

Scottish & Southern Electricity Networks

LT307 – BRACO WEST SITES 2 & 3

REPORT ON GROUND INVESTIGATION

Client: Contract Number: 26555

Scottish & Southern Electricity Networks

Consulting Engineers:

SLR Consulting Ltd

Suite 50, Stirling Business centre Wellgreen, Stirling FK8 2DZ

Ž 🚧 Ž 🦑 Ž 👸 🚉 🔣

Date of Issue: 26 January 2024

Report Issue: Draft

Report Type: Factual

LT307 – BRACO WEST SITES 2 & 3

Report Type : Factual

Report Issue : Draft

File Number: P:\26555\Report

Contract Number: 26555

Issuing Office : Hamilton

Originator:		
Richard Butler	Senior Engineering Geologist	26 January 2024
Checked & Approved:		
FM Raeburn	Chief Engineer	26 January 2024

For and on Behalf of Raeburn Drilling and Geotechnical Limited Trading as Igne

This Report and its appendices has been prepared by Raeburn Drilling & Geotechnical Limited (Igne) with all reasonable skill and care, within the terms and conditions of the contract between Igne and the Client ("Contract") and within the limitations of the scope agreed with the Client. Any reliance upon the Report and its appendices is subject to the Contract terms and conditions.

This Report, its appendices and its intellectual property is confidential between the Client and Igne. Igne accepts no responsibility whatsoever to third parties to whom this document, or any part thereof is made known. Any such party relies upon the Report and its appendices at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report and its appendices, nor the Contract and the provisions of the said Act are hereby excluded.

This report and its appendices must be read in its entirety and its intellectual property shall not be used for engineering or contractual purposes unless signed above by the author, checker and the approver for and on behalf of Igne and unless the Report status is 'Final'.

Unless specifically assigned or transferred within the terms and conditions of the Contract, Igne asserts and retains all Copyright and other Intellectual Property Rights in and over the Reprt contents and its appendices. The Report and its appendices may not be copied or reproduced, in whole or in part, without the written authorisation from Igne. Igne shall not be liable for any use of the Report and its appendices for any purpose other than that for which it was originally prepared.

TABLE OF CONTENTS	
1. INTRODUCTION	1
2. LOCATION OF SITE	1
3. GROUND INVESTIGATION	2
3.1 SITE WORK	
3.2 LABORATORY TESTING	4
References	Total No of Text Pages: 6
	Figure
APPENDIX A: PLANS	
Location Plan	A1
Site Plan	A2
APPENDIX B: SITE WORK	
Notes on Field Procedures	
Key to Borehole and Trial Pit Records	
Schedule of Boreholes & Trial Pits	В0
Borehole Records	B1 to B17
Trial Pit Records	B18 to B38
APPENDIX C: PHOTOGRAPHS	
Sonic & Rock Core Photographs	C1 to C17
Trial Pit Photographs	C18 to C37
APPENDIX D: INSITU TESTING	
Soakaway Testing Results	A15044
Dynamic Cone Penetrometer Results	A15044
Thermal Resistivity Testing	H1
APPENDIX E: MONITORING	
Results of Gas and Water Level Monitoring in Stand	pipes E1
•	
APPENDIX F: GEOTECHNICAL LABORATORY TESTI	NG
Notes on Laboratory Procedures	

Laboratory Test Results Report Ref A15044-1 to 20

APPENDIX G: GEOCHEMICAL LABORATORY TESTING

Notes on Laboratory Procedures

Laboratory Test Results G1 to G3

APPENDIX H: GEOCHEMICAL LABORATORY TESTING

SPT Hammer Energy Test Report RD48, RD54 & RD70

H1 to H3

Insitu Thermal Resistivity Needle Probe Calibration Certificate

SCOTTISH & SOUTHERN ELECTRICITY NETWORKS

LT307 – BRACO WEST SITES 2 & 3

REPORT ON GROUND INVESTIGATION

Contract No. 26555 26 January 2024

1. INTRODUCTION

Scottish & Southern Electricity Networks has proposed to construct a new 400kV substation west of the village of Braco within Perth and Kinross. On the instructions of SLR Consulting Ltd, Consulting Engineers to Scottish & Southern Electricity Networks (SSEN), and to their specification, an investigation was carried out to provide information on the ground conditions for design and construction of the proposed works and any geochemical contamination of the site. A factual report only was requested.

The comments given in this report and any opinions expressed therein are based on the ground conditions encountered during the site work, on the results of any in-situ or laboratory testing and any professional third party input. Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis or interpretation derived from it, the possibility exists of variations in the ground, groundwater and ground gas conditions around, below and between the extent of the exploratory positions. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes, by third parties, without prior consultation with Raeburn Drilling & Geotechnical Limited trading as Igne.

2. LOCATION OF SITE

The site of the proposed 400kV substation is located within an area of forestry land comprising of mature and semi mature trees on the eastern slopes of Feddal Hill located approximately 5.0km west of Braco Village, Perth and Kinross. Due to two

substation sites being proposed as part of the ground investigation these are centred at the following National Grid References Site 2 NN791089 and Site 3 NN787091.

Both Braco West substations sites are located within an area of existing forestry land, these are both located to the southwest of the existing Braco West Substation (275kV) with overhead electricity cables of the Beauly to Denny line. The overhead cables bisect the site in northeast to south west direction forming the two areas of the proposed substation plots.

A plan showing the approximate location of the site is given in Figure A1 in Appendix A.

3. GROUND INVESTIGATION

3.1 Site Work

The site work was carried out during the period 15th November to 8th December 2023, in accordance with the guidelines laid down in EN1997-2:2007 (Ref.1), BS5930 (Ref.2), BS10175 (Ref.3) and in-house procedures. The results of the site work are given in Appendix B. A schedule of the site works is presented as Figure B0.

Fourteen boreholes were sunk by sonic and rotary core drilling methods with three boreholes were sunk continuous percussion utilising a dynamic sampler and rotary core drilling methods. Twenty trial pits were excavated by mechanical means, at the positions shown on the site plan (Fig. A2 in Appendix A). The depths of the boreholes and trial pits, the descriptions of the strata encountered and comments on the ground-water conditions are given in the borehole and trial pit records (Figs. B1 to B38). The positions and depths of the boreholes and trial pits were determined by the Consulting Engineers and Client and were set out on site by Raeburn Drilling & Geotechnical Limited trading as Igne in conjunction with the Consulting Engineers and Client.

Approximately 4600 peat probes were undertaken across the site over Braco site 2 and site 3 locations. These results have been reported under separate cover as an excel file. During the ground investigation the scope was modified to reflect the deep peat conditions encountered at Braco West 3, this resulted in new borehole locations with the postfix NEW as noted on Appendix A2 Site Plan.

Disturbed and 100mm diameter tube samples were taken at the depths shown on the borehole and trial pit records and were despatched, together with the rock cores, to the depot at Hamilton for examination and storage. Geochemical soil samples were taken directly into tubs. Samples for volatiles analysis were taken into vials, filling the container completely such that no voids were present. Geochemical samples were stored on site and transported to the laboratory in coolboxes. Each sample was uniquely identified and a transmittal note system used throughout sample transfer.

Photographs were taken of the sonic soil samples and rock core from the boreholes these are presented as Figures C1 to C17. Trial pits and associated spoil heaps is presented as Figures C18 to C38.

Standard (split-barrel sampler and cone) penetration tests (Ref.4) were made to assess the relative density of the materials encountered. The values of penetration resistance, given in the borehole records, are not corrected for energy ratio, or in any other way. The references to relative density under the heading "Description of Strata" in the borehole records are based on the field values of penetration resistance uncorrected for the effects of overburden pressure. Three sets of equipment were used for the tests and the Hammer Energy Test Reports are presented as Figures H1 to H3. Which set was used in each borehole is noted in the "Remarks" section of the borehole record.

Dynamic Cone Penetrometer (DCP) tests (Ref. 14) were undertaken adjacent to 10 no Trial pit locations (see Fig. B0). The results are given in Report A15044 in Appendix D, which include plots of cumulative blow count against depth and California bearing ratio (CBR) against depth.

Soakaway tests (Ref.7) were undertaken in four trial pits, located within the proposed Braco West 2 Substation area. The results are given as Report A15044 in Appendix D.

A nominal 50mm diameter perforated standpipe was installed in each of required boreholes as specified by SLR, details of which are given on the relevant records. Tests were subsequently carried out to determine the methane, carbon dioxide, carbon monoxide, hydrogen sulphide and oxygen contents of the gas in the standpipes. In addition, water level readings were taken in the instruments. The results of the monitoring are given in Figure E1.

During the end of the sitework period on the 11th December 2023, the standpipes in boreholes BH01, BH02, BH04, BH07, BH10, BH11NEW, BH13, BH14NEW & BH19 were purged of three well volumes to develop the installations. Thereafter, water samples were taken by bailer/Waterra, before being / transferred to one litre glass and plastic bottles. The water samples were delivered to the laboratory in coolboxes.

The ground levels and co-ordinates at the borehole and trial pit positions, given on the records, were determined using a Global Positioning System and are related to Ordnance Datum and the National Grid, respectively.

3.2 Laboratory Testing

Individual testing schedules were submitted to SLR the Consulting Engineers for scheduling as per their preference, completed schedules were forwarded to the testing laboratory. The laboratory testing was carried out by Terra Tek Limited (trading as Igne) who hold UKAS Accreditation for the scheduled tests.

The geotechnical laboratory testing was carried out in accordance with the referenced testing procedures given below. The results are given in Appendix F and comprised the following: these have been reported as per schedule so current figure locations are not noted as there are multiple locations over the results pages.

Description of Test	Figures	Ref
Moisture Content Tests		(5)/(13)
Liquid and Plastic Limit Tests		(13)
Bulk Density		(13)
Particle Size Distribution Tests		(13)
Moisture Condition Value		(5)
California Bearing Ratio		(5)
Small Shearbox Testing		(5)
Los Angeles Testing		(11)
Point Load Testing		(12)
Unconfined Compressive Strength		(10)

To date we have a number of geotechnical tests due to be reported through by the laboratory these include testing schedules 14 (TP07, TP13), schedule 15 (TP10

NEW, 11NEW, 12NEW) & Schedule 17(BH10) with the remaining rock testing results including geochemical testing results from subcontract laboratory.

BRE (Ref. 8) suite SD1 tests were undertaken on geotechnical samples from across the site. The SD1 results are reported as per each testing schedule set of results.

In addition, chemical contamination testing was carried out on 19 samples of made ground and soil. The results are given in Appendix G and are included in laboratory Report Reference 23-28085, 23-28676 & r23-28678. The testing comprised the following suite:

Description of Test

Metals (Arsenic, Boron, Cadmium, Chromium Total, Copper, Lead, Mercury, Nickel & Zinc)

pH and Sulphate

Organic Matter

Total Organic Carbon

TPHCWG Aliphatic/Aromatic Split

Polyaromatic Hydrocarbons (PAH) (USEPA 16)

Phenol

Cyanide Total

Asbestos Screen / Identification

Waste Acceptance Criteria

Senior Engineering Geologist

Chief Engineer

For and on Behalf of Raeburn Drilling and Geotechnical Limited Trading as Igne Ground Investigation Department Hamilton

This Report and its appendices has been prepared by Raeburn Drilling & Geotechnical Limited ("Igne") with all reasonable skill and care, within the terms and conditions of the contract between Igne and the Client ("Contract") and within the limitations of the scope agreed with the Client. Any reliance upon the Report and its appendices is subject to the Contract terms and conditions.

This Report, its appendices and its intellectual property is confidential between the Client and Igne. Igne accepts no responsibility whatsoever to third parties to whom this document, or any part thereof is made known. Any such party relies upon the Report and its appendices at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report and its appendices, nor the Contract and the provisions of the said Act are hereby excluded.

This report and its appendices must be read in its entirety and its intellectual property shall not be used for engineering or contractual purposes unless signed above by the author, checker and the approver for and on behalf of Igne and unless the Report status is 'Final'.

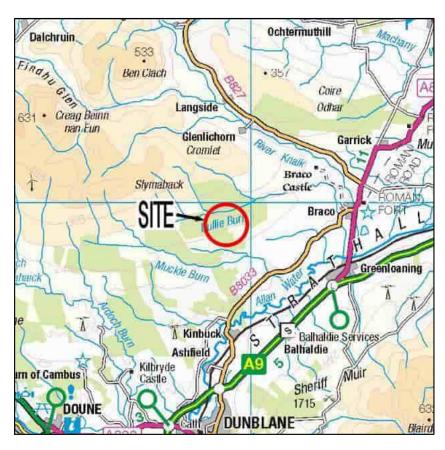
Unless specifically assigned or transferred within the terms and conditions of the Contract, Igne asserts and retains all Copyright and other Intellectual Property Rights in and over the Report contents and its appendices. The Report and its appendices may not be copied or reproduced, in whole or in part, without the written authorisation from Igne. Igne shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared.

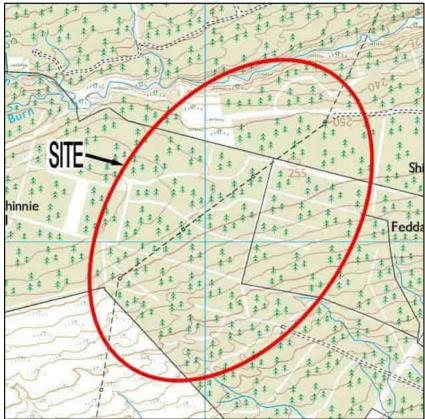
REFERENCES

- (1) BS EN 1997-2. Eurocode 7: Geotechnical design Part 2: Design assisted by laboratory testing. 2007.
- (2) BS5930:2015+A1:2020: Code of Practice for Ground Investigations, British Standards Institution, 2020.
- (3) BS10175: Code of Practice for the Investigation of Potentially Contaminated Sites, British Standards Institution, 2011 + A1:2013.
- (4) BS EN ISO 22476-3: Geotechnical investigation and testing. Field testing. Standard penetration test, 2005.
- (5) BS1377: Methods of Test for Soils for Civil Engineering Purposes, British Standards Institution, 1990.
- (6) In-house procedure SP341 and Highways Agency IAN 73/06 Rev.1. 2009.
- (7) BRE Digest 365. Soakaway Design. Building Research Establishment. Sept., 1991.
- (8) BRE Special Digest 1. Concrete in Aggressive Ground. Building Research Establishment. 2005.
- (9) Suggested Method for Determining Point Load Strength, International Society for Rock Mechanics, Commission on Testing Methods, Int. J Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 22, 1985.
- (10) ASTM D2938-95. Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens. ASTM International 1995.
- (11) BS EN 1097-2. Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation. 2020.
- (12) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring:1974-2006", Edited by R. Ulusay and J.A. Hudson. Suggested Method for Determining Water content, Porosity, Density, Absorption and Related Properties and Swelling and Slake Durability Index Properties 1977 (EUR 4).
- (13) BS EN ISO 17892: Geotechnical investigation and testing. Laboratory testing of soil. Parts 1 to 12. 2014 2018.
- (14) Department of Transport. Specification for Highway Works. HMSO. 2006 Amendment.

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
10	Client:	SHE Transmission plc	
1.0	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX A File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:24:58 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com




Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Crown Copyright Licence No.

1000005786

RDG_LOCATION_PLAN FIIe: P.\GINTWAPROJECTS\26555.GPJ Printed: 16/01/2024 16:18:50 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tei: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RH Chk & App Status FMR Final

LOCATION PLAN

Fig No:

RH

Status

Chk & App

SITE PLAN

Contract No: 26555

Fig No:

A2

Client: SHE Transmission plc

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
TD	Client:	SHE Transmission plc	
1.0	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX B File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:25:14 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

APPENDIX B SITE WORKS

Site: LT520 BRACO WEST SUBSTATION

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Boring

The standard method of boring in soil for ground investigation is known as the cable tool method. It uses various tools worked on a wire cable, typically a shell in non-cohesive soils such as sand and gravel, and a clay cutter in cohesive soils such as clay. Very dense soils, boulders or other hard obstructions are disturbed or broken up by chiselling and the fragments removed with the shell. Where the ground conditions require, the borehole is lined with driven steel casings of such sizes that the bottom of the borehole is not less than 125mm diameter.

Where there are constraints upon access, alternative methods of soft ground boring are available. However, each has limitations that need to be taken into account when assessing their suitability and the ground conditions inferred from their results.

Rotary Drilling

Rotary drilling is employed to extend ground investigation beyond the practical limit of cable tool boring in hard formations, commonly rock. Core drilling is used to obtain continuous intact samples of the formation and is generally undertaken with double tube swivel type core barrels fitted with tungsten or diamond bits as appropriate to formation type and hardness. Open-hole rotary drilling using tricone rock roller bits or tungsten insert drag bits, or down-the-hole hammers, is carried out where more limited information is sufficient, strata identification being made from cuttings only. Open-hole rotary drilling methods may also be employed for fast penetration of soils where detailed sampling is not required, prior to coring at depth. Air or water is the flushing medium normally used with rotary drilling methods. Where the ground conditions require, the borehole is lined with inserted or drilled-in casing. Rotary percussion allows dynamic sampling within soils.

Sonic Drilling

Sonic drilling is employed as an alternative boring method for soft ground and rock. The sonic rig operates much like any conventional top-drive rotary rig. The main difference is that a sonic drill rig has a specially designed hydraulically powered drill head or oscillator which produces adjustable high frequency vibratory forces. Sonic samples are extruded direct to plastic liner bags or semi-rigid plastic liners for rapid inspection. Bulk and small disturbed samples are then taken from the plastic liner bags.

Trial Pits

Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177

Trial pits are excavated by hand or machine for a number of purposes such as avoiding services, exposing foundations or obtaining a better view of shallow ground conditions.

Samples and In-situ Tests

Tube samples of cohesive soils are generally taken with a 100mm internal diameter open drive sampler known as a U100, with an area ratio of 30%. The sampler is driven into the soil at the bottom of the borehole by a sliding hammer. After a sample is taken, the drive head and cutting shoe are unscrewed from the sample tube and any wet or disturbed soil removed from either end. The sample tube is then sealed with wax and fitted with plastic end caps.

A range of more specialised equipment, e.g. thin walled open drive sampler (UT100), piston or foil samplers, may be used to obtain higher quality samples in conditions where conventional open drive sampling is impracticable or unsatisfactory. The UT100 sampler is specifically utilised to obtain class 1 samples of cohesive soils as required under BS EN1997-2.

Disturbed samples are taken from the boring tools or trial pits at regular intervals. The samples are sealed in airtight containers. Bulk samples are large disturbed samples from the boring tools, or from trial pits, generally where tube samples are unavailable.

The Standard Penetration Test, SPT, in accordance with BS EN ISO 22476-3, determines the resistance of soil to the penetration of a split barrel sampler. A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.5kg hammer with a 760mm drop, and the penetration resistance, the "N" value, is expressed as the number of blows required to achieve 300mm penetration below an initial penetration of 150mm, the seating drive, through any disturbed soil at the bottom of the borehole.

