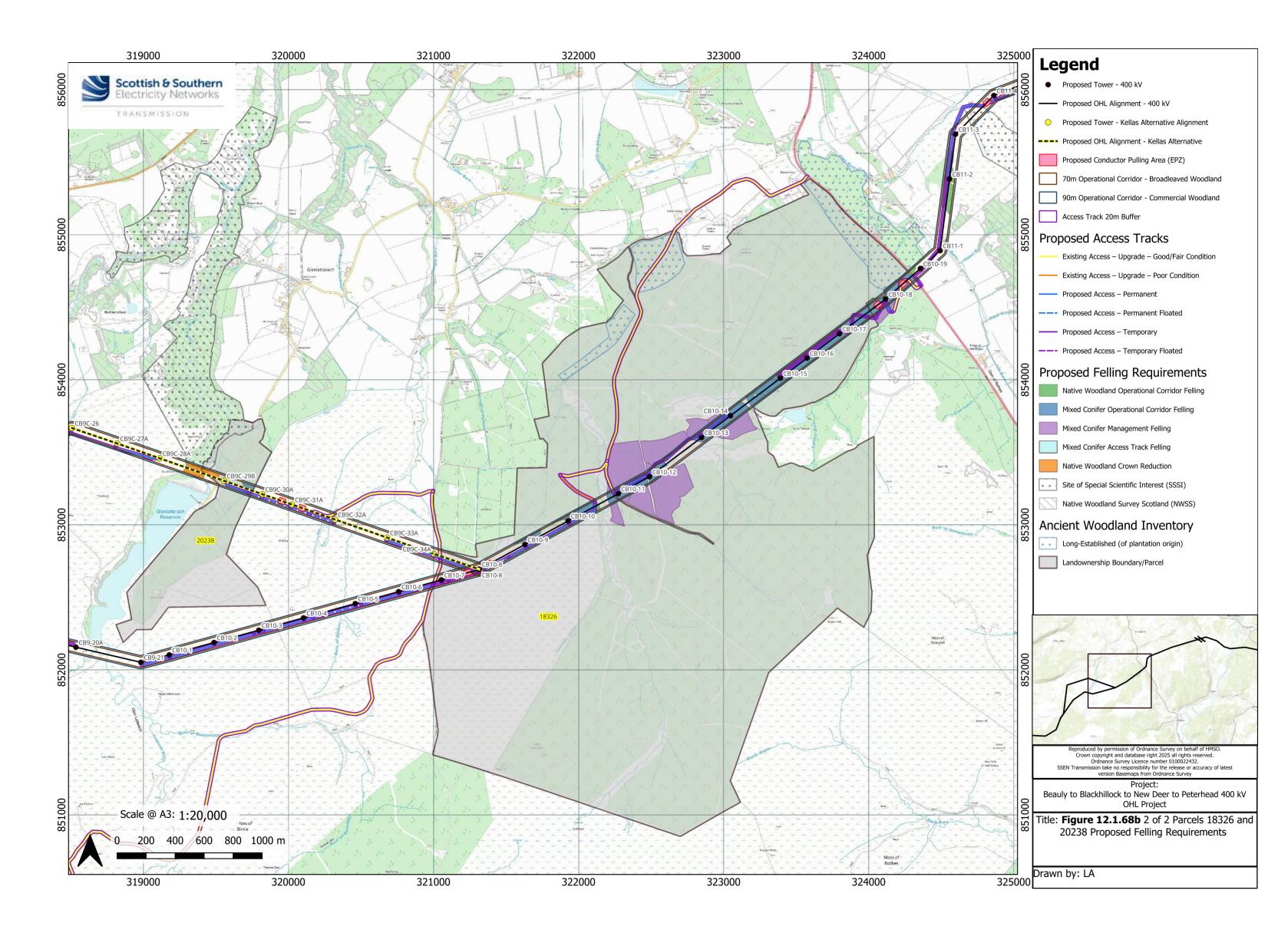


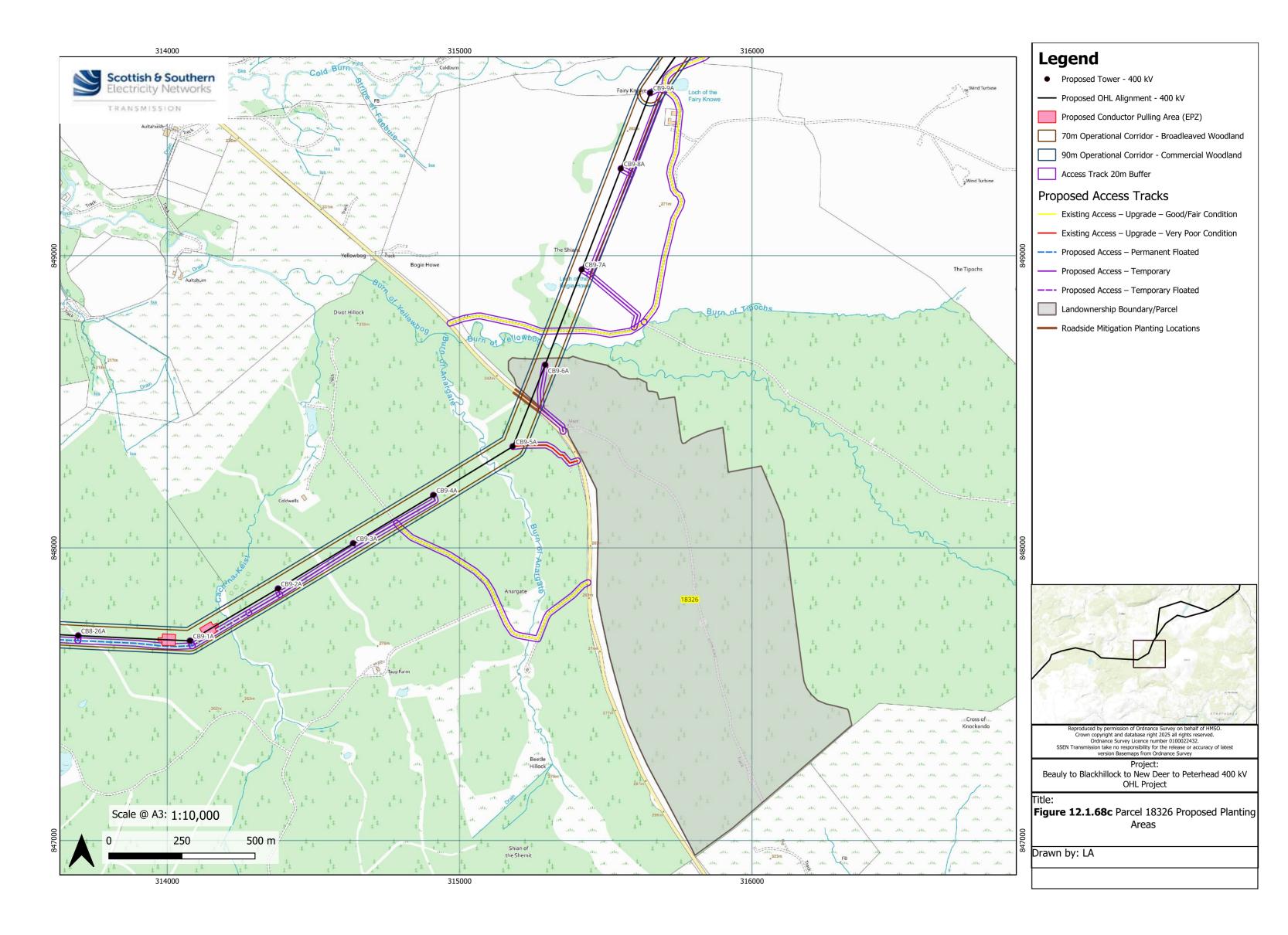
Table 8.7: Woodland Removal Impact of Infrastructure (Kellas Alternative Alignment)

| Item                             | Area (ha) |
|----------------------------------|-----------|
| Total Loss of Woodland Area      | 11.30     |
| Total Compensatory Planting Area | 11.30     |
| Total Net Loss of Woodland Area  | 0.00      |


Table 8.8: Woodland removal for Management Felling, outwith OC (Kellas Alternative Alignment)


| Item                                     | Woodland Type             | Area (ha) |
|------------------------------------------|---------------------------|-----------|
| Management Felling                       | Conifer plantation (90 m) | 17.64     |
| Replanting / Restocking<br>Opportunities | Conifer plantation (90 m) | 17.64     |
| Net Loss of Woodland Area                |                           | 0.00      |


# 9 Compensatory Planting


- 9.1.1 Only areas directly impacted by the OC will be included in the compensatory planting total, in accordance with the Control of Woodland Removal Policy (CoWRP)<sup>12</sup>. This policy ensures that woodland loss due to Proposed Development is mitigated by appropriate replanting or regeneration efforts, but it specifically applies to areas where tree removal is necessary for the Proposed Development. See **Appendix 12.3 Compensatory Planting Management Strategy**.
- 9.1.2 Any additional felling outside the OC, such as areas cleared for windblow management or forest design improvements, falls under the responsibility of the landowner and is not included in the compensatory planting requirements. Instead, these areas may be replanted under a forest plan revision or felling license at the landowner's discretion. This approach aligns with national forestry guidelines, balancing infrastructure development with sustainable woodland management.
- 9.1.3 The total amount of net felling requiring compensation under the CoWRP is 28.98 ha for Proposed OHL Alignment. For the Kellas Alternative Alignment, the total amount of net felling requiring compensation under the CoWRP is 11.30 ha.
- 9.1.4 In order to provide a greater balance limiting long-term impacts on forestry interests it is proposed that the majority of this woodland loss is compensated via off-site compensatory planting.

<sup>&</sup>lt;sup>12</sup> Forestry Commission Scotland (2009). Control of Woodland Removal Policy. Available at: <a href="https://www.forestry.gov.scot/publications/285-the-scottish-government-s-policy-on-control-of-woodland-removal/viewdocument/285">https://www.forestry.gov.scot/publications/285-the-scottish-government-s-policy-on-control-of-woodland-removal/viewdocument/285</a> (accessed 01/05/2025)