In coarse soils, the Cone Penetration Test (CPT) is conducted in the same manner as the SPT but using a 50mm diameter 60 degree apex solid cone point to replace the split barrel sampler.

Peat Probing

Generally, peat probing is carried out using a Mackintosh Probe. The probe is pushed through the peat until resistance is met then the depth at which this occurred is recorded.

Groundwater

Borehole water levels are recorded, together with the depths at which seepages or inflows of groundwater are detected and the observations noted on the borehole or trial pit records. These observations may not give an accurate indication of groundwater conditions, for the following reasons:

- (a) The trial pit or borehole is rarely left standing at the relevant depth for sufficient time for the water level to reach equilibrium.
- (b) A permeable stratum may have been sealed off by the borehole casing.
- (c) It may have been necessary to add water to the borehole to facilitate progress.
- (d) There may be seasonal, tidal or other effects at the site.

A more accurate record of groundwater behaviour may be obtained from standpipes or standpipe piezometers.

Gases

Determination and measurement of gases in the ground, commonly in relation to landfills, may be made directly from the ground surface, where a hole is formed by driving a solid and rigid steel spike to depths normally in the range 1.0 to 1.5m. Gas emissions are analysed using an appropriate portable analyser. However, research has shown that the small sample hole size and smearing effects can give a false negative result.

Where more accurate or longer term measurement of emissions is required, gas monitoring standpipes are installed in boreholes.

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

The following site tests are carried out following procedures set out in the listed standards.

TEST

CBR

Data Loggers

Ground Water Sampling

Hand Vanes

Permeability Tests

Slug Tests

Soakaway Tests

Surface Water Sampling

STANDARD

BS 1377 : 1990

BS EN ISO 22282

BS ISO 5667-1: 2009

BS 1377: 1990

BS EN ISO 22282-2-2012

Contract No: 26555

BS EN ISO 22282

BRE Digest 365

BS ISO 5667-6: 2009

Style: BH TP KEY

Site: LT520 BRACO WEST SUBSTATION

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

SOIL SAMPLES

U (X) General purpose tube sample; X No of blows to drive sampler

Piston Piston sample

NOTE: Tube samples are 100mm diameter unless otherwise specified in the remarks. Suffix 'a' indicates sample not recovered; suffix 'b' indicates full penetration of sampler not obtained;

Contract No: 26555

Nominal Diameter (mm)

Core

54

76

92

113

75

Borehole

76

100

121

146

108

Other casing and borehole diameter sizes are available and may be used where

suffix 'c' indicates full penetration of sampler but limited recovery

D/J/T/V Small Disturbed/Jar/Tub/Vial sample

B/LB Bag/Large Bag sample

UT (X) Thin walled push in sampler (type OS-T/W); X No of blows to drive sampler

ET Sample appropriate for geochemical analyses (tub)

CORE RECOVERY AND ROCK QUALITY

C Core Sample

TCR Total Core Recovery: The total core recovered expressed as a percentage of the core run length

SCR Solid Core Recovery: The core recovered as solid cylinders expressed as a percentage of the core run length

RQD Rock Quality Designation: The core recovered as solid cylinders of length 100mm or more expressed as a percentage of core run length.

RO-S/RO-R Rotary Open Hole Drilling through Soil / Rotary Open Hole Drilling through Rock
FI Fracture Index: The number of discontinuities expressed as fractures per metre

Flush "Depth" indicates depth down to which recorded "Returns" relate

NI Non Intact

NR No Recovery (assumed)

GROUND-WATER

W Water Sample

 ¥
 Ground-water encountered

 ¥
 Depth to which ground-water rose

 ↓
 Ground-water cut off by the casing

 WS
 Water Sample from Standpipe

IN SITU AND FIELD TESTS

SPT=X a/b (pen) Standard penetration test (split barrel sampler(SPT)or cone (CPT)); X is the penetration (N) value;

OPT=X a/b (pen) 'a' is blow/75mm for seating drive; 'b' is blows/75mm for test drive; (pen) is test drive penetration if less than 300mm.

CBR California bearing ratio test
MCV Moisture condition value test

K Permeability test
HP Hand penetrometer test

FV Field vane test

HV Hand vane test (I = Initial, R = Residual)

ID Density test

PID Photo Ionisation Detector (ppm)

LEGENDS

Material legends are in accordance with ISO 710-1 and 710-2 # before a description indicates that it is based on the Driller's record.

INSTALLATIONS (BACKFILL)

, A

Concrete

Bentonite

Spoil

Bentonite/cement grout

Sand

Solid pipe

Gravel

Slotted pipe

Porous element

Wooden plug

Asphalt

ROTARY DRILLING SIZES

Letter

Standard

Non-standard

412

required. Details will be on the individual BH logs.

DIMENSIONS

All dimensions in metres unless otherwise stated.

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Activity Type/Method Key

CC Concrete Coring
COM Rotary Percussion

CP Cable Percussion (Shell and Auger)
CPT Static Cone Penetration Test
DCP Dynamic Cone Penetrometer
DP Dynamic Cone Sampling

Client:

GBS Geobor-S

HP Hand Excavated Trial Pit

ICBR In Situ CBR Test
IDEN In Situ Density Test
IP Inspection Pit

IRES In Situ Resistivity Test
IVAN In Situ Vane Test
MOSTAP Monster Steek Apparaat
MP Mackintosh Probe
PP Peat Probe
RC Rotary Coring
RO Rotary Open Hole

RO-R Rotary Open in Rock
RO-S Rotary Open in Soils

SB Sonic Boring
SC Sonic Coring

SCP Static Cone Penetrometer
SL Sampling Location

SO Sonic Open Holing
TP Trial Pit/Trench

WLS Dynamic (Windowless) Sampler

WS Window Sampler

Contract No: 26555

Site: LT520 BRACO WEST SUBSTATIO	Site:	LT520	BRACO	WEST	SHRST	ΔΤΙΟΙ
----------------------------------	-------	-------	-------	------	-------	-------

Client: SHE Transmission plc Contract No: 26555

Engineer: SSE Perth Inveralmond HSE

Exploration Point	Co-ordinates Easting Northing		Ground Level (mO.D.)	Method	Figure No	Installation	Remarks
	(m)	(m)					
BH01	279045.7	708752.2	227.89	IP+SB+GBS	BB1	1	
BH02	278817.0	708935.6	249.18	IP+SB+GBS	BB2	1	
BH03	278938.5	709019.0	250.98	IP+SB+GBS	BB3		
BH04	279075.4	709136.1	252.35	IP+SB+GBS	BB4	1	
BH05	279209.3	709189.4	252.35	IP+SB+GBS	BB5		
BH06	278918.1	708854.7	239.37	IP+RO+RC	BB6		
BH07	279345.8	708987.3	235.10	IP+SB+GBS	BB7	1	
BH08	279174.6	708851.6	228.66	IP+SB+GBS	BB8		
BH09	279245.7	709074.8	245.98	IP+SB+GBS	BB9		
BH10	279097.1	708955.4	240.05	IP+SB+GBS	BB10	1	
BH11 NEW	279166.5	708700.2	216.61	IP	BB11	1	
BH12 NEW	279276.4	708841.5	223.15	IP+SB+GBS	BB12		
BH13	278633.3	708981.5	259.53	IP+SB+GBS	BB13	1	
BH14 NEW	279416.7	709146.0	246.92	IP+RO+RC	BB14	1	
BH15 NEW	279328.4	709282.6	253.23	IP+SB+GBS	BB15		
BH18	278879.8	709141.7	258.49	IP+COM	BB16		
BH19	278769.3	709026.5	257.97	IP+SB+SC	BB17	1	
TP01	279216.2	708992.3	239.05	TP	BB18		
TP02	278914.8	708959.8	247.70	TP	BB19		
TP03	279042.2	708901.3	236.85	TP	BB20		
TP04	279045.9	709078.8	250.56	TP	BB21		
TP05	279135.1	708794.4	223.47	TP	BB23		
TP06	279286.2	708910.8	229.63	TP	BB24		
TP07	278976.9	708791.3	228.97	TP	BB25		
TP08	279149.9	709062.8	247.01	TP	BB26		
TP09	278842.5	708873.5	243.84	TP	BB27		
TP10	278982.3	709176.9	255.65	TP	BB28		
TP10 NEW	279320.5	708826.9	219.82	TP	BB29		
TP11	278832.8	709079.9	257.73	TP	BB30		
TP11 NEW	279319.6	709178.6	250.74	TP	BB31		
TP12 NEW	279448.5	709253.8	251.72	TP	BB32		
TP13 NEW	279072.2	708706.9	221.41	TP	BB33		
TP19	278933.5	709111.8	255.47	TP	BB34		
TP20	278760.5	708969.6	253.41	TP	BB35		
TP21	279425.0	709522.9	242.53	TP	BB36		
TP22	279338.8	709439.4	249.20	TP	BB37		
TP23	279253.9	709333.8	251.53	TP	BB38		

	Originator	
	RB	
Chk & App	Status	
FMR	Final	

Style: SCHEDULE OF BH & TP File: P:/GINTWPROJECTS/26556.GPJ Printed: 26/01/2024 15:45:35 Raebum Drilling and Geotechnical, Whistbearry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raebumdrilling.com

SCHEDULE OF SITE WORKS

RAUBURZ

Fig No:

B0

Sheet 1 of 1

	l
DAEDIIDAI	l
RAEBURN	L
	l
TO THE PRICE OF TH	ı

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH01

Inspection Pit to Sonic Boring to Geobore-S to

Contract No: 26555

1.20m 4.00m 10.55m

Location: E 279045.7

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic, Water Flush

N 708752.2

N 708752.2			-	Footo				Level			T 75		R	ackfill	
Progress			Darry		Fests	علىيم		Casing Depth		Depth	Description of Strata	Legend	Water Depth	Symbol	
15/11	Depth	Туре	Depth		Ke	sult		Deptil	227.89		Soft brown to dark brown spongy amorphous PEAT	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Depui	Š	Depth
2023										-	Cont brown to dark brown sporigy amorphous (EAT	1, 11,			
	0.50	D D D								-		11/2			0.50
	0.50 0.50- 4.00	B, D, D								-		1, 11,		Ħ	<u> </u>
Ï	4.00									-		11/2			1.00
							_		226.69	1.20		, N			
	1.20- 2.70 1.20	B, D	1.20	SPT=6	<u>2.1</u>	1 /2.1.1.2	<u>∠</u>	1.20		-	Loose brown silty SAND & GRAVEL with occasional rootlets noted. Sand is fine to coarse. Gravel is fine to coarse subangular to	×.°.	9		
Ί	1.20									-	subrounded of sandstone	%.	d		
1										-		8.0.			,
										-		.0			
										-		%·°.			
										-		%.	4		
	2.70-		2.70	SPT=23	3.4	4 /4.6.6.7	7	2.70	225.19	2.70	Medium dense reddish brown very gravelly silty fine to coarse SAND.	. 0.	-		,
.	3.50 2.70	UT	•							_	Gravel is fine to coarse subangular to rounded of sandstone, pelite and quartz		5		
										-					
									224.39	3.50			5		
	3.50- 4.00	В								-	Firm reddish brown slightly sandy gravelly CLAY with cobbles noted. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of sandstone and pelite. Cobbles are subangular to	70/2			,
				TCR	SCR	RQD	FI		223.89	4.00	subrounded of sandstone and pelite. Cobbles are subangular to subrounded of sandstone	7	ž		,
			4.00	75	13	0			223.03	4.00	Assumed Zone of Core Loss from weaker and finer grained material	1-4	1		
							0		223.49	4.40					
											Firm to stiff reddish brown slightly sandy gravelly CLAY with cobbles and boulders noted. Sand is fine to coarse. Gravel is fine to coarse angular to subangular of sandstone. Cobbles and boulders are angular	<u>×o</u>	2		
										_	angular to subangular of sandstone. Cobbles and boulders are angular to subangular of sandstone	× × c	3		,
							0			_		× ·			5.00
										-		×	<u>5</u>		<u> </u>
									222.39	5.50		× o×	1		<u> </u>
			5.50	100	33	7				-	Weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE recovered as very sandy very gravelly	::::]
											cobbles. Gravel is medium to coarse angular of sandstone	::::]
										_		::::			<u> </u>
							NI			_		::::			1
										-		::::]
												::::]
15/11			7.00	100	0	0		7.00	220.89	7.00_	Weak to medium strong thinly to thickly laminated reddish brown fine to	::::	2.15m		<u> </u>
							NI			-	medium grained SANDSTONE recovered as very sandy very gravelly cobbles. Gravel is medium to coarse angular of sandstone	::::	3.25m		1
							'\'		220.29	7.60		::::			1
			7.60	100	38	38	7				Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fractures are subhorizontal closely spaced	::::	1]
								-	219.99	7.90	planar to undulating smooth clean	 ::::]
							NI		219.59	8.30	Weak thinly to thickly laminated reddish brown SANDSTONE with mudstone bands. Recovered as very clayey gravel.	::::			<u> </u>
			0.40	100	100	50			219.09	0.50	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Distinctly weathered. Fractures Set 1:	 ::::			<u> </u>
			8.40	100	100	50 45	17	-	219.29	8.60	subhorizontal very closely to closely spaced planar to undulating	<u> ::::</u>			<u> </u>
			0.00	100		-3	13		210.00		smooth clean. Fracture Set 2: subvertical planar smooth clean Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Distinctly weathered. Fractures Set 1:]
								1	218.89	9.00	∖ sub horizontal very closely to closely spaced planar to undulating	/::::			<u> </u>
										-	smooth clean. Fracture Set 2: subvertical planar smooth with gravel infill	/ ::::			<u> </u>
							7			-	\ between 9.00 and 9.15m subvertical fracture planar to undulating smooth to rough	/ ::::			<u> </u>
			Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered to unweathered. 218.04 9.85 217.94 9.95 Fractures are subhorizontal closely to medium spaced planar to		::::			1							
L			9.85	100	86	37	NI.		217.94		Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean	<u> </u>	1		nth nth
	narks: Descrin	tion base	d on Dri	ller's la	na							Hole Dian	n. Borir	To De	ptn Casing
1 "	Pescup	ייטוו המסבו	ווט ווט יי	3 10	~y.							150	1 400	٦ I	4 00

PIGENTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:25.48 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Description based on Driller's log.

Description pit was excavated by hand to a depth of 1.20m to clear services.

No ground-water observations are recorded due to the use of water flush.

The Penetration Tests were carried out using Trip Hammer RD54.

A 50mm diameter perforated standpipe was installed to a depth of 5.00m.

Fig No: В1 Sheet 1 of 2 Scale 1:50

150 146

4.00 10.55

4.00 10.55

Driller	Originator		Groun	d-water		Water	Added		Chiselling			PI			
S McL	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	To	hh:mm	Returns	Type	From (m)	To (m)	~
S IVICE	KD										100	Water	1.20	7.00	
															5
Chk & App	Status														B
	DRAFT														Ř
															N

								Site: LT520 BRACO WEST SUBSTATION												Contract No: 26555						
F	RA	E	ВІ	UΙ	₹	N	Clie	Client: SHE Transmission plc												BH01						
=		DRILLIN	IG & GE	EOTECH	NICA	LL LTD)					almond H	SE						Inspection Pit to Sonic Boring to			1.20m 4.00m				
Lo	cation: F	E 27904	5.7		Orie	entatio	on: Vei	Vertical Equipment: Hand Tools, Track Mounted Boart Longyear											Geobore	S to		10.	.55m			
		N 70875				or nous	J.1. V O.	LS250 Mini Sonic; Water Flush																		
ress	Sai	nples		Т	ests			Casing	Level			Description of Strata					pue	Water		ackfill						
Progress	Depth	Туре	Depth	ו	Re	sult		Depth	227.89	nOD) D 27.89		14 P			•				<u> </u>	Legend	Depth	Symbol	Depth			
			9.85				12				١ ١	Medium str medium gra \Non-intact							/	/ :::::			1			
mos :Bulling:	1							10.55	217.34	1 10	0.55	Medium str medium gra weak muds Fractures a undulating	ong to sained SA stone poor are subha smooth	ciean wili	nly to thick NE with g irtially wea very close n localised D OF BO	ı graveri	ITTIIII	dish brow moderat thered. ced plana — — — -	n fine to ely ar to	<u> ::::</u>	3.10m		10.55			
FIRE F. (CIN WW/ROJEC IS/R0555, CP-0-444 (J) 1096 710999 Printed: Z6/01/Z024 13/25/48 Kaebum Drilling and Geolecimical, Whisteberry Kd., Hamilion ML3 UHP 16I: 01096-711177 E-mail: enquires@raebumdnilling.com																										
CISKE											-															
Re	marks:																			Hole		Го Де				
	# Descrip An inspec No groun The Pene	tion base ction pit w d-water o etration Te diameter	as exca bservat ests we	avated b tions are re carrie	oy ha e rece ed ou	orded t usin	due to g Trip l	the us Hamme	e of wat er RD54.	er flı	ush.	S.								Diam 150 146	4.0)	4.00 10.55			
	Driller S McL		inator RB	Struck			d-water Time(m			Wate rom	er Added To	From	Chiselling To	hh:mm	Returns	Туре	ush From (m		R	Fig N	o:					
Ä	Chk & App	Sta	atus AFT												100	Water	1.20	7.00	RAUBURZ	s	B1 heet 2 d cale 1:5					

DAEDHDAI	
RAEBURN	_
DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH02

Inspection Pit to Geobore-S to 1.20m 15.35m

Location: E 278817.0

Style: BOREHOLE NEW File: P:\GINTWIPROJECTS\26555.GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:25:50 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

N 708935.6

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

ess	Sai	mples		Т	Tests				Level	•		pu	Water		ackfill
Progress	Depth	Туре	Depth		Re	sult		enth i	(mOD) 249.18	Depth	Description of Strata	Legend	Depth	Symbol	Depth
17/11 2023											Soft brown to dark brown spongy pseudo-fibrous PEAT	<u> </u>		١	
										_		1/ 1/			0.50
	0.50	B, D								-		7/		Ħ	
										-		1/ 1/		ĦĦ	
	1.00-	B, D							247.00	1.20		\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		ĦĦ	
	1.80	B, D	1.20	SPT=22	2 0.1	1 /1.5.8.	<u>8</u>		247.98	1.20	Soft black plastic amorphorous to pseudo-fibrous PEAT	1// 7		BB	
	1.20- 1.55 1.20	B, D							247.63	1.55		1, 11,			
	1.55- 1.80	Б, D				RQD	FI		247.38	1.80	greyish brown silty SAND & GRAVEL. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of sandstone	8		Ħ	
	1.00		1.80	60	10	0				_	Assumed zone of core loss				2.00
							AZCL		246.88	2.30					,
										-	Weak to moderately strong reddish brown fine to medium grained SANDSTONE. Recovered as non-intact	:::::			
							NI		246.48	2.70					
							23		246.18	3.00	Moderately strong reddish brown fine to medium grained SANDSTONE. Fractures are subhorizontal very closely spaced planar				
											to undulating smooth to rough clean with occasional clay smear Weak to moderately strong reddish brown fine to medium grained				
			3.30	100	0	0	NI NI				SANDSTONE. Recovered as non-intact	:::::			
							INI			-					
									245.38	3.80	Very weak to weak greyish brown MUDSTONE with reddish brown	:::::)
										-	siltstone laminae. Distinctly to destructively weathered. Recovered as soft to firm greyish brown slightly sandy gravelly clay. Sand is fine to				
							NA			-	coarse. Gravel is fine to coarse angular to subangular of mudstone and siltstone.				
1								-	244.68	4.50	Moderately strong thinly to thickly laminated reddish brown fine to				
											Moderately strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Recovered as non-intact disorganised cobbles and gravel with some subvertical to oblique fractures noted in				"
			4.80	83	17	0				_	larger cobble sized fragments				
							NI			-				ľħ.	,
										-					
										-					1
,									243.28 243.18	5.90	Vanuusak ta waak graviah braum MI IDSTONE with raddish braum	:::::		F	
			6.00	100	0	0	NA/		210.10	0.00	Very weak to weak greyish brown MUDSTONE with reddish brown siltstone laminae. Distinctly to destructively weathered. Recovered as soft to firm greyish brown slightly sandy gravelly clay	1			,
											Moderately weak to moderately strong reddish brown thinly to thickly laminated fine to medium grained SANDSTONE with thickly laminated	:::::		14	
			6.50	91	32	0	NI				interbedded mudstone. Recovered as non-intact unsorted cobbles and gravel with some clay smears				
										-	graver with some day smears	:::::]
								-	242.18	7.00	Moderately strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with healed incipient fractures				
							13			-	fine to medium grained SANDSTONE with healed incipient fractures with calcite mineralisation. Fractures are subhorizontal very closely to				
									241.58	7.60	closely spaced planar to undulating smooth clean with localised gravel infilled, occasional subvertical fracturing noted on refracturing on healed	:::::		M	
			7.60	100	67	0					subvertical fractures Moderately strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fracture Set 1: subhorizontal	<u> </u>			΄
							23			_	fine to medium grained SANDSTONE. Fracture Set 1: subhorizontal very closely to closely spaced planar to undulating smooth clean with localised gravel infilled. Fracture Set 2: Oblique to subvertical fracture			Į. P	8.00
									240.88	8.30	localised gravel infilled. Fracture Set 2: Oblique to subvertical fracture planar to undulating rough with gravel infill	:::::		C	,
										-	Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with healed incipient fractures with calcite mineralisation.			0	
							6			-	Fracture Set 1: subhorizontal very closely to medium spaced planar to undulating smooth to rough clean. Fracture Set 2: subvertical planar to			0	
										-	undulating smooth clean with calcite mineralisation on fracture surfaces	:::::		0	
			9.10	83	58	0			240.08	9.10	Assumed zone of core loss	:::::		_ c	
			5.10				AZCL	-	239.88	9.30	Strong thinly to thickly laminated reddish brown fine to medium grained	:::::		0	,
										_	SANĎSTOŃE. Fractúres are subhorizontal very closely to mediúm spaced planar to undulating smooth to rough clean			0	
							19			-				0	
Ren	narks:				L							Hole		To De	10.00 pth
#	Descrip	tion based					- 4- "	-6400	t ·			Diam 150			Casing 1.80
	o groun	ction pit wa d-water of	servati	ons ar	re reco	orded	due to the	he use	of wate		ces.	146			15.35

No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD48. A 50mm diameter perforated standpipe was installed to a depth of 8.00m.

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		R
S McL	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	'n
3 IVICE	KD										100	Water	1.20	1.80	=
											50	Water	1.80	10.30	Ē
Chk & App	Status										100	Water	10.30	15.35	н
	DRAFT														ĕ
	2.0														N
								L							

Fig No:

B2 Sheet 1 of 2 Scale 1:50

RAEBURN	
KAEBUKN	7
■■■ DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH02

Inspection Pit to Geobore-S to

1.20m 15.35m

Location: E 278817.0

N 708935.6

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear

LS250 Mini Sonic; Water Flush

ess		nples	5.6	7	rests				Level			рu	Water		ackf
Progress	Depth	Туре	Depth		Re	sult		Casing Depth	(mOD)	Depth	Description of Strata	Legend	Depth	Symbol	De
ш			9.10						249.18			:::::		S	Г
7/11			10.30	100	80	30		10.30	238.88	10.30	Strong thinly to thickly laminated reddish brown fine to medium grained	:::::	8.70m		
			.0.50			55	10		220 40	10.70-	SANDSTONE with healed incipient fractures with calcite mineralisation. Fracture Set 1: subhorizontal very closely to closely spaced planar to		9.40m		
									238.48	10.70	SANDSTONE with healed incipient fractures with calcite mineralisation. Fracture Set 1: subhorizontal very closely to closely spaced planar to undulating smooth to rough clean, locally gravel infilled. Fracture Set 2: subvertical planar to undulating rough clean with calcite mineralisation	∤:::::			
							8			_	Strong thinly to thickly laminated reddish brown fine to medium grained				
			4	40-		0.5			237.88	11.30	SANDSTONE with healed incipient fractures with calcite mineralisation. Fractures are subhorizontal very closely to medium spaced planar to	<u> </u>			
			11.30	100	77	35				-	undulating smooth clean Strong thinly to thickly laminated reddish brown fine to medium grained	::::			
										_	SANDSTONE with healed incipient fractures with calcite mineralisation. Fractures are subhorizontal closely to medium spaced planar to	::::			
							8			_	undulating smooth clean				
										-					
									236.58	12 60		::::			
			12.60	100	57	29			200.00	12.00	Moderately strong to strong reddish brown thinly to thickly laminated fine to medium grained SANDSTONE with healed incipient fractures	:::::			
							NI		236.13	13.05	with calcite mineralisation. Recovered as non intact with subvertical fractures noted with calcite mineralisation on fracture surfaces	::::			
										-	Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with healed incipient fractures with calcite mineralisation. Fracture Set 1: subhorizontal closely to medium spaced planar to undulating smooth to rough clean, locally gravel infilled. Fracture Set 2:				
										-	Fracture Set 1: subhorizontal closely to medium spaced planar to undulating smooth to rough clean, locally gravel infilled. Fracture Set 2:				
							8			-	subverticăl planar to undulating rough cleăn				
									235.18	14.00					
			14.00	96	63	37					Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with healed incipient fractures with calcite mineralisation.				
										-	Fractures are subhorizontal very closely to medium spaced planar to undulating smooth clean with localised gravel infilled				
							10			-		::::			
							.5			-					
0/11								15.35	233.83	15.35	END OF BOREHOLE		9.80m		15
Ar No Th A	n inspectory ground in ground in ground in ground in ground in growth in gro	R	as excar bservation ests were perforate nator B	vated ons ar e carri ed sta	by ha re received ou ndpip	orded t using	due to Trip install	the use	e of wate r RD48. depth of	r flush. 8.00m. /ater_Add	Chiselling		Borin 1.80 15.39 1	5	1.8 1.8 15.3
Ch	k & App	Sta DRA	tus AFT								100 Water 10.30 15.35 R		heet 2 o cale 1:50		

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		R
S McL	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	
3 IVICE	KD										100	Water	1.20	1.80	Ê
											50	Water	1.80	10.30	5
Chk & App	Status										100	Water	10.30	15.35	B.
	DRAFT														K
	DRAFI														
															N

RAEBURN	
NALDUKN	(
I DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH03

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 2.70m 15.30m

Location: E 278938.5

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

	1	N 70901	9.0							LS	250 Mini Sonic; Water Flush			
ess	Sai	mples			Tests			Casing	Level			pue	Water -	Backfil
Progress	Depth	Туре	Depth		Re	esult		Depth	(mOD) 250.98	Depth	Description of Strata	Legend	Depth	Der
1/11									200.00		Soft brown to dark brown spongy amorphous PEAT	71/ 7	×	₩ 0.1
.020												1, 11,		3
	0.50	B, D										7/ 1		∃
									249.98	1.00		\(\frac{1}{2}\)		=
	1.00	B, D							249.98	1.20	Brown slightly gravelly silty fine to medium SAND. Gravel is fine to coarse angular and sub-angular and includes sandstone and granite	жо		∃
	1.20- 1.40	B, D	1.20	SPT=	9 <u>1.:</u>	2 /1.2.3.	<u>3</u>	0.00	249.58		Firm reddish brown grey mottled slightly sandy slightly gravelly CLAY with occasional grey bands up to 10mm of silty fine sand. Sand is fine	i i		∄
	1.20 1.40-	В									to medium. Gravel is fine to coarse subangular to subrounded of sandstone	жо:		\exists
	2.00										Loose brown gravelly very silty fine to coarse SAND with low cobble content. Gravel is fine to coarse angular to subangular of sandstone	× °		╡
	2.00-	B, D								-	and mudstone. Cobbles are angular to subangular of sandstone.	×		3
	2.70 2.00									-				∄
				TCF	RSCR	RQD	FI	-	248.28	2.70		×		∃
			2.70	100	28	17			240.20	2.70	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly	×		∄
							12			-	laminated mudstone bands. Distinctly weathered. Fracture Set 1:			3
									247.68	3.30	Subhorizontal very closely to closely spaced planar to undulating smooth clean and locally gravel infilled. Fracture Set 2: Subvertical planar to undulating smooth clean	::::		∄
							17		247.38	3.60	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly	::::		∄
			3.60	100	60	35					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			∄
							14			-	\smooth clean and locally gravel infilled Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly			∄
									246.68	4.30	laminated mudstone bands. Distinctly weathered, Fracture Set 1:]:::::		3
										-	Subhorizontal very closely to closely spaced planar to undulating smooth clean and locally gravel infilled. Fracture Set 2: Subvertical planar to undulating rough and gravel infilled	[::::]		\exists
							6				Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands.			3
									245.88	5.10	Partially weathered. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth clean and locally gravel infilled			=
			5.10	100	20	9					Weak to moderately weak thinly to thickly laminated reddish brown			∃
											SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as non intact sandy very clayey gravel with cobbles noted	::::		3
														3
										_				∄
							NI			-		::::		3
														∄
			6.60	100	67	25	1							=
									243.88	7 10-		::::		∄
								1	243.00	7.10	Medium strong reddish brown thinly to thickly laminated SANDSTONE with thinly to thickly laminated mudstone bands. Partially weathered.			\exists
											Fracture Set 1: subhorizontal very closely to closely spaced planar to undulating smooth clean. Fracture Set 2: Subvertical to oblique planar			\exists
							9			'	to undulating smooth clean	::::		╡
									242.00	0 10-				\exists
			8.10	100	97	50		†	242.88	0.10	Medium strong to strong thinly to thickly laminated reddish brown SANDSTONE with thinly to thickly laminated mudstone bands. Partially			╡
											SANDSTONE with thinly to thickly laminated mudstone bands. Partially weathered. Fracture Set 1: subhorizontal closely to medium spaced planar to undulating smooth clean. Fracture Set 2: Subvertical planar			\exists
										-	to undulating smooth clean. Fracture Set 2: Subvertical plantal to undulating smooth clean to undulating smooth clean between 8.80 and 8.85m mudstone band			\exists
										'	Detween 0.00 and 0.00m mudsione dand	::::		∄
										-		::::		∄
													F	\exists
			9.60	100	97	70				-				∄
							6						F	\exists
	narks:	1										Hole Diam.		Depth Casir
‡	Descrip	tion base	d on Dri	ller's	loa							Diam.	Doming	+ 545

Style: BOREHOLE NEW File; P./GINTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:25:51 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

An inspection pit was excavated by hand to a depth of 1.20m to clear services. No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD48.

Driller	Originator		Groun	id-water		Water	Added		Chiselling			FI	ush		P	Fig No:
DJ	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	``` `	lgo.
DJ	KD										100	Water	1.20	15.30		Ιь
															5	l B
Chk & App	Status	1													B	l Sh
	DRAFT														8	
	DRAFI															Sca
		1									1				N	i

lo:

177 146

ВЗ Sheet 1 of 2 cale 1:50

2.70 15.30

2.70

								: LT5	20 BF	RACC) WEST	SUBST	ATIO	N					Contra	ct No:	265	55)	
		١E						ent: \$	SHE Tr	ansmis	ssion plc								BHC)3				
=		DRILLIN	VG & GE	OTEC	HNIC	LL LTD	Eng				eralmond F	ISE							Inspection Sonic Bo Geobore	oring to			1.20 2.70	0m 0m 30m
Loc	cation: I	E 27893	88.5		Orie	entatio	n: Ve	rtical		Eq	uipment: Ha	and Tools	s, Track	K Mount	ted Boa	art Lo	ngye	ar	_	0.0			10.	30
		N 70901	19.0							LS	250 Mini Sc	onic; Wat	er Flus	h										
Progress	Sai	mples	Donth		Tests	oult		Casing Depth	Level (mOD)	Depth			Desc	ription of	f Strata					Legend	Wat		Symbol	ackfill
- <u>A</u>	Depth	Туре	Depth 9.60		The	sult		Вери	250.98		betwee	n 10.05 ar	nd 10.10	m mudst	one ban	nd				1::::	1	-	Syr	Depth
5											-													
2										-]									::::				
Lanai. Ordanisa@racountaming.com			11.10	100	73	63			239.68	11.30	Weak to r	noderately	weak th	inly to thi	ickly lam	inated	reddis	sh brov	vn	:::: ::::	-			
2							NI		239.38	11.60	SANDSTO weathered	ONE with n d. Recover oted	nany thic ed as no	klý lamin n intact :	nated mu sandy ve	udstone ery cla	e band yey gra	ls. Dist avel wi	tinctly ith	<u> ::::</u>	-			
<u> </u>										_	Medium s SANDSTO weathered planar to u undulating	trong to sto ONE with the	rong thin hinly to th	ly to thick	kly lamin ninated r	ated re	eddish one ba	brown nds. P	n Partially	::::		ŀ		
											weathered planar to u undulating	a. Fracture undulating g smooth c	smooth lean.	ubnorizo clean. Fr	acture S	Set 2:	oblique	m spac e plana	ar to	::::				
			10.00	100		07																		
1000			12.60	100	90	87					-													
										-														
5							5				-											Ē		
]													
5			14.10	100	75	58				-	1													
,			14.10	100	"]									::::				
00000											_									::::				
ă,										-	-									::::				
20000-11-11-11-11-11-11-11-11-11-11-11-11	1							2.70	235.68	15.30				OF BO	REHOL	_ — —				- : : : :	11.9	<u>00m</u>		15.30
2											-													
20										_]													
5											-													
0.00											_													
1 1 2 2																								
											_													
100											-													
										-	_													
80											-													
801 (0																								
										-	-													
5																								
2											-													
																				<u> </u>	Ц,		- D	41-
#		otion base				m el 4 -	م ماء '	h cf 4 ^	'Om 4= -'	oor	iooo									Hole Dian	n. E	Boring 2.70		Casing 2.70
A N	lo groun	ction pit w d-water o etration Te	bservati	ions a	re rec	orded	due to	the us	e of wate		ices.									146	;	15.30		, 0
<u> </u>						,	- '																	
	Driller	Origi	inator	Ct-			d-water			Vater Ad		Chiselling	hb	D-t-		Flush	\/m=\ -	To /	R■	Fig N	1 0:			
	DJ	R	RB	Struc	K Ro	se Io	Time(n	nin) Cut	Oπ Fr	om	To From	То	hh:mm	Returns 100	Type Water			To (m) 15.30	RAUBURZ	-	ВЗ			
CI	hk & App	l l	atus AFT																D R		Sheet			
Ś																			N	*	Scale	1.50	,	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH04

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 2.70m 15.25m

Location: E 279075.4

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear

LS250 Mini Sonic, Water Flush N 709136.1

SS	90	N 70913			Tests				Level			Backt
Progress	Depth	mples Type	Depth			sult		Casing Depth	(mOD)	Depth	Description of Strata Part Water Depth Part Depth Depth Part Depth Dep	
3/11	- 241	71						Ė	252.35		Soft brown to dark brown spongy amorphous PEAT with cobbles noted.	
023									054.00			
	0.50	B, D							251.80	0.55	Reddish brown slightly gravelly sandy SILT. Sand is fine to coarse.	
										-]	
		B, D B, D	1.20	SPT=1	2 <u>2.</u>	3 /2.3.3.	<u>4</u>	0.00	251.15	1.20	Medium dense reddish brown very sandy silty GRAVEL with low cobble	
	2.00 1.20		1.20							-	content and occasional thickly laminated to thinly bedded silt lenses noted. Sand is fine to coarse. Gravel is fine to coarse subangular to	
										-	sandstone.	
	2.00-	B, D								_		2
	2.70 2.00									-		
3/11				TCR			FI	2.70	249.65	2.70	2.20m	
			2.70	100	17	7				_	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with interbedded mudstone bands. Destructively weathered. Recovered as very sandy very clayey angular 2.65m	
										-	gravel and cobbles noted	
							NA			-		
										-		▋
							10		248.35 248.25	4.00 4.10	Medium strong thinly to thickly laminate reddish brown fine to medium grained SANDSTONE. Fractures are subhorizontal closely spaced	
			4.20	100	50	12	NI			-	\planar to undulating smooth clean \cdot \cd	
									247.65	4.70	brown fine to medium grained SANDSTONE. Distinctly weathered.	
							14			_	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth to rough clean with	
								_	247.15	5.20	localised gravel infill Moderately weak to medium strong thinly to thickly laminated reddish	
							NI		246.05	E 70 -	brown fine to medium grained SANDSTONE. Distinctly weathered. Recovered as non intact	=
			5.70	100	73	17		1	246.65	5.70	Medium strong thinly to thickly laminated reddish brown fine to medium	
							8		246.15	6.20	spaced planar to undulating smooth to rough clean with localised gravel infill	
							NI				Weak to moderately weak thinly to thickly laminated greyish brown MUDSTONE. Distinctly to destructively weathered. Recovered as firm slightly sandy gravelly clay	
							INI		245.65	6.70	Madium atrang thinks to thinks laminated raddish brown fine to madium	
							6				grained SANDSTONE. Fracture Set 1: subhorizontal closely to medium · · · · = spaced planar to undulating smooth to rough clean with localised gravel · · · · = spaced planar to undulating smooth to rough clean with localised gravel	
			7.20	100	96	76		-	245.15	7.20	infill. Fracture Set 2: subvertical planar to undulating smooth clean Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional thinly laminated mudstone laminae	
											SANDSTONE with occasional thinly laminated mudstone laminae. Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean	
							4			-		
										-		
									243.75	8.60	ł	
			8.60	100	70	50	NI	1	243.45		Weak to moderately weak thinly to thickly laminated greyish brown MUDSTONE. Distinctly to destructively weathered. Recovered as firm	
								1	270.43	- 0.30	Slightly sandy gravelly clay Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional thinly laminated mudstone laminae. Fractures are subhorizontal very closely to medium	
							14			-	mudstone laminae. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth clean.	
							11				 	
									242.47	9.88 -	Strong thinly to thickly laminated reddish brown fine to medium grained	
	narks: Descrip	tion base	d on Dri	ller's l	log.		-				Diam. Boring	epth Ca:
Ar No Th	n insped o groun ne Pene	ction pit w d-water o etration Te diameter	as exca bservati ests were	vated ons a e carr	l by ha ire rec ried ou	orded	due to g Trip	o the use Hamme	e of wate r RD48.	r flush.	ices. 177 2.70 14.00	2.
	Driller	Origi	nator			Ground	d-water	r	Iw	/ater Ado	ded Chiselling Flush Fig No:	
	DJ	_	B -	Stru	ck Ro			nin) Cut			Fig No: Fig	
Ch	k & App	Sta	itus								Sheet 1 of 2	!
		DR	AFT								Scale 1:50	

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ısh		N N	Fig No:
DJ	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	~	1 19 110.
DJ	KD										100	Water	1.20	15.25		D4
															5	B4
Chk & App	Status														8	Sheet 1 of 2
	DRAFT														⊠	
	Dit-ti i														N	Scale 1:50
			1													

	•
BAFBLIBAL	
RAEBURN	
	(
■■■ ■ DRILLING & GEOTECHNICAL LTD	_

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH04

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 2.70m 15.25m

Location: E 279075.4

N 709136.1

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

ess	San	nples		7	Tests			Casina	Level			pu	Water		ckfill
Progress	Depth	Туре	Depth		Re	sult		Casing Depth	(mOD) 252.35	Depth	Description of Strata	Legend	Depth	Symbol	Depth
			10.10	100	83	61	6		242.00	10.35	SANDSTONE with occasional thinly laminated mudstone laminae. Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean				
							20	1	241.85		Weak thinly to thickly laminated greyish brown MUDSTONE. Distinctly weathered. Recovered as firm slightly sandy gravelly clay				
							6			_	Weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional thinly laminated mudstone laminae. Partially weathered. Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean				
			11.00	100	97	60			241.35	11.00	Partially Weathered. Fractures are subnorizontal closely to medium spaced planar to undulating smooth cleanbetween 11.00 and 11.15m recovered as Non Intact	 			
										-	Modium strong to strong thinly to thickly laminated raddish brown fine to				
										_	medium grained SANDSTONE with occasional thinly laminated to thinly bedded interbedded mudstone bands. Partially weathered. Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean with localised clay infill	::::			
										-	Between 11.15 and 11.50m Subvertical fracture				
										_		:::::			
										-					
			12.50	100	99	64	4			-					
										_		:::::			
										-					
										-		:::::			
7/11			14.00	100	72	27		2.70	238.35	14.00	Medium strong to strong thinly to thickly laminated grevish brown fine to		12.45m		
			14.00	100	'-					-	Medium strong to strong thinly to thickly laminated greyish brown fine to medium grained SANDSTONE with many thinly laminated to thinly bedded interbedded mudstone bands. Partially weathered. Fractures	::::	13.90m		
							9			-	are subhorizontal very closely to closely spaced planar to undulating smooth clean Betwee 14.60 and 14.80m Non intact				
								1	237.55		Weak to moderately weak thinly to thickly laminated greyish brown MUDSTONE. Partially weathered. Recovered as firm slightly sandy	:::::			
							NI4	1	237.35		gravelly clay				15.25
					-				237.10	10.20	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Unweathered. Fractures are subhorizontal medium spaced planar to undulating smooth clean with	1			10.20
										-	\localised clay infill/ END OF BOREHOLE				
										-					
										-					
										_					
										_					
										-					
										_					
										-					
										-					
										_					
										-					
										-					
										-					
										-					
										-					
_										_		11.	1 -	0.0-	th
#		tion base										Hole Diam	. Borin	_	Casing
Αı	n inspec	tion pit wa d-water o	as exca	vated	by ha	nd to a orded	a dept	th of 1.2 o the us	0m to cle e of wate	ar servi r flush.	ces.	177 145	2.70 14.0		2.70

No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD48.

A 50mm diameter perforated standpipe was installed to a depth of 2.00m.

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		R
DJ	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	\ \bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar
D3	ND ND										100	Water	1.20	15.25	
]													E
Chk & App	Status														
	DRAFT														8
	D. C														N.
															14

B4 Sheet 2 of 2 Scale 1:50

Fig No:

Printed: 26/01/2024 13:25:53 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

DAEDIIDN	
RAEBURN	H
DRILLING & GEOTECHNICAL LTD	
- Difficulties a dedited filling to the	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH05

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 8.75m

Location: E 279209.3

Style: BOREHOLE NEW File: P.\GINTWAPROJECTS\2655.56 PJ+44 (0)1698 710999 Printed: 26/01/2024 13:25:54 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

DRAFT

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

N 709189.4 LS250 Mini Sonic; Water Flus

n n		nples	9.4	7	Fests				Level			٦	10/. 1	В	ackfi
000.60	Depth	Туре	Depth			sult		Casing Depth	(mOD)	Depth	Description of Strata	Legend	Water Depth	Symbol	De
11		,	<u>'</u>						252.35	_	Soft brown to dark brown spongy pseudo-fibrous PEAT.	77 7			0.:
3												1, 11,			
	0.50	B, D							251.75	0.60	Brown to reddish-brown very gravelly silty fine to coarse SAND. Gravel	.xo. ·		1	
											is angular and sub-angular fine to coarse of sandstone	×		1,/-	
	1.00	B, D							251.15	1 20		× · . ×			
	1.20- 1.90 1.20	B, D	1.20	SPT=10	1.2	2 /2.2.2.4	4	0.00			Firm reddish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subround of sandstone	<u></u>		\'\	
	1.20										- Course of the course can be called a called the calle			<u>-</u> ,}-	
									250.45	1.90		<u>.</u>			
	1.90- 2.70 2.00	B D								-	Reddish brown very sandy silty GRAVEL. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of sandstone	- % -		\'\	
	2.00									-		· •		1, >-	
				TCR	SCR	RQD	FI		249.65	2.70		ō ō		\'\'	
			2.70	100	68	35			243.00	2.70	Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with thinly bedded mudstone beds. Fractures are	1:::::		\'\	
										-	horizontal very closely to closely spaced planar to undulating smooth clean with occasional clay infill	:::::		-, /-	
							12				between 3.40 and 3.48m firm reddish brown slightly sandy gravelly			\\ \'	
											clay band notedbetween 3.60 and 3.74m firm reddish brown slightly sandy gravelly			\'.	
									248.45	3.90	clay band noted	:::::		-) -	
			3.90	73	40	0	0			-	Assumed Zone of Core Loss			\'\'	
							_		248.05	4.30	Strong thinly to thickly laminated reddish brown fine to medium grained			\'.	
							13		247.65	4.70	SANDSTONE. Fractures are horizontal very closely to closely spaced planar to undulating smooth clean with occasional clay infill			-) -	
							NI		247.45		between 4.40 and 4.52m 70 degree fracture planar smooth. Strong thinly to thickly laminated reddish brown fine to medium grained			\'\'	
										_	SANDSTONE.Recovered as a subangular to subrounded cobbles Strong thinly to thickly laminated reddish brown fine to medium grained			\'.	
							6		246.95	5.40	SANDSTONE. Fracture Set 1: horizontal very closely to closely spaced planar to undulating smooth clean. Fracture Set 2: subvertical planar to undulating smooth to rough clean	:::::		-) -	
			5.40	63	43	11					between 5.30 and 5.40m firm reddish brown slightly sandy gravelly clay band noted	/		\'\'	
							0		246.40	5.95	Assumed Zone of Core Loss			\'.	
							NI/		246.30	6.05-	Medium thinly to thickly laminated strong reddish brown fine to medium grained SANDSTONE. Partially weathered. Recovered as Non-intact)	
							11		245.85	6.50	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered. Fracture Set 1: horizontal			/_'	
									243.03	0.50	very closely to closely spaced planar to undulating smooth clean. Fracture Set 2: subvertical planar to undulating smooth to rough clean	/ !!!!		\'.	
							7		245.45		Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered. Fractures are horizontal]:::::		-) -	
			6.90	100	87	53	_NI_		245.30	7.05-	Closely spaced planar to undulating smooth clean with occasional clay infill Medium strong thinly to thickly laminated reddish brown fine to medium	/ :::: 		1, 1	
											grained SANDSTONE. Partially weathered. Recovered as Non-intact Strong thinly to thickly laminated reddish brown fine to medium grained	/ ::::i		\'.	
							4			-	SANDSTONE. Partially weathered. Fractures are horizontal closely to medium spaced planar to undulating smooth clean)	
									244.35	8.00	between 7.90 and 7.95m 40 degree fracture planar to undulating	:::::		1,1	
							_	1	2 17.00	5.00	smooth clean Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE Particily weathered. Errockur Set 1: barrantal elective			1	-
			0.40	100	_		7		243.95	8.40	Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered. Fracture Set 1: horizontal closely to medium spaced planar to undulating smooth clean. Fracture Set 2: subvertical planar smooth to rough clean	:			
			8.40	100	0	0	0	2.70	243.60	8.75	Very weak reddish brown MUDSTONE. Distinctly weathered recovered as firm slightly sandy slightly gravelly clay between 8.50 and 8.75m greenish grey mottled noted.		8.75m	1,1	
			8.75	100	95	71	_13_]	243.45		Medium strong reddish brown and greenish grey fine to medium		8.00m	\'.	
											grained SANDSTONE with mudstone laminae. Fractures are horizontal very closely to closely spaced planar to undulating smooth	/ :::::		<u> </u>	
											\text{\clean with occasional clay infill} Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered. Fractures are horizontal very	:::::		, ,	
							4				closely to closely spaced planar smooth clean with occasional clay infillbetween 9.30 and 9.35m firm reddish brown slightly sandy gravelly			\'\	
											clay band noted			-) -	L
	arks:	tion boss	d or D-	llor's !	ng.							Hole Diam		To De ng	oth Cas
n	insped	tion base ction pit w d-water o	as exca	vated	by ha						ices.	177 146	2.70 15.7		2.
		etration Te								ı ııuəli.					
												1	1	- 1	

RAUBURZ

Fig No:

B5 Sheet 1 of 2

Scale 1:50

	ı
DAEDIIDN	l
RAEBURN	٢
■■■ ■ DRILLING & GEOTECHNICAL LTD	Ì

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH05

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 8.75m 15.75m

Location: E 279209.3

Style: BOREHOLE NEW File: P./GINTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:25:55 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

N 709189.4

SS		nnlee	J	7	Facto				Level			Т	l	B:	ackfill
Progress		nples	<u> </u>	- 1	Tests			Casing	(mOD)	Depth	Description of Strata	egend	Water		
P	Depth	Туре	Depth		Re	sult		Depth	252.35		·	_ e	Depth	Symbol	Depth
			10.05	100	67	53	10		242.30	\ <u>10.05</u> / - - 10.55	Medium strong thinly to thickly laminated reddish brown SANDSTONE. Unweathered. Fracture Set1: horizontal very closely to medium spaced planar to undulating smooth.Fracture set 2: oblique planar to undulating smooth clean and gravel infilled				
							NA		241.40	10.95	Very weak reddish brown MUDSTONE. Distinctly weathered recovered as soft to firm reddish brown and greenish grey slightly sandy slightly gravelly clay. Gravel is fine to medium angular to subangular of sandstone			1/	
							5		240.80	11.55	Strong thinly to thickly laminated reddish brown SANDSTONE. Partially weathered. Fractures Set 1: horizontal closely to medium spaced planar to undulating smooth clean. Fracture set 2: oblique planar smooth clean with 10mm discoloration at fracture surfaces			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			11.55	100	91	47	4		240.25	-	between 11.40 and 11.65m 60 degreee oblique fracture. Strong thinly to thickly laminatedreddish brown SANDSTONE. Partially weathered. Fractures are horizontal closely to medium spaced planar to undulating smooth clean. Fracture set 2: oblique planar smooth clean with 10mm discoloration at fracture surfaces				
							5		240.23	-	Strong thinly to thickly lamainted reddish brown SANDSTONE. Partially weathered. Fractures are horizontal medium to widely spaced planar to undulating smooth clean				
									239.60	12.75		::::		۱ ا	
			12.75	100	91	75	3			- - - -	Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fracture Set1: closely to medium spaced planar to undulating smooth clean. Fracture set 2 oblique 60 degrees planar to undulating smooth to rough clean with granular infill between 13.10 and 13.15m firm reddish brown slightly sandy gravelly clay band notedbetween 13.33 and 13.38m firm reddish brown slightly sandy gravelly clay band noted				
									238.40	13.95		::::		, ,	
							10		238.10	14.25-	Strongthinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Partially weathered. Fracture Set1: horizontal closely to medium spaced planar to undulating smooth clean. Fracture set 2:			_\	
			14.25	99	91	58	6			-	oblique 60 degrees planar to undulating smooth to rough gravel infilled Strongthinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fractures are horizontal very closely to closely spaced planar to undulating smooth clean with occasional clay infill				
									237.27	15.08		::::		۱ ۱	
							11		236.90	15.45-	Weak to medium strong thinly to thickly laminated reddish brown and greenish grey MUDSTONE with thickly laminated to thinly bedded fine to medium grained sandstone bands. Fractures are horizontal very closely to closely spaced planar to undulating smooth with clay infill			-\`.' \`.'	
							7		236.60	15.75	Strong thinly to thickly laminated reddish brown SANDSTONE. Fractures are horizontal closely to medium spaced planar to undulating smooth clean	<u> ::::</u> -		1/1	15.75
										_	END OF BOREHOLE				
										=					
										_					
										-					
										-					
										-					
										-					
										-					
										_					
										-					
										-					
										-					
										_					
										-					
										-					
	narks:	tion base	d on Dril	ler'e le								Hole Diam		o Dep	oth Casing
Ar	n inspec	tion base tion pit w d-water o	as exca	/ated	by ha	ind to	a dept	th of 1.2	0m to cle	ar servi	ces.	177 146			2.70
		d-water o tration Te								ııusıı.					

The Penetration Tests were carried out using Trip Hammer RD48.

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush	
D.I	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	To	hh:mm	Returns	Type	From (m)	To (m)
DJ	KD										100	Water	1.20	15.75
Chk & App	Status													ı
	DRAFT													
	Dio.													

Fig No:

RAUBURZ

В5 Sheet 2 of 2 Scale 1:50

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH06

Contract No: 26555

Inspection Pit to Rotary Open Hole to Rotary Core Drilling to

1.20m 3.00m 10.00m

Location: E 278918.1 N 708854.7 Orientation: Vertical

Equipment: Hand Tools, Track Mounted Commachio Geo 205

SS	Sai	nples		Т	ests				Level		, g		lack
Progress	Depth	Туре	Depth		Re	sult		Casing Depth	(mOD) 239.37	Depth	Description of Strata	Depth of was	De
9/11 023									200.07	_	Soft brown to dark brown spongy pseudo-fibrous PEAT	***	*
	0.30	B, D							238.97	0.40	Brown very gravelly silty fine to coarse SAND with high cobble content.	***	<u> 0</u>
	0.60	B, D								-	Brown very gravelly silty fine to coarse SAND with high cobble content. Gravel is fine to coarse angular of sandstone. Cobbles are angular up to 100mm of sandstone		
										_	[] 2]		
	1.20	B, D U	1.20	SPT=21	0.0) /2.3.7.	9	0.00		-	X X X		
	1.20- 1.80	ŬL B, D								_	N		
									237.37	2.00	() . 1 () . 4 () . 4		
	2.00	B, D UL	2.00	SPT=16	3.3	3 /3.4.5.4	4	2.00	201.01		Weak reddish brown SANDSTONE recovered as slightly sandy slightly clayey gravel with cobbles noted. Sand is fine to coarse. Gravel is fine		
										-	sandstone coanse angular of sandstone. Cobbles are angular, up to roomin of		
										-			
	3.00	UL	3.00	TCR		RQD (45)/50	1	3.00	236.37	3.00_	Moderately weak thinly to thickly laminated reddish brown fine to		
			3.00 3.00	100			17		236.07	3.30	medium grained SANDSTONE. Distinctly weathered. Fractures are subhorizontal closely spaced planar to undulating smooth clean with		
										-	Clayey gravel infill Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated		
										-	non intact with cobbles sized lumps with oblique to subvertical fractures		
										_			
							NI			-			
			4.50	100	60	37				-			
										_	::::		
									234.07	5.30	Medium strong thinly to thickly laminated reddish brown fine to medium		
							١.			-	grained SANDSTONE with many thinly to thickly laminated mudstone bands. Partially to distinctly weathered. Fractures are subhorizontal		
3/11							4	3.00	233.37	6.00	very closely to closely spaced planar to undulating smooth clean	3.00m	
,, , , ,			6.00	100	100	87		3.00	200.07	- 0.00	Weak locally medium strong thinly to thickly laminated reddish brown	.10m	
										-	laminated mudstone bands.Partially weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean with localised gravel infilled		
										-	::::		
										_			
										-			
			7.50	100	93	77	3			-			
										-			
										_			
										-			
										-			
			9.00	100	95	65		1	230.27	9.10	Madisus about 4 about 4 bish to bliefly law made days in house for 5 at 5		
										-	Medium strong to strong thinly to thickly laminated greyish brown fine to medium grained SANDSTONE with cross bedding noted. Partially to unweathered. Fractures are subhorizontal very closely to medium		
							3		220 57		spaced planar to undulating smooth clean		
9/11							10	3.00	229.57 229.37	9.80	Medium strong to strong thinly to thickly laminated reddish brown fine to	1.40m	10
#	narks: Descrip	tion base	d on Dri	ller's lo	og.						Hole Diam.		Cas
No	groun	ction pit w d-water o tration Te	bservati	ons ar	e reco	orded	due to	o the use	e of wate	ear servi r flush.	ces. 130	10.00	3.0
	Driller	Origi	nator			Ground				/ater Ado	led Chiselling Flush R Fig No:		
	PS	R	В	Struc	K Ro	se To	ııme(n	nin) Cut	Off Fro	orn	Chiselling Flush Fig No: Fig	i	
Ch	k & App		atus									et 1 of 2	
		DR	AFT								Scal	e 1:50	

Driller	Originator		Groun	d-water		Water	Added		Chiselling			FI	ush		6
PS	RB	Struck	Rose To	Time(min)	Cut Off	From	To	From	То	hh:mm	Returns	Type	From (m)	To (m)	٠,
Po	KD										100	Air	1.20	3.00	-
											100	AirWM	3.00	6.00	-
Chk & App	Status														-
	DRAFT														1 6
	DIVALL														1.6

	F	RA	_	B NG & GI	_	RN	S
	Loc	ation: E				Orientation	_ on:∖
	Ø		1 7088	54.7			
	Progress		nples			ests	
	Pro	Depth	Туре	Depth	1	Result	
Style: BOREHOLE NEW Flie: P:(GINTW/PROJECTS/26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:25:56 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com	Rer	narks:					
NTW/F	# Aı	Descript n inspec	tion pit v	ed on Dr was exca	avated I	by hand to	a de
V File: P:\Gl	N.	o ground	d-water	observat	tions ar	e recorded ed out usin	due
E NEV		Driller		ginator	Struck	Groun	d-wa
REHOL		PS		RB	2	1.555 10	
Style: BOF	Ch	ık & App		tatus RAFT			

Client: SHE Transmission plc

ingineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH06

Inspection Pit to Rotary Open Hole to Rotary Core Drilling to

1.20m 3.00m 10.00m

Equipment: Hand Tools, Track Mounted Commachio Geo 205 /ertical

Ŋ		1 70005	T.1	T4-		Level			—			D	ackfill
Progress	Sar	nples		Tests	Casing Depth		Depth	Description of Strata		Legend	Water	- Di	
Pro	Depth	Туре	Depth	Result	Depth	239.37	2004) Fe	Depth	Symbol	Depth
							-	medium grained SANDSTONE with many thinly to thickly laminated mudstone bands. Unweathered.Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean with localised gravel infilled	/				
							-	\localised gravel infilled END OF BOREHOLE	. 」				
							-	END OF BOILEHOLE					
							-						
							_						
							_						
							_						
							-						
							-						
							-						
							-						
							-						
							-						
							-						
							-						
							_						
							_						
							-						
							-						
							_						
							-						
							-						
							-						
							-						
							_						
							_						
							_						
							_						
							_						
							-						
							-						
							-						
							-						
							_						
							-						
							_						
							_						
							_						
							-						
							-						
							-						
							-						
Rei	l marks:								\dashv	Hole	Т	o Dep	oth
#	Descrip	tion base	d on Drill	ler's log. vated by hand to a dep					}	Diam 130	. Borin		Casing 3.00
ΙΑ	n inspec	ction pit wa	as excav	ated by hand to a dep	th of 1.20	Um to cle	ar servi	ces.		130	10.00	'	3.00

An inspection pit was excavated by hand to a depth of 1.20m to clear serv. No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD70.

Diam.	Boring	Casing
130	10.00	3.00

Driller	Originator		Groun	d-water		Water	Added		Chiselling		Flush				
PS	Ü	Struck	Rose To	Time(min)	Cut Off	From	To	From	To	hh:mm	Returns	Type	From (m)	To (m)	'~
P3	RB										100	Air	1.20	3.00	l ⊜i
											100	AirWM	3.00	6.00	5
Chk & App	Status	1													13
	DRAFT														1
															N

Fig No: В6 Sheet 2 of 2 Scale 1:50

DAEDHDAI	
RAEBURN	_
DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH07

Inspection Pit to Sonic Boring to Geobore-S to

0.45m 2.70m 10.00m

Location: E 279345.8

Slyle: BOREHOLE NEW File: P:\GINTWAPROJECTS\26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:25:57 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

Ν	70	980	87	.3	
---	----	-----	----	----	--

ess	Samples Tests Depth Type Depth Resu						Level			pu	Water		ackfill		
Progress	Depth	Туре	Depth					Casing Depth	(mOD) 235.10	Depth	Description of Strata	Legend	Depth	Symbol	Depth
23/11									233.10	_	Soft brown to dark brown spongy amorphous PEAT	77 7			0.20
2023									234.65	0.45		1, 11,			0.20
	0.40 0.45-	B B, D							234.03	0.43	Brown very sandy silty GRAVEL with medium cobble content. Sand is fine to coarse. Gravel is angular fine to coarse of sandstone. Cobbles	¥ [1]		ĦĦ	1
	1.20 0.45-										are angular, up to 150mm of sandstone	* 0 ×]
	2.00									_		1)99			1.00
	1.20-	B, D									beneath 1.20m becoming silty to very silty.	×8.			,
	2.70 1.20											9./			
												20.3			
												8.%			1
	2.00	B, D								-		% ().		▮₽	
												80.6			.
				TCR	SCR	RQD	FI	-	232.40	2.70					
			2.70	100	15	0			202.10		Firm reddish brown slightly sandy gravelly CLAY with cobbles noted. Gravel is fine to coarse angular to subangular of sandstone. Cobbles	龙			1
										-	are angular to subangular of sandstone	7.0		▮₽	
							NA					70			
												F 0 0			
									231.30	3.80					
							15		231.10	4.00	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fractures Set 1: subhorizontal closely spaced				1
			4.00	87	13	9					Ďlanar to undulating smooth clean. Fracture Set 2: subverticál planar to undulating rough clean			H	.
											Firm reddish brown slightly sandy gravelly CLAY with cobbles noted. Gravel is fine to coarse angular to subangular of sandstone. Cobbles	72			
							NA				are angular to subangular of sandstone	24			
							" '				between 4.90 and 5.50m subvertical fracture planar to undulating			H	1
										-	smooth to rough clean.			ľħ.	.
							45		229.80	5.30	Strong thinly to thickly laminated reddish brown fine to medium grained	<u>-0 °</u>			
			5.50	100	77	67	15		229.60	5.50	SANĎSTOŃE. Fractúres are subhorizontal closely spaced planăr to undulating smooth clean	100			
							NA		229.30	5.80	Firm reddish brown slightly sandy gravelly CLAY with cobbles noted. Gravel is fine to coarse angular to subangular of sandstone. Cobbles				1
										-	are angular to subangular of sandstone Strong thinly to thickly laminated reddish brown fine to medium grained	::::		▮₽	
							3				SANDSTONE with occasional interbedded thinly laminated mudstone laminae. Partially wethered. Fractures are subhorizontal closely to			18.	.
									228.50	6.60	medium spaced planar to undulating smooth with some cay infill				
											Medium strong to strong thinly to thickly laminated light reddish grey fine to medium grained SANDSTONE with cross bedding noted. Prtilly				1
										_	wethered. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth clean	::::			
			7.00	100	97	60						:::::			.
												:::::		阻	
							6				+	::::			
											1				
										-	1				
									000 00	0.50					
			8.50	100	90	45		-	226.60	8.50	Medium strong to strong thinly to thickly laminated reddish brown fine to				
							5				medium grained SANDSTONE with some intercalation of thickly laminated light greenish grey mudstone lenses. Partially weathered.			H	
									226.05	9.05-	Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean with gravel infill			#	
											Medium strong to strong thinly to thickly laminate reddish brownd fine to medium grained SANDSTONE. Unweathered. Fractures are				
		subhorizontalvery closely to closely spaced planar to undulating smooth				H									
						·									
23/11								2.70	225.10	<u>10</u> .00			4.30m		10.00
Rer	narks:										END OF BOREHOLE	Hole Diam	T	o De g	pth Casing
		tion based ction pit wa				nd to a	a dept	th of 0.4	5m to cle	ar serv	ices. Exemption number	177	2.70		2.70

An inspection pit was excavated by hand to a depth of 0.45m to clear services. Exemption number No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD48.

noie	To Deptit									
Diam.	Boring	Casing								
177 146	2.70 10.00	2.70								

ı	Driller	Originator		Groun	d-water		Water	Added	Chiselling				FI	ush		R	Fig No:
ı	D.I	RB	Struck	Rose To	Time(min)	Cut Off	From	To	From	То	hh:mm	Returns	Type	From (m)	To (m)	A	1 19 110.
ı	DJ	KD										100	Water	0.45	10.00		D7
ı												l				5.	B7
ı	Chk & App	Status														8	Sheet 1 of 1
		DRAFT														R	Scale 1:50

DAEDIIDN	
RAEBURN	Γ.
■■■ DRILLING & GEOTECHNICAL LTD	ľ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH08

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 2.70m 10.00m

Location: E 279174.6

Style: BOREHOLE NEW File: P./GINTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:25:58 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

N 708851.6

ess	Samples Tests Depth Type Depth Result				0	Level		•	pu	Water		ackfill			
rogr	Depth	Туре	Depth					Casing Depth	(IIIOD)	Depth	Description of Strata	Legend	Depth	Symbol	Depth
27/11 2023	-								228.66		Soft brown to dark brown spongy amorphous PEAT.	<u>~</u>		Ś	
2023										-		1, 11,			
	0.50	B, D								_		1 1 1			
,		_, _										1, 11,			
	0.90	B, D							227.76	0.90	Brown very gravelly silty fine to coarse SAND. Gravel is fine to coarse	жо			
	1.20	В		CPT>50	n 7.	18 /19.3	1 (85)	0.00	227.46	1.20	angular to subangular of sandstone.	×			
)	1.20	B	1.20	01 17 00	υ <u>ι.</u>	10719.5	1 (00)	0.00		-	Very dense rown very sandy silty GRAVEL with cobbles noted. Sand is fine to coarse. Gravel is fine to coarse angular of sandstone. Cobbles	9 19 8 3 6 8			
										-	are angular, up to 150mm of sandstone.	8.0			
1										-		200			
	2.00	В								-		18.8×			
										-).6			
				TCR	ecp	RQD	FI			_		Q. g			
			2.70	69	15	RQD 0	г		225.96	2.70	Assumed Zone of Core Loss	\			
							AZCL		225.56	3.10	·				
									223.30	3.10	Weak reddish brown SANDSTONE. Destructively weathered.				
										-	Recovered as sandy very clayey angular fine to coarse gravel of sandstone with cobbles noted	:::::			
										-		:::::			
							NA			-		:::::			
			4.00	100	73	30				-		:::::			
									224.36	4.30	Modium strong to strong thinly to thickly laminated raddish brown fine to	:::::			
											Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with interbedded thinly to thickly laminated mudstone laminae. Fractures are subhorizontal very closely	:::::			
											to medium spaced planar to undulating smooth clean and locally gravel infilled	::::			
							10			_	between 4.90 and 5.50m subvertical fracture planar to undulating smooth to rough clean.				
										_	Sillout to rough dealt.				
									223.16	5.50		::::			
			5.50	100	90	73				_	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with interbedded thinly to thickly laminated				
,										-	mudstone laminae. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth clean and locally gravel infilled				
										-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	::::			
							7			_		::::			
												:::::			
										_		::::			
			7.00	100	00	00			221.66	7.00_	Strong thickly laminated to thinly bedded greyish brown fine to coarse	:::::			
			7.00	100	90	90				-	grained SANDSTONE with occasional cross bedding noted. Fractures				
										-	are subhorizontal closely to medium spaced planar to undulating smooth clean	:::::			
										-		::::			
										-		:::::			
												::::			
												:::::			
			8.50	93	87	58	6								
										_		::::			
										-		::::			
										-		::::			
										-					
										-					
27/11								2.70	218.66	10.00			0.00m		10.00
Rer	narks:	•						U	3.00		END OF BOREHOLE	Hole Diam	Т	o Dep	
		otion based				nd to	a dent	h of 1.2	0m to cle	ar servi	ces.	177	2.70		2.70
N	o groun	id-water of	bservati	ons a	re rec	orded	due to	the use	e of wate			146	10.00	ا ر	

An inspection by twise scalaried by find to a depin of 1.20m to clear services. No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD48.

Fig No:	

Driller	Originator		Groun	d-water		Water	Added		Chiselling			P			
DJ	RB	Struck	Rose To	Time(min)	Cut Off	From	To	From	To	hh:mm	Returns	Type	From (m)	To (m)	~
DJ	KD										100	Water	1.20	10.00	
															5
Chk & App	Status														B.
															8
	DRAFT							l							K
								l							N

DAEDIIDN	
RAEBURN	_
DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH09

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 4.05m 10.05m

Location: E 279245.7

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear

LS250 Mini Sonic; Water Flush N 709074.8 Samples Tests Level end Water

SS		mples	T		Tests			<u> </u>	Level	 		70		Ba	ackfill
Progress		Tiples						Casing		Depth	Description of Strata	Legend	Water		
Pro	Depth	Туре	Depth		Re	esult		Depth	245.98		·		Depth	Symbol	Depth
22/11 2023										_	Soft brown to dark brown spongy amorphous PEAT	71 7		\bowtie	0.20
										.		1/ 1/			
	0.50	B, D							245.43	0.55	Soft brown to reddish brown slightly gravelly sandy CLAY. Sand is fine	<u> </u>			
											to coarse. Gravel is fine to coarse angular of sandstone	<u> </u>			
	4.00								244.00	1 10-		<u>-</u>			
		B, D		ODT			== (=)	0.00	244.88	1.10	Reddish brown silty fine to coarse SAND & GRAVEL with cobbles	ø .			
	1.20- 2.70	В	1.20	CPT>	50 <u>19</u>	9.6 (75)/5	50 (5)	0.00			noted. Gravel is fine to coarse subangular to subrounded of sandstone and quartz. Cobbles are angular to subrounded of sandstone	. · · . l			
												%· o·			
												× .			
	0.00									_		.0			
	2.00	B, D										% · · ·			
												% · · ·			
				TCF	RSCR	RQD	FI		042.00	270-		. 0.			
			2.70	100	_	58	 	1	243.28	2.70	Weak reddish brown SANDSTONE. Destructively weathered.	- 			
							NA]	242.98	3.00_	Recovered as sandy very clayey angular fine to coarse gravel of sandstone with cobbles noted				
										.	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with interbedded thinly to thickly laminated				
											mudstone laminae. Partially weathered. Fractures are subhorizontal				
							9				very closely to medium spaced planar to undulating smooth clean and locally gravel infilled				
									241.93	4.05-					
			4.05	100	37	30					Weak reddish brown SANDSTONE with interbedded mudstone lenses. Destructively weathered. Recovered as sandy very clayey angular fine	1::::			
							NA		241.63	4.35	to coarse gravel of sandstone with cobbles noted. Occasional core with	 			
							١.				subvertical fractures noted Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with interbedded thinly to thickly laminated				
							4		241.08	4.90	grained SANDSTONE with interbedded thinly to thickly laminated mudstone laminae. Partially weathered. Fractures are subhorizontal				
									241.00	4.90	closely to medium spaced planar to undulating smooth clean and locally gravel infilled	/::::: <u> </u>			
											Weak reddish brown SANDSTONE with interbedded mudstone lenses.				
											Destructively weathered. Recovered as sandy very clayey angular fine to coarse gravel of sandstone with cobbles noted. Occasional core with				
			5.55	97	87	60	NA				subvertical fractures noted				
			0.00	•	"										
									240.03	5.95	Strong thinly to thickly laminated reddish brown fine to medium grained	1::::			
										-	SANDSTONE with interbedded thinly to thickly laminated mudstone laminae. Partially weathered to unweathered. Fractures are	::::			
											subhorizontal closely to widely spaced spaced planar to undulating smooth clean and locally clay infilled				
							1				Smooth death and locally day illillied	::::			
									220.02	6.05		::::			
							NA,	1	239.03 238.93	6.95 7.05-	Weak reddish brown SANDSTONE with interbedded mudstone lenses.				
			7.05	100	97	77	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			-	Destructively weathered. Recovered as sandy very clayey angular fine to coarse gravel of sandstone with cobbles noted. Occasional core with	/ ::::			
										-	\subvertical fractures noted /	::::			
										-	Strong thinly to thickly laminated greyish brown SANDSTONE with thickly Imainted interbedded siltstone. Partially weathered to				
										-	unweathered. Fractures are subhorizontal very closely to medium spaced planar to undulating smooth to rough clean and locally gravel				
										-	infilled	::::			
										-		::::			
							6			-					
			8.55	100	97	87	1			-		:::::			
										-					
										-		::::			
										-					
									236.53	9.45 -		::::			
										-	Medium strong to strong thinly to thickly reddish brown laminated fine to medium grained SANDSTONE with some intercalation of thickly	::::			
							8			-	laminated light greenish grey mudstone lenses. Partially weathered to unweathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean with localised gravel infill	:::::			
D-	n orl · - ·							<u> </u>	<u> </u>		spaced planar to undulating smooth clean with localised gravel infill	Hole	1 1	o Dep	oth
	narks:	tion hase	d on Dri	llorlo	la m							Diam			Casing

DRAFT

File: P:\GINTW\PROJECTS\26555.GPJ+44 (0) 1698 710999 Printed: 26\01/2024 13:25:59 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Style: BOREHOLE NEW

Description based on Driller's log.

Description pit was excavated by hand to a depth of 1.20m to clear services.

No ground-water observations are recorded due to the use of water flush.

The Penetration Tests were carried out using Trip Hammer RD54.

Flush
Type From (m) Ground-water
Struck Rose To Time(min) Cut Off Water Added From To Chiselling To Driller Originator To (m) 10.05 From hh:mm Returns RB DJ Water Chk & App Status

Fig No:

RAMBU

177 146

В9 Sheet 1 of 2 Scale 1:50

2.70 10.05

2.70

						Site: LT520 BRACO WEST SUBSTATIO									
F	Δ	FI	RI	П	RN										
		The second second	CONTRACTOR OF STREET	And Salar and S	NICAL LTD	Client: SHE Transmission plc									
		- Dividua	G G GL	J 1 L L 1	WILLSELL D	Engineer: SSE Perth Inveralmond HSE									
Location: E 279245.7 Orientation							rtical			Equipment: Hand Tools, Track N					
	١	1 70907	4.8						LSZ	250 Mini Sonic; Water Flush					
ess	Sar	nples		Т	ests		0	Level							
Progress	Depth	Type	Type Depth		Result		Casing Depth	(IIIOD)	Depth	Descrip					
٩		Турс					· .	245.98	40.05						
l								235.93	10.05						

Contract No: 26555

BH09

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 4.05m 10.05m

N 709074.8						I 1 1	LS	uipment: Hand Tools, Track Mounted Boart Longyear 250 Mini Sonic; Water Flush						
Progress	Sam Depth	rples Type	Depth	Tests Result	Casing Depth	245.98	l	Description of Strata		Legend	Water Depth	0	ack De	
						235.93	10.05	END OF BOREHOLE				S)	-10	
							-							
							-							
							-							
							-							
							-							
							-							
en	narks:									Hole		o Dep	oth	
# I Ar	Descript inspect	on base ion pit w	d on Driller's as excavate	log. d by hand to a de are recorded due rried out using Tri	pth of 1.2	0m to cle	ear serv	ices.		Diam 177 146	2.70	1	Ca 2.	
No Th	ground e Penet	-water o ration Te	bservations ests were ca	are recorded due rried out using Tri	to the use p Hamme	e of wate r RD54.	r flush.			140	10.03			
	Oriller		nator	Ground-wa			Vater Ado	Jed Chiselling Flush To From To hh:mm Returns Type From (m) To (m)	R■	Fig No	D:			
	DJ	R	B Su	1,030 TO THIE	Cut	J., 110		100 Water 1.20 10.05	RAEBU		39			
Ch	k & App	Sta	itus						13	l si	heet 2 o	f 2		

RAFBURN
DRILLING & GEOTECHNICAL LTD

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH10

Inspection Pit to Geobore-S to

1.20m 10.00m

Contract No: 26555

Location: E 279097.1 N 708955.4 Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

<u>က</u>		nnloo	T	-	Footo				Level			70		Backfi
Progress	Depth	nples Type	Depth		Fests Re	sult		Casing Depth	(mOD)	Depth	Description of Strata	Legend	Water Depth	
/11 23	'	,,	'						240.05	_	Soft brown to dark brown spongy amorphous PEAT	77 7		0.
123									239.55	0.50		1, 11,		0.
	0.50	B, D							239.25	-	Brown to reddish brown gravelly silty fine to medium SAND with cobbles noted. Gravel is fine to coarse angular of sandstone. Cobbles are angular, up to 140mm and of sandstone	₩		0
				TCR	SCR	RQD	FI		238.85	1.20	Reddish brown to brown gravelly very silty fine to medium SAND with cobbles noted. Gravel is fine to coarse angular of sandstone. Cobbles are angular of sandstone	×		0
	1.20	B, D	1.20 1.20	^S 100'	01.2	2/3.4.3.4	4	1.20		-	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to destructively weathered. Recovered as			0 1
										-	sandy very clayey gravel		0	0
							NI			-				° 2
			2.50	87	55	10				-				
			2.50	01	33	10				-				
									236.95	3.10	Moderately weak to medium strong thinly to thickly laminated reddish			
							14			-	brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean and locally gravel infilled			
							14		236 OF	4.00	Stribour clean and locally gravel infilled			
			4.00	83	40	15			236.05	4.00	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated			
							NI		235.50		mudstone bands. Distinctly weathered. Recovered as sandy clayey gravel			
							10		235.30	4.75	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fractures are			
							NI		234.95	5.10	\subhorizontal closely spaced planar to undulating smooth clean Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as sandy clayey	 		
			5.50	100	73	17	15		234.55	5.50	mudstone bands. Distinctly weathered. Recovered as sandy clayey gravel Medium strong locally strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated	<u> </u>		
										-	\ mudstone bands. Distinctly weathered. Fractures are subhorizontal \ very closely to closely spaced planar to undulating smooth clean and			
										-	\locally gravel infilled \textsquare Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fractures are subhorizontal very closely to			
							12			-	bands. Distinctly weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean and locally gravel infilled			
										-				
			7.00	100	73	41			232.85	7.20	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly			
							NI		232.35	7.70	laminated mudstone bands. Partially weathered. Recovered as sandy gravel			
										-	Strong locally very strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional thickly laminated mudstone bands. Partially weathered. Fractures are subhorizontal very			
										-	closely to medium spaced planar to undulating smooth clean and locally gravel infill			
			8.50	100	80	33				-				
							10			-				
										-				
										_				
/11	narks:							10.00	230.05	10.00	END OF BOREHOLE	Hole	7.20m	1(
# I Ar	Descrip n inspec	tion base tion pit w	vas exca	vated	by ha	and to a	a dept	th of 1.2	0m to cle	ear servi		Diam. 145	Boring 10.00	Cas 1.2 10.
No	groun	d-water o tration T	observat	ions a	re rec	orded	due to	the use	e of wate	er flush.				10.
	D=10	1 6:				Grove	d-water	•	I 14	Vater Ado	led Chiselling Flush	E		
	Driller S McL	_	inator RB	Struc			Time(m				To From To hh:mm Returns Type From (m) To (m) 100 Water 1.20 4.00	Fig No	o: 810	
Ch	k & App		atus									Sh	neet 1 of 1	
		DR	AFT								R	Sc	ale 1:50	

Diam.	Boring	Casing
145	10.00	1.20 10.00

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ısh		R
S McL	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	^
3 IVICE	ND.										100	Water	1.20	4.00	
											0	Water	4.00	5.50	5
Chk & App	Status	1									100	Water	5.50	10.00	MB DR
O a / pp															8
	DRAFT														
															2

	. =		-					e: LT5	520 BF	RACC	WEST SUBSTATION		t No: 2		5	
R		Æ						ent:	SHE Tra	ansmis	sion plc	Inspecti BH1	on Pit N			
===		DRILLIN	NG & GE	OTEC	HNIC	AL LTD		gineer:	SSE Pe	erth Inv	eralmond HSE	Inspection	n Pit to		1.2	20m
Loca		E 27916			Orie	entatio	n: Ve	rtical		Equ	uipment: Hand Tools	_				
Progress	Sar Depth	nples Type	Depth		Tests Re	esult		Casing Depth	Level (mOD) 216.61	Depth	Description of Strata		Legend	Water Depth	Symbol	Backfill Dep
1/12 2023									216.31	0.30	Soft brown to dark brown spongy pseudo-fibrous PEAT		17 7 7 71 7			
	0.50	B, D								-	Brown to reddish brown very gravelly sifty fine to coarse SAND. (is fine to coarse rounded to sub-angular of sandstone and quartz	zite	xo			0.5
	1.20	D							215.41	1.20	# Driller notes Red brown sandy CLAY with sandstone boulders		· · · ×			
									215.01	1.60	Weak to moderately weak thinly to thickly laminated reddish broy	vn fine			Ħ	
			2.00	TCR 100	SCR 13	RQD 0	FI NI			-	Weak to moderately weak thinly to thickly laminated reddish brov to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to destructively weathered. Recovere sandy very clayey gravel	ed as				2.0
			3.50	100	40	11										2
			3.30	100	40	''				-						>
								-	212.41	4.20	Weak to moderately weak thinly to thickly laminated reddish brov	vn fine	::::			2
							27	1	212.11	4.50	Weak to moderately weak thinly to thickly laminated reddish brov to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fracture Set 1: subhorize very closely to closely spaced planar to undulating smooth clean locally gravel infilled. Fracture set 2: subvertical planar to undulating smooth clean with localised clay smears	ontal and				5
							10		211.61	5.00	Moderately weak to medium strong thinly to thickly laminated red	dish				5.0
			5.00	100	90	53				-	brown fine to medium grained SANDSTONE with some thickly laminated mudstone bands. Partially weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean locally gravel infilled	/	(::::			
										-	Medium strong to strong thinly to thickly laminated reddish brown medium grained SANDSTONE with some thickly laminated mudbands. Partially weathered. Fractures are subhorizontal closely to	stone				
							8			_	medium spaced planar to undulating smooth clean locally gravel	infilled				
									210.11	6.50	Return 6 50 7 50m Subjective fracture					
			6.50	100	100	37		1	210.11	-	Between 6.50-7.50m Subvertical fracture Medium strong to strong thinly to thickly laminated reddish brown medium grained SANDSTONE. Partially weathered to Unweather English Set 1: which was a plant of the product	fine to red.				
										-	Fracture Set1: subhorizontal closely to widely spaced planar to undulating smooth clean. Fracture Set 2: oblique to subvertical p to undulating smooth clean	lanar				
										-						
			8.00	100	100	93	3			-						1
										-						1
										-						
								1	207.41	9.20	Medium strong to strong brown thinly to thickly laminated reddish	fine to	:::: ::::			
			9.50	100	90	44	9			-	Medium strong to strong brown thinly to thickly laminated reddish medium grained SANDSTONE. Partially weathered to unweather Fracture Set 1: subhorizontal very closely to closely spaced plan undulating smooth clean. Fracture Set 2: subvertical planar to	red. ar to				<u>-</u>
									206.61	10.00	undulating smooth clean		:::::			10.0
# I Ar	n insped		as exca	vated	by ha				20m to cle se of wate		END OF BOREHOLE		Hole Diam.	Borir	To De	epth Casir
		tration To														
	Oriller PS	_	inator RB	Struc	k Ro	Ground se To		r nin) Cut		Vater Add	ded Chiselling Flush To From To hh:mm Returns Type From (m) To (m)	RAEBU	Fig No): 311		
Ch	k & App		atus AFT									מאכשו	Sh	neet 1 d ale 1:5		

RAEBURN	
RAEDURN	ŀ
III III III DRILLING & GEOTECHNICAL LTD	

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH12 NEW

Contract No: 26555

Inspection Pit to Sonic Boring to Geobore-S to

1.20m 2.70m 10.85m

Location: E 279276.4 NI 700011 5

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

	1	N 70884	1.5								250 Willin Gorilo, Water Flush				
9SS	Sar	nples		7	ests				Level			В	Water		ackfill
Progress	Depth	Туре	Depth			sult		Casing Depth	(IIIOD)	Depth	Description of Strata	Legend	Depth	Symbol	Depth
		туре	Deptil		Ne	Suit		Ворит	223.15		Coff have to deal have great and file and DEAT		Борат	Ş	Depui
30/11 2023										_	Soft brown to dark brown spongy pseudo-fibrous PEAT	71			
										_		1/ 1/			
	0.50	B, D										77 7			
	0.70	В							222.45	0.70	Brown to reddish brown silty fine to coarse SAND & GRAVEL. Gravel is	⊗			
	0 0									-	fine to coarse rounded to sub-angular of sandstone and quartzite	^· _o			
	1.00	D							221.95	1.20		· · ·			
		B, D							221.90	1.20	Weak Brown to reddish brown SANDSTONE recovered as very	 ::::: 			
	2.70 1.20									-	gravelly silty fine to medium sand with cobbles noted. Gravel is fine to coarse angular of sandstone and quartzite. Cobbles are sub-angular	::::			
										-	up to 120mm of brown sandstone	::::			
										-		::::			
										_		::::			
										_		::::			
												::::			
				TCD	SCR	BOD	FI	1				1::::1			
			0.70	TCR	69	RQD	FI	1	220.45	2.70	Madium strong to strong think, to think, love in stad and disk busy of the				
			2.70	96	69	54				-	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with some thickly laminated mudstone	::::			
							14		240.05	2 20	bands. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth to rough clean with occasional clay smear	::::			
								1	219.95	3.20		::::			
										-	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with some thickly laminated mudstone bands. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth to rough clean with localised gravel infill	::::			
							8			-	planar to undulating smooth to rough clean with localised gravel infill	::::			
							"			_	Between 3.60 to 3.70m clay band noted	::::			
									219.15	4.00		::::			
			4.00	100	87	21				_	Moderately weak to medium strong thinly to thickly laminated reddish brown reddish brown fine to medium grained SANDSTONE. Recovered	::::			
							NI				as Non-intact	::::			
1									218.55	4.60		::::			
								1			Moderately weak to medium strong thinly to thickly laminated reddish	:::::			
										-	brown fine to medium grained SANDSTONE with many thinly to thickly laminated greyish brown mudstone bands. Distinctly weathered. Fracture Set 1: subhorizontal very closely to closely spaced planar to	::::			
										-	Fracture Set 1: subhorizontal very closely to closely spaced planar to undulating smooth clean. Fracture Set 2: subvertical to oblique	::::			
							9			-	undulating rough clean with localised clayey gravel infill	::::			
							"			-					
			5.50	100	97	63	1			-		::::			
									217.25	5.90 ⁻		::::			
1									217.20	J.30 _	Medium strong thinly to thickly laminated reddish brown fine to medium	 :::: 			
											grained SANDSTONE with many thinly to thickly laminated mudstone bands. Fractures are subhorizontal very closely to medium spaced	::::			
											planar to undulating smooth clean	::::			
										-		::::			
										-		1::::1			
										-					
			7.00	100	100	52	7			-		::::	ı		
										-		::::			
										-		::::			
										-		::::			
										-		::::			
30/11				ļ				2.70	215.15	8.00		::::	0.40m		
			8.00	100	100	65				_	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thinly to thickly laminated	1 1	4.40m		
											mudstone bands. Fracture Set 1: subhorizontal very closely to medium				
										-	spaced planar to undulating smooth clean. Fracturé Set 2: oblique planar to undulating rough and gravel infilled	::::	ı		
										-		::::	ı		
										-		::::	ı		
										-		[::::]			
										-		::::	ı		
			9.35	100	100	83	_ ا			-		::::	ı		
			0.00				5			_		::::	ı		
1										_					
L												::::			
Rer	narks:											Hole		o Dep	
#	Descrip	tion base	d on Dri	ller's lo	na							Diam.	. Borin	y (Casing

Style: BOREHOLE NEW File: P./GINTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:26:02 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Description based on Driller's log.

An inspection pit was excavated by hand to a depth of 0.70m to clear services. Exemption number

No ground-water observations are recorded due to the use of water flush.

Diam.	Boring	Casing
177 146	2.70 10.85	2.70

Dr	riller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ısh		P
		RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	To	hh:mm	Returns	Type	From (m)	To (m)	~
: '	DJ	KD										100	Water	0.70	10.85	
																Ê
Chk	& App	Status														11
		DRAFT										l				Ř
-		2.0														N

Fig No: B12 Sheet 1 of 2 Scale 1:50

								: LT5	20 BI	RAC	O W	/EST S	SUBS	ΓΑΤΙΟ	N				Cont	ract No:	2	6555	5	
F	RA						Clie	nt: \$	SHE Tr	ansn	nissio	n plc							ВН	12 N	١E	W		
		DRILLIN	IG & GE	OTECH	NICAL	LTD						lmond H	SE						Sonic	ction Pit to Boring to ore-S to			1.2 2.7 10.	
Loc	ation: E	27927 70884			Orier	ntatio	n: Ver	tical				nent: Ha Mini Soi				ed Boa	rt Long	gyear						
Progress	Sam Depth		Depth		ests Res	ult		Casing Depth	(00)		oth			Desc	ription of	Strata				Legend	,	Water Depth	Symbol	ackfill Dept
<u> </u>			9.35						223.15		-												Ś	
									212.30	10.8	- 85				O OF BO						:			10.8
#	narks: Descriptio	on base	d on Dr	iller's log] .				I											Di	ole am.	Borin		Casin
Α	n inspecti o ground-	on pit w	as exca	avated b	y han	d to a	dept due to	h of 0.7 the us	0m to cl e of wate	ear se er flus	ervices h.	. Exemptio	n numbe	er							77 46	2.70 10.8	5	2.70
	Driller DJ		nator B	Struck			-water ime(m	nin) Cut		Nater i	Added To	From	Chiselling To	hh:mm	Returns 100	Type Water	ush From (n 0.70	n) To (m		Fig		 : 12		
Ch	ık & App	Sta DR.	atus AFT																BUR	Ĭ	Sh	eet 2 o ale 1:50		

DAEDIIDN
RAEBURN
TO THE RESERVE THE PRICE OF THE

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH13

Inspection Pit to Sonic Boring to Geobore-S to

Contract No: 26555

Location: E 278633.3

N 708981.5

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

ess	Sar	nples		7	Tests				Level			pu	Water -	Bac	ckf
Progress	Depth	Туре	Depth		Re	sult		Casing Depth	(mOD) 259.53	Depth	Description of Strata	Legend	Depth	ogw.	D
)/11 023									200.00		Soft brown to dark brown spongy amorphous PEAT	1/ 1	×	^×	-
023												1, 11,	*************************************	******	_
	0.50	B, D										77 7	×	×	(
												1, 11,		В	
												77 7	Ħ	Ħ	
	1.20-	В							258.33	1.20	Very soft black to dark brown plastic amorphous PEAT	1, 11,	Ħ	Ħ	
	2.70 1.20	UT										1, 11,		H_	1
0/11	1.65	D						1.20				<u> </u>	Dry		
,,,,								1.20	257.53	2.00		1/ 1/			
	2.00- 3.80	B, D							057.00	2.30	Soft to firm brown grey mottled slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is fine to coarse angular to subrounded of	<u></u>	0	∄	
									257.23	2.30	k sandstone -	W. 77 *.0°.			
											Medium dense brown very gravelly clayey fine to coarse SAND with medium cobble content. Gravel is fine to coarse angular to subangular of sandstone. Cobbles are angular to subangular of sandstone	(.60 ×			
	2.70- 3.80 2.70	B, D	2.70	SPT=28	B <u>1.2</u>	2 /5.5.12	2.6	2.70				8. 8. 8 8. 8. 8	0+	7	2
	2.70									-		X X X	0		
												N / XI	0	0	
												₹.Q. 8		0	
	3.80-	R							255.73	3.80	Province are collected for the control of the collected for the co	× Ø.	0		(
	3.80	0		TOP	005	POS	F.	-		-	Brown very gravelly very clayey fine to coarse SAND. Gravel is fine to coarse subangular to subrounded of sandstone				
			4.20	TCR 100	SCR 27	RQD 0	FI	-	255.33	4.20	Weak reddish brown SANDSTONE. Destructively weathered.	a			
											Recovered as sandy very clayey angular fine to coarse gravel of sandstone with cobbles noted	::::			
												::::			
							NA					::::			
												::::			
1/11					L			5.70					Dry		
			5.70	100	0	0			253.63	5.90	Week to made white week to the control of the contr				
										-	Weak to moderately weak reddish brown SANDSTONE Distinctly weathered. Recovered as non-intact with occasional clay bands	::::			
							NI					::::			
									252.83	6.70		::::			
										3.10	Medium strong to strong thickly laminated to thinly bedded greyish				
							14		252.00	7 00	Medium strong to strong thickly laminated to thinly bedded greyish brown fine to medium grained SANDSTONE. Fractures Set 1: subhorizontal very closely to closely spaced planar to undulating smooth clean and gravel infilled. Fracture Set 2: subvertical planar to				
			7.20	100	27	13		1	252.33	7.20	undulating smooth cleanbetween 7.20 and 7.40m subvertical fracture planar rough clean, with	 :::: 			
											\ \calcife mineralisation /				
											Medium strong thickly laminated to thinly bedded reddish brown fine to medium grained SANDSTONE healed subvertical fractures with calcite mineralisation noted. Fractures Set1: subhorizontal very closely to closely spaced planar to undulating smooth clean and gravel infilled. Fracture Set 2: subvertical planar to undulating smooth clean				
										-	closely spaced planar to undulating smooth clean and gravel infilled. Fracture Set 2: subvertical planar to undulating smooth clean				
												::::			
											between 8.40 and 8.70m subvertical fractureplanar rough clean, with calcite mineralisation	::::			
			8.70	100	77	23	14					::::			
			0.70	100	' '	23									
												::::	E		
2/11								10.00	249.53	10.00			5.10m		1
Ren	narks:							. 10.00	,0.00	,	END OF BOREHOLE	Hole Diam.	To I	Depth Ca	h
Ar	inspec	tion base tion pit w	as exca	vated	by ha	nd to a	a dept	th of 1.2	0m to cle	ear serv	ices.	177	1.80	4	4
No	groun	d-water o tration Te	bservati	ons a	re rec	orded	due to	o the use	e of wate	r flush.		145	10.00	10	
	Oriller	_	inator	Struc		Ground se To		r nin) Cut		/ater Ad	ded Chiselling Flush To From To hh:mm Returns Type From (m) To (m)	Fig No	D :		_
S	McL	8	RB -			-					Chise ing	E	313		
Ch	k & App		atus								100 Water 5.70 10.00	l	heet 1 of 1	1	
		I DP	AFT		- 1	- 1		1	1	1		I -	cale 1:50		

Diam.	Boring	Casing
177	1.80	4.20
145	10.00	10.00

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		3
S McL	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	'A
S IVICE	KD										100	Water	1.20	4.20	1 2
											100	Water	4.20	5.70	15
Chk & App	Status	1									100	Water	5.70	10.00	В
	DRAFT														18
	DIVALL														
															N

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

BH14 NEW

Contract No: 26555

Inspection Pit to Sonic Boring to Sonic Coring to

0.80m 2.70m 8.40m

Location: E 279416.7 N 709146.0 Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear

LS250 Mini Sonic; Water Flush

SS		mples	0.0	-	Tests				Level			70	10/. 1	Ва	ıckfill
Progress	Depth	Type	Depth			sult		Casing Depth	l .	Depth	Description of Strata	Legend	Water Depth	Symbol	Depth
4/12									246.72	0.20	Soft brown to dark brown spongy pseudo-fibrous PEAT	11/	1		
2023	0.50	B D								_	Firm reddish brown slightly sandy gravelly CLAY. Gravel is fine to coarse subangular to subround and includes sandstone				0.50
	0.50	B, D							246.12	0.80				目目	
		B, D						4.00	245.72	1.20	Brown to reddish brown slightly silty slightly sandy GRAVEL with cobbles noted. Sand is fine to coarse. Gravel is fine to coarse angular and sub-angular and includes sandstone. Cobbles are angular and sub-angular up to 90mm of sandstone	9.7.6 3.6.8 9.0.8			1.00
	1.20- 2.00 1.20	B, D	1.20	SPT=2	4 <u>7.1</u>	12 /8.7.5	<u>0.4</u>	1.20		-	Very weak brown to reddish brown SANDSTONE recovered as slightly gravelly silty fine to medium sand. Gravel is fine to coarse angular and includes sandstone				
	2.00-	B. D								- -					
	2.00- 2.70 2.00	,								-					
				TCR			FI		244.22	2.70		::::		H	2.70
			2.70	100	50	10	8			- - -	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fracture Set 1: subhorizontal to oblique very closely to closely spaced planar to undulating smooth clean and locally gravel infilled. Fracture Set 2:				
									243.32	3.60	subvertical planar to undulating smooth clean	::::			
									243.32	- 3.60	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as sandy clayey gravel				
			4.20	97	40	7	NI			-					
										-					
								-	242.12	4.80	Moderately weak to medium strong thinly to thickly laminated reddish	1::::			
							10 NI		241.82	5.10 ⁻ 5.40	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Fractures are subhorizontal to oblique very closely to closely spaced planar to undulating smooth clean and locally gravel infilled.	/ 			
			E 70	100	70	22	13	-	241.22		Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as sandy clayey	<u> </u>			
			5.70	100	73	33	NI		240.82	6.10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>			
										-	\understand	/ ::::			
			7.20	100	75	50	6			-	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional healed fractures with calcite mineralisation. Fracture Set 1: subhorizontal very closely to medium spaced planar to undulating smooth clean. Fracture Set 2:				
									239.02	- - 7.90	subvertical planar to undulating smooth clean with occasional gravel infilled				
							NI.	1	238.92	8.00	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated	 	1		
04/40							10	0.40	238.62		mudstone bands. Distinctly weathered. Recovered as sandy clayey	/ <u> ::::</u>	E 00=		
04/12			8.40	97	77	26	NI.	8.40	238.52	8.4U - -	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONEwith occasional healed fractures with calcite mineralisation. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean.		5.00m		
							10			-	Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as sandy clayey gravel				
										-	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional healed fractures with calcite mineralisation. Fracture Set 1: subhorizontal closely to medium spaced planar to undulating smooth clean. Fracture Set 2: subvertical planar to undulating smooth clean with occasional gravel infilled				
					<u> </u>				236.97	9.95	END OF BOREHOLE	Hole	T 2	o Dep	9.95 th
#		tion base						h -f 0 0	Ome to als		END OF BUREHOLE	Diam 145	n. Borin	ig (Casing 2.70

PIGENTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:26:04 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

An inspection pit was excavated by hand to a depth of 0.80m to clear services. Exemption number 76/2023. No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD54.

Diam.	Boring	Casing
145	8.40	2.70

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		B	Fig No:
SW	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	~	1 19 110.
300	KD										100	Water	0.80	8.40		
															B.	B14
Chk & App	Status														8	Shee
	DRAFT														R	Scale
															N	

RAEBURN

Site: LT520 BRACO WEST SUBSTATION

Client: SHE Transmission plc

Engineer: SSF Perth Inveralmond HSF

BH15 NEW

Contract No: 26555

Inspection Pit to Sonic Boring to Geobore-S to

Location: E 279328.4

E-mail: enquiries@raeburndrilling.com

Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177

Printed: 26/01/2024 13:26:05

P:\GINTW\PROJECTS\26555.GPJ+44 (0)1698 710999

File:

BOREHOLE NEW

Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear

LS250 Mini Sonic; Water Flush N 709282 6 Level Backfill Samples Tests Water Casino (mOD) Depth Description of Strata Depth Depth Туре Depth Depth Result Depth 253.23 11, Soft brown to dark brown spongy amorphous PEAT 252.93 0.30 0.30 D Reddish brown slightly gravelly clayey fine to medium SAND with cobbles noted. Gravel is fine to coarse sub-rounded to sub-angular and includes sandstone. Cobbles sub-angular to sub-rounded, up to 0.50 0.50 B, D <u>0</u>. Ö 120mm and of red-brown sandstone Ð. 252.03 1.20 Weak brown SANDSTONE recovered as slightly gravelly silty fine to medium sand with cobbles noted. Gravel is fine to coarse angular to subangular and includes brown sandstone. Cobbles are angular, up to 1.20 B. D 7.12/13.9.12.11 1.20 1.20 TCR SCR RQD FI 251.73 1.50 D 1.50 04.9 /11.7.15.12 1.50 1.50 1.50 90mm of sandstone Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to destructively weathered. Recovered as a sandy gravel with many angular cobbles NI 3.00 100 55 12 249.93 3.30 Moderately weak to medium strong thinly to thinly laminated reddish brown fine to medium grained SANDSTONE with some thinly to thickly laminated mudstone bands. Fracture Set 1: subhorizontal very closely to closely spaced planar to undulating smooth to rough clean and gravel infilled. Fracture Set 2: subvertical planar to undulating smooth clean 21 249.13 4.10 4.00 100 30 Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to destructively weathered. Recovered as a conductory. NI 248.63 4.60 sandy gravel Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with some thinly to thickly laminated mudstone bands. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth to rough clean and gravel 13 248.33 4.90 infilled Weak to moderately weak reddish brown thinly to thickly laminated fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to destructively weathered. Recovered as a conductory. NI 5.50 100 60 55 sandy gravel 247.13 6.10 Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with some thinly to thickly laminated mudstone bands. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth to rough clean 9 7.00 13 97 60 246.03 7.20 Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as a sandy gravel NI 245.43 7.80 Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with some thinly to thickly laminated mudstone bands. Partially weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth to rough clean 19 244.73 8.50 Weak to moderately weak thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as a sandy gravel 8.50 100 57 40 NI 244.03 9.20 Strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with occasional healed fractures with calcite mineralisation. Unweathered. Fractures are subhorizontal closely to medium spaced planar to undulating smooth clean 3

Remarks:

Description based on Driller's log. An inspection pit was excavated by hand to a depth of 1.20m to clear services.

No ground-water observations are recorded due to the use of water flush. The Penetration Tests were carried out using Trip Hammer RD54.

END OF BOREHOLE

Diam.	Boring	Casing
146	10.00	1.50 10.00

5.80m

Hole

10.00

To Depth

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ısh		Ē
C/V/	•	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	'~
300	KD										100	Water	1.20	4.00	Êi
											0	Water	4.00	10.00	뒮
Chk & App	Status														B
	DRAFT														Ř
															N
	SW	SW RB Chk & App Status	SW RB Struck Chk & App Status	SW RB Struck Rose To Chk & App Status	SW RB Struck Rose To Time(min) Chk & App Status	SW RB Struck Rose To Time(min) Cut Off Chk & App Status	SW RB Struck Rose To Time(min) Cut Off From Chk & App Status	SW RB Struck Rose To Time(min) Cut Off From To Chk & App Status	SW RB Struck Rose To Time(min) Cut Off From To From From To From To	SW RB Struck Rose To Time(min) Cut Off From To From To To From To	SW Struck Rose To Time(min) Cut Off From To From To hh:mm Chk & App Status Status	SW Struck Rose To Time(min) Cut Off From To From To hh:mm Returns 100 0 Chk & App Status Status	SW Struck Rose To Time(min) Cut Off From To From To hh:mm Returns Type 100 Water Water Water Water Chk & App Status	SW Struck Rose To Time(min) Cut Off From To From To hh:mm Returns Type From (m) Chk & App Status Status Status Status Water 4.00	SW Struck Rose To Time(min) Cut Off From To From To hh:mm Returns Type From (m) To (m) Chk & App Status Status

Fig No: B15 Sheet 1 of 1

Scale 1:50

DAEDLIDAL
RAEBURN
III III III DRILLING & GEOTECHNICAL LTD

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH18

Inspection Pit to Rotary Open Hole to Rotary Core Drilling to

1.20m 3.20m 10.00m

Location: E 278879.8 N 709141.7 Orientation: Vertical

Equipment: Hand Tools, Track Mounted Commachio Geo 205

SS	Sar	nples		T	ests				Level			ЪГ	Water		ackf
Progress	Depth	Туре	Depth		Re	esult		Casing Depth	(mOD) 258.49	Depth	Description of Strata	Legend	Depth	Symbol	De
)/11 023									200.40		Soft brown to dark brown spongy amorphous PEAT	71/7			
025	0.30	B, D								_		1, 11,		₩	0
										_		7. 7		XXXX	0.
										-		1, 11,			
										-		7. 7			
	1.20	D.	1.20	SPT=13	2.3	3 /3.3.4.3	<u>3</u>	0.00		-		1, 11,			
		UL								-		7. 7			
										-		1/ 1/			
									256.59	1.90	Soft brown to reddish brown slightly gravelly sandy CLAY. Sand is fine	<u>-0 -</u>			
	2.20	D		SPT=17	3 '	3 /4.4.5.4	4	2.20		_	to medium. Gravel is fine to coarsé sub-angular tó sub-rounded of sandstone and quartzite				
	2.20	ÜL	2.20	01 1-17	<u> </u>	374.4.3.	1	2.20		-	•	<u> </u>			
										-					
										-		<u> </u>			
9/11								2 20	255.29	3.20		<u> </u>	0.00m		
<i>J</i> III	3.20	D	3.20	SPT=48	3.5	<u>5 /7.11.1</u>	13.17	2,20 3.20			# Driller Notes weathered red brown SANDSTONE.		0.00111		
												::::			
						1_				-		[::::]			
			4.00	TCR 100	SCR 27	RQD 0	FI		254.49	4.00	Moderately weak to medium strong thinly to thickly laminated raddish				
			4.00	100	21	0				-	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as	::::			
							NI			-	non-intact sandy gravel	::::			
							"			-		::::			
									253.59	4.90	Medium strong to strong thinly to thickly laminated reddish brown fine to				
							4.				Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Distinctly weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating				
							13		252.99	5.50	smooth clean.				
			5.50	100	40	33	NI.		252.89	5.60	Moderately weak to medium strong thinly to thickly laminated reddish				
							3		050 :-	-	brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly weathered. Recovered as non-intact sandy gravel	::::			
									252.49	6.00_	Medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE. Fractures are subhorizontal medium spaced	 			
							,			-	\planar to undulating smooth clean /	::::			
							NI			-	Moderately weak to medium strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with many thickly laminated mudstone bands. Distinctly to partially weathered. Recovered	::::			
									251.79	6.70	as non-intact sandy clayey gravel	 			
										-	Medium strong to strong thinly to thickly laminated reddish brown fine to medium grained SANDSTONE with may thinly to thickly laminated mudstone bands. Fractures are subhorizontal very closely to closely				
			7.00	97	73	27				-	mudstone bands. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean				
										-		::::			
							8			-		::::			
										-	between 7.90 to 8.40m subvertical fracture planar to undulating rough with gravel infill.	:::::			
										_	Tought with graver fillin.	::::			
									240.00	8.50 ⁻					
			8.50	100	73	70			249.99	0.50	Strong thinly to thickly laminated reddish brown fine to medium grained				
										-	SANĎSTOŇE. Fractúres are subhorizontal closely to medium spaced planar to undulating smooth clean				
										-					
							4			-					
										-					
									248.49	10.00		::::	-		10
#	narks: Descrip	tion base	d on Dri	ller's lo	q.						END OF BOREHOLE	Hole Diam	. Borin	_	Casi
Αı	n insped	ction pit w d-water o	as exca	vated b	y ha	and to a	a dept	h of 1.20	0m to cle	ar servi	ces.	130	10.0	0	4.0
		tration Te								. 114511.					
	Deille:	0	note: I			Ground	d-water		١٨	/ater Ado	led Chiselling Flush	F			
	Driller PS	_	nator B	Struck				nin) Cut			To From To hh:mm Returns Type From (m) To (m)	Fig No	0:		
											100 Air 1.20 3.20 100 AirWM 4.00 5.00	l	316		
Ch	ık & App		atus										heet 1 o		
		DK	AFT									So	cale 1:5	0	

noie	100	сриі
Diam.	Boring	Casing
130	10.00	4.00

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ısh		R
PS	RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	_
P3	KD										100	Air	1.20	3.20	Ê
											100	AirWM	4.00	5.00	
Chk & App	Status	1									0	AirWM	5.00	10.00	13
O G. App															K
	DRAFT														1
															N

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH19

Inspection Pit to Sonic Boring to Sonic Coring to

1.20m 2.70m 10.05m

Location: E 278769.3 N 709026.5 Orientation: Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

ress	_	mples	1	7	ests				Level			ू व	Motor	В	ackfill
Progre	Depth	Туре	Depth			sult		Casing Depth	(mOD)	Dept	n Description of Strata	Legend	Water Depth	Symbol	Depth
23/11		.,,,,						<u> </u>	257.97		Soft brown to dark brown spongy pseudo-fibrous PEAT	77 7			
2023									257.57	0.40		1, 11,			
	0.50	B, D									Brown sandy slightly silty GRAVEL with cobbles noted. Sand is fine to coarse. Gravel is fine to coarse angular of sandstone. Cobbles are	9.7			0.50
											angular up to 100mm of sandstone	\$ 0 ×		ĦĦ	1
) 29		ĦĦ	
	1.20-	UT(13)									4	[*, 8, 4		BB	
	1.65	, ,									+	3.2		ĦĦ	1
	1.65	D									†	₹0.3		ĦĦ	
									255.97	2.00	1).ø.×]
	2.00 2.10	B D									Weak reddish brown SANDSTONE recovered as slightly sandy slightly clayey gravel with cobbles noted. Distinctly to destructively weathered.				1
											Sand is fine to coarse. Gravel is fine to coarse angular of sandstone. - Cobbles are angular, up to 100mm of sandstone	:::::		ĦĦ	
				TCR	SCR	RQD	FI		255.27	2.70		:::::]
		_	2.70 2.70	SH210 ³⁴	2¢ ^{5.5}	5 /5.3.13	3.13	2.70			Weak to moderately weak thinly to thickly laminated reddish brown SANDSTONE. Distinctly to destructively weathered. Recovered as	:::::		ĦĦ	1
	2.90	D	2.70								sandy very clayey gravel with cobbles noted	:::::		ĦĦ	1
							NI				†	:::::			
									254.37	3.60	1	:::::		ĦĦ	
							NI		254.07	3.90	Weak to moderately weak thinly to thickly laminated reddish brown SANDSTONE. Distinctly to destructively weathered. Recovered as			\vdash	
							30				Weak to medium strong thinly to thickly laminated reddish brown				4.00
			4.20	100	62	31	00		253.77	4.20	SANDSTONE. Distinctly to destructively weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean with occasional clay infill	 		H	
							NI				Weak thinly to thickly laminated reddish brown SANDSTONE. Distinctly				,
									253.17	4.80	to destructively weathered. Recovered as non-intact			M.	
											Weak thinly to thickly laminated reddish brown SANDSTONE. Distinctly weathered. Fractures are subhorizontal very closely to closely spaced				
							10				planar to undulating smooth clean with localised gravel infilled	:::::			
									252.47	5.50		:::::			
			5.50	100	73	29					Strong thinly to thickly laminated greyish brown SANDSTONE. Partially weathered. Fractures are subhorizontal closely to medium spaced				
							8		251.97	6.00	- planar to undulating smooth clean with localised gravel infilled	:::::			
											Moderately weak to medium strong thinly to thickly laminated greyish brown SANDSTONE with interbedded thickly laminated mudstone				
											bands. Partially weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth with localised clay infilled				
							14				-				
									250.97	7.00	†	:::::			,
			7.00	100	27	9	40				Medium strong to strong thinly to thickly laminated reddish brown	:::::			
							10		250.67	7.30	SANDSTONE. Partially weathered. Fractures are subhorizontal very closely to closely spaced planar to undulating smooth clean with localised gravel infilled			ΙЛЦ	
											Moderately weak to medium strong reddish brown SANDSTONE with many interbedded thickly laminated mudstone bands. Partially to			F	
							NI				distinctly weathered. Recovered as non-intact very clayey gravel	:::::			,
									249.87	8.10				悄	,
			8.10	100	85	28	6		249.69	8.28	- Fractures are subnorizontal closely spaced planar to undulating smooth	/::::			
							51				- clean Moderately weak to medium strong reddish brown SANDSTONE with				
			0.75	100	00	25	"		249.22	8.75	many interbedded thickly laminated mudstone bands. Partially weathered. Fractures are horizontal very closely spaced planar to	<u> ::::</u>			
			8.75	100	88	35					undulating smooth with localised gravel infill Moderately weak to medium strong reddish brown SANDSTONE with				,
											Moderately weak to medium strong reddish brown SANDSTONE with many interbedded thickly laminated mudstone bands. Partially weathered. Fractures are horizontal very closely to closely spaced	:::::			
							22				planar to undulating smooth with localised gravel infill	:::::		H	'
											1	:::::		H	
											1				
	narks:										•	Hole Diam		o De	10.00
		tion base				ınd to a	a dept	th of 1.2	0m to cle	ar ser	vices.	166	2.70)	2.70
N	o groun	d-water o	bservati	ons ar	e rec	orded	due to	the use	e of wate			145	10.0	ن ا	10.05

PIGENTWAPROJECTS/26555. GPJ+44 (0) 1698 710999 Printed: 26/01/2024 13:26:07 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

The Penetration Tests were carried out using Trip Hammer RD54.

Dri	iller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		P
		RB	Struck	Rose To	Time(min)	Cut Off	From	То	From	То	hh:mm	Returns	Type	From (m)	To (m)	` `
<u>!</u>		KD										100	Water	2.70	4.20	Ê
i I												0	Water	4.20	10.05	15
Chk 8	& App	Status														В
1		DRAFT														Ř
																N

Fig No:

B17 Sheet 1 of 2 Scale 1:50

		Site: L
RAFRIII	ŞΝ	
DRILLING & GEOTECH	NUCALITO	Client:
DRILLING & GEOTECH	MICALLID	Engine
Location: E 278769.3	Orientation	n: Vertica
N 709026.5		

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

BH19

Inspection Pit to Sonic Boring to Sonic Coring to

1.20m 2.70m 10.05m

Vertical

Equipment: Hand Tools, Track Mounted Boart Longyear LS250 Mini Sonic; Water Flush

<u>ĕ</u> ļ	San	nples	-	Tes			Casing	Level (mOD)	Donth			Door	ription of	Strata					euc	Water	<u></u>	ackf
L Progress	Depth	Туре	Depth		Result		Casing Depth	257.97 247.92	Dehiii										Legend	Depth	Symbol	De
114							10.05	247.92	\10.05 <i>/</i> -			ENI	OF BO	REHOLE				Ŧ		8.85m		10
									-													
									-													
									-													
									_													
									_													
									-													
									-													
									_													
									-													
									_													
									-													
									_													
									-													
									-													
									_													
									_													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
																			,			_ A1.
en# ا#	narks: Descript	ion base	ed on Dril	ler's loa															Hole Diam.	. Borin		Cas
Ar No	n inspec	tion pit w	ed on Dril vas excav observation ests were	vated by	hand to	a dept	h of 1.2	0m to cle e of wate	ar servi	es.									166 145	2.70 10.0	5	2.7 10.
Th	e Pene	tration Te	ests were	e carried	out usin	ıg Trip I	Hamme	r RD54.														
[Driller		inator	Ctrucal	Groun	nd-water	in) Cut		/ater Add		Chiselling		Pot:	FI	ush	a) T- /-	F	2	Fig No	 D:		
		F	RB -	SITUCK	Rose To	nime(m	iin) Cut	Off Fro	71T1	o From	То	hh:mm	Returns 100	Water	2.70	n) To (n 4.20 10.0		\		317		
Ch	k & App	Sta	atus										0	Water	4.20	10.0	° Ē	3		heet 2 o	f 2	
		DR	AFT			1							1				ΙŘ	2		cale 1:5		

Hole	10 D	eptn
Diam.	Boring	Casing
166 145	2.70 10.05	2.70 10.05

Driller	Originator		Groun	d-water		Water	Added		Chiselling			Flu	ush		P
	RB	Struck	Rose To	Time(min)	Cut Off	From	To	From	To	hh:mm	Returns	Type	From (m)	To (m)	'^
	KD										100	Water	2.70	4.20	=
											0	Water	4.20	10.05	5
Chk & App	Status														B
	DRAFT														ä
	Dita. I														N
															1.74

				S	ite: LT52	20 BR	ACO WEST SUBSTATION	Contrac	t No:	26555	5	
F	2 4	EBU	IR	N				Trial Pit	t No.			
=		DRILLING & GE		LLTD			nsmission plc h Inveralmond HSE	Trial Pit to			1.10r	n
					ingineer. S	SE FEI	,					
Lo		E 279216.2	Orie	ntation: V	/ertical		Equipment: 15T Tracked Excavator					
SS		N 708992.3 Samples and Te	sete		Leve	el		Width -	_	Length -	_	ckfill
Progress	Sample	I 40 I	55.5		(m)	Dept	Description of Strata		Legend	Water Depth	- Q	Dept
21/1 2023	1				239.0	J5	Soft brown to dark brown spongy amorphous PEAT		711/	<u> </u>		
	0.30	B, D			238.6	0.40	Brown to reddish brown very sandy silty GRAVEL with medium cobl	ble	1/ V/	<u> </u>		
	0.60	B, B, B, B, D B			220	15 0.00	Brown to reddish brown very sandy silty GRAVEL with medium cobleontent. Sand is fine to coarse. Gravel is fine to coarse angular of sandstone. Cobbles are angular up to 140mm of sandstone		* 0 .			
21/1	1				237.9	0.90 95 1.10	Medium strong brown grey SANDSTONE. Rock is slightly to moderate weathered and recovered as: gravelly silty fine to medium sand with	ately high	· \ · · · · · · · · · · · · · · · · ·			
							Medium strong brown grey SANDSTONE. Rock is slightly to moder weathered and recovered as: gravelly silty fine to medium sand with cobble content and medium boulder content. Gravel is fine to coars angular and includes sandstone. Cobbles and boulders are angular 480mm of sandstone	e, up to				
							END OF TRIAL PIT					
							1					
]					
							-					
]					
							-					
							1					
							1					
21/1							1					
							7					
							-					
							1					
							_					
]					
							-					
							1					
							-					
]					
Re	marks:											
T	rial pit C	CAT scanned prior s of the pit stood v	to excavation	on to chec	ck for service	ces.						
T	Ground-v	water was not enco	ountered.	•		ging (pos	sible bedrock).					
Re	·		,			0 0 11	,					
	Driller	Originator .	Struck R	Ground-w		ıt Off		R	Fig N	o:		_
		AD						RAUBURZ		318		
C	hk & App	Status DRAFT						ğ	1	heet 1 c		
ì		2.00.1						N	s	cale 1:5	U	

					Site:	_T520	BRA	CO WEST SUBSTATION	Contrac	ct No:	26555	5	
F	ZΔ	EBU	JR	N					Trial Pit	t No.			
=		DRILLING & GE			Client:			smission plc Inveralmond HSE	Trial Pit to			1.70m	
					Liigiiik								
Lo		E 278914.8	0	rientatior	n: Vertic	al		Equipment: 14T Tracked Excavator					
SS		N 708959.8 Samples and Te	nete			Level			Width -	_	Length -	3.80m Bac	kfill
Progress	Sample	Ι Φ Ι	2515			(m)	Depth	Description of Strata		Legend	Water Depth	og)ept
27/1 202:	0.20	B, D				247.70		Soft brown to dark brown spongy amorphous PEAT		11/2	-		_
	0.30	B, D				247.40 247.20		Light brown slightly gravelly slightly clayey fine to medium SAND with occasional roots and local black organic stains. Gravel is fine to coar	se	107/			
	0.70	B, B, B, B, D						Reddish brown to brown very sandy very silty GRAVEL with low cobt content. Sand is fine to coarse. Gravel is fine to coarse angular to subangular of sandstone. Cobbles are angular up to 160mm of sand	/	9.0.			
							-	subangular of sandstone. Cobbles are angular up to 160mm of sand	dstone	29	•		
	4.50						:			,			
27/1	1.50 1 1.70	B, D B, D				246.10 246.00	1.60 1.70	Medium strong brown SANDSTONE slightly to moderately weathere	d.	9:2	Dry		
							-	Medium strong brown SANDSTONE slightly to moderately weathere. Recovered as cobbles and some boulders with some finer materiral compising slightly gravelly slightly silty fine to coarse sand. Gravel is coarse angular of sandstone. Cobbles and boulders are angular up 370mm of sandstone	fine to				
							-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
							-						
27/1							_						
							-						
							-						
							-						
,													
Re	marks: Trial pit C	CAT scanned prior	to excava	ation to cl	heck for	services	S.						
Ī	Fround-\	s of the pit stood v water was not enc	ountered.	•			. ,						
Re	rial pit v	vas terminated at a	a depth of	1.700m	due to h	nard digg	ing (pos	sible bedrock).					
	Driller	Originator .	Struck	Ground Rose To	d-water Time(mir	ns) Cut C	Off		RA	Fig N	o:		
_	hk 0 ^								RAUBURZ		B19 Sheet 1 o	.f 1	
	hk & App	Status DRAFT							Ř	1	sheet 1 o cale 1:50		
Ш									N				

					Site: [_T520	BRA	CO WEST SUBSTATION	Contrac	t No:	26555	5	
F	ZΔ	EBL	IR	N					Trial Pit	No.			
=		DRILLING & GEO			Client:			smission plc Inveralmond HSE	Trial Pit to			1.50	m
					Liigiiik		- reiu						
Lo		E 279042.2	Orie	entation	: Vertic	al		Equipment: 14T Tracked Excavator					
ss		N 708901.3 Samples and Tes	ete			Level			Width -		Length -	_	n ickfill
Progress	Sample	Φ	313			(m)	Depth	Description of Strata		Legend	Water Depth	8	Depth
21/1 202	1					236.85		Soft brown to dark brown spongy amorphous PEAT		71/7			
	0.50	B, D ES				236.45	0.40	Brown to reddish brown very sandy silty GRAVEL with low cobble co	ntent.	1/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	0.60	B, B, B, D						Brown to reddish brown very sandy silty GRAVEL with low cobble cor Gravel is fine to coarse sub-rounded to sub-angular of sandstone and psammite. Cobbles are sub-rounded to sub-angular up to 130mm of sandstone and psammite	t	* 0 ×			
m00	1.00	B, D, ES				225 65	1 20	·		99			
E-mail: enquiries@raeburndrilling.com	1.30	B, B, B, D				235.65		Medium strong brown grey SANDSTONE. Rock is slightly to moderal weathered and recovered as: silty sand and gravel with low cobble or	ely ontent	3 7.			
epnung epnung	1					235.35	1.50	Medium strong brown grey SANDSTONE. Rock is slightly to moderat weathered and recovered as: silty sand and gravel with low cobble or and low to medium boulder content. Sand is line to medium. Gravel is coarse angular of sandstone.	s fine to	 -`-` -		***	
es@ra								END OF TRIAL PIT	'				
anduiri							-						
mail: e													
77 E-													
-7111							-						
01698													
Tel:													
3 OH													
uo													
Hamilt													
chnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177													
tleberr							-						
Whist													
hnical													
eotec													
and G							-						
Orilling													
J mng													
Rae	marks:												
3:27:56	rial pit C	AT scanned prior to the contract of the pit stood ve					5.						
024 13	3round-v	vater was not enco vas terminated at a	untered.	_			ıa (poss	ible bedrock).					
3/01/2							3 (1						
ted: 2													
붑													
10999													
698 7													
(0) (0)													
3PJ+2													
.6555.													
CTS/2													
ROJE													
IIWI													
Style: TRIALPIT File: P:\GINTW\PROJECTS\26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:55 Raebum Drilling and Geote													
:: <u> </u>	Driller	Originator	Struck R	Ground ose To	d-water Time(min	ns) Cut C	Off		Ŗ	Fig N	o:		
LPIT L		AD –			(1			RAUBURZ	F	320		
<u> </u>	hk & App	Status DRAFT							ij		heet 1 o		
Styk		Jivai I							Ñ	S	cale 1:5	U	

						Site:	_T520	BR/	ACO WEST SUBSTATION	Contrac	t No:	26555	5	
	F	Δ	EBU		<i>S N</i>					Trial Pit	No.			
			DRILLING & GE			Client:			smission plc	TP04			2.00	 0m
						Engine	er: SSI	= Pertr	n Inveralmond HSE					
	Loc	ation: E	E 279045.9		Orientatio	n: Vertic	al		Equipment: 14T Tracked Excavator					
	S		N 709078.8				Lovel			Width -		Length -	_	
	Progress	Sample Depth	Samples and Te	ests			Level (m)	Depth	Description of Strata		Legend	Water Depth	Symbol	ackfill Depth
	立 27/11 2023		B, D				250.56		Soft brown to dark brown spongy pseudo-fibrous PEAT with occasion	nal	7/7 7		<u>\$</u>	Bopai
	2023	0.20 0.30	B, D				250.26 250.16		pieces of wood Light brown to light grey slightly gravelly very clayey fine to medium S Gravel is fine to coarse angular and sub-angular of sandstone	SAND.	<u> </u>		₩	
		0.60	B, B, B, B, D						Gravel is fine to coarse angular and sub-angular of sandstone Soft to firm reddish brown to brown slightly gravelly sandy CLAY. Sar fine to coarse. Gravel is fine to coarse angular to subangular of sand Cobbles are angular and subangular up to 140mm of sandstone	nd is	101	_	₩	
mc		1.00	В					_	Cobbles are angular and subangular up to 140mm of sandstone		<u> </u>		₩	
lling.co							240.16	1.40					▓	
ourndri		1.60	B, B, D				249.16	1.40	Light brown very gravelly clayey fine to coarse SAND with medium of content. Gravel is fine to coarse angular of sandstone. Cobbles are a up to 150mm of sandstone	obble angular	\$12 \$12		₩	
Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com							040.50				- 29			
quiries	27/11						248.56	2.00	beneath 1.80m becoming low boulder content. Boulders are angul to 228mm and of brow sandstone	ar, up 	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Dry	***	
ail: end									END OF TRIAL PIT					
E-m														
11177								_						
. 2-869														
el: 01														
OHP 1														
ML3								-						
milton														
۲d, Ha														
berry F														
/histle														
ical, M														
techni														
nd Geo								_						
ling ar														
rn Dril														
Raebu														
7:55 F		narks:	AT scanned prior	r to over	vation to a	book for	convicos							
4 13:2	Th	ne walls	of the pit stood v vater was not enc	ertical t	hroughout									
1/2024			as terminated at a			lue to ha	ırd diggir	ng (poss	sible bedrock).					
1: 26/0														
Printed														
999														
8 7109														
(0)169														
J+44														
55.GF														
\$\265														
JECT.														
WPRC														
GINTV														
File: P.\GINTW\PROJECTS\26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:55		Drille -	Originata		Group	id-water		1		-	Te: - • •			
		Driller	Originator AD	Struck	Rose To		ns) Cut C	Off		Ă	Fig N			
RIALF	Ch	nk & App	Status							RAUBURZ	1	321 heet 1 o	f 1	
Style: TRIALPIT			DRAFT							Ř		cale 1:50		
رن							-				•			

					Site: L	T520	BRA	CO WEST SUBSTATION	Contrac	t No: 🗸	26555	5	
F	2 Δ	EBI		Trial Pit									
		DRILLING & GE	OTECHN	ICAL LTD	Client:			smission plc	TP0			0.54	•
					Engine	er: SSE	E Perth	Inveralmond HSE	Trial Pit to			2.50	0m
Lo	cation: I	E 279135.1	C	Orientation	n: Vertica	ıl		Equipment: 14T Tracked Excavator	1				
		N 708794.4							Width -	1.30m	Length -	3.40r	m
Progress	Sample	Samples and To	ests			Level (m)	Depth	Description of Strata		Legend	Water		ackfill
Prog	Depth	Result				223.47	Берит	•			Depth	Symbol	Depth
27/1 202	1 3							Soft brown to dark brown spongy pseudo-fibrous PEAT with occasio pieces of wood	nai	7 77	ĺ		
	0.50	B, D, ES								<u> </u>	1		
										1, 11,			
	1.00	ES					-			<u> </u>	1		
P										77 77			
	1.50	B, D								1/ 1/			
)	0.00				}	221.67	1.80	Brown silty SAND and GRAVEL with low to medium cobble content.	Sand is				
	2.00	B, B, B, B, D, ES	^				_	Brown silty SAND and GRAVEL with low to medium cobble content. fine to medium. Gravel is fine to coarse sub-rounded to subangular langular of sandstone and quartzite. Cobbles are subrounded to subup to 170mm and of sandstone	ocally angular				
27/1	1					220.97	2.50	up to 170mm and or sandstone		907	Dry		
								END OF TRIAL PIT		1	5.,		
							-						
							-						
							-						
2							-						
2													
Re	marks: Frial pit C	AT scanned prior	r to excav	ation to c	heck for	services	s.						
1	Ground-v	of the pit collaps vater was not end	ountered										
1	rial pit w	as terminated at	a depth o	of 2.50m d	lue to har	d diggir	ıg (poss	ible bedrock).					
207													
3													
2													
5													
<u> </u>	Driller	Originator	Struck		d-water Time(mins	s) Cut C	off		R■	Fig N	o:		
		AD	Oduck	1,056 10	rine(iiii)	, care	<u></u>		슽	F	323		
Style: IKIALPIT File: P:\GINTWIPROJECTS\2005\3.6F2/444 (U)T086 710999 Printed: 26/01/2024 3:27:30 Raebum Drilling and Geoleconical, Winsteberry Kd., Hamilton ML3 UHF 1et: U1098-71117 F-mail: enquires@raebumorilling.com	hk & App								RAUBURN	s	heet 1 c		
Style		DRAFT							N	S	cale 1:5	0	

				Site: LT52	0 BRA	ACO WEST SUBSTATION	Contrac	t No:	26555	5	
F	2Δ	EBL	JRN				Trial Pit	t No.			
=		DRILLING & GEO				smission plc	TP06			1.50m	
				Engineer. 33	e Peru	n Inveralmond HSE					
Lo	cation: [E 279286.2	Orientatio	n: Vertical		Equipment: 14T Tracked Excavator					
· γ		N 708910.8		Level			Width -	_	Length -	3.80m Bac	⊵fill
Progress	Sample Depth	Samples and Tes	its	(m)	Depth	Description of Strata		Legend	Water Depth	log	epth
21/1 202	1	F		229.6	3	Soft brown to dark brown spongy amorphous PEAT		77 7	<u> </u>	<u></u>	
202	0.30	B, D, ES		229 1	0.50			1, 11,			
	0.60	ES D D D D		220.10	0.00	Brown to reddish brown very sandy silty GRAVEL with low cobble co and low boulder content. Gravel is fine to coarse angular of sandstor Cobbles and boulders are angular up to 490mm of sandstone	ntent ne.	3/7/			
E	1	B, B, B, B, D B, D				Cobbles and boulders are angular up to 490mm of sandstone		3.0	4		
ichnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com	1.10	ES		228.43	3 1.20	Medium strong brown grey SANDSTONE. Rock is slightly to modera	tely	- FX	,		
<u>i</u> 21/1	1			228.13	3 1.50	Medium strong brown grey SANDSTONE. Rock is slightly to modera weathered and recovered as: gravelly silty fine to medium sand with to high cobble content and medium boulder content. Gravel is fine to angular of sandstone.	médium coarse	۔:ـ:بر	Dry		
@raet						sandstone END OF TRIAL PIT	/				
niries					-						
ii: end											
Ë											
1177											
98-71											
el: 01											
H H											
ML3					-						
milton											
d, Hai											
erry R											
histleb					-						
oal, ≪											
technic											
9 Geo					-						
ing an											
r Ori											
aebur											
g Re	marks:										
13:27	he walls	AT scanned prior to of the pit stood ver vater was not encou	tical throughout		S.						
72024		as terminated at a		due to hard digg	ing (poss	sible bedrock).					
: 26/0											
rinted											
66											
3 7109											
7)169											
)+44 (
5.6 7.											
3/265											
JECT											
/PRO											
ΣI L											
Style: TRALPIT File: P:\GINTW\PROJECTS\\26555.GPJ+44 (0)1698 710999 Printed: 26\\0172024 13:27:56 Raebum Drilling and Geote		1 2		ad woter			T -				
Ē <u>⊢</u>	Driller	Originator		nd-water Time(mins) Cut	Off		R	Fig N			
SIALP.	hk & App	Status					RAUBURZ		B24 Sheet 1 o	f 1	
ye:	a App	DRAFT					Ř	1	cale 1:50		
ю́							134				

					Site: L	T520	BRA	CO WEST SUBSTATION	Contrac	t No:	2655	5	
F	2 Δ	EBU	JR	N					Trial Pit	No.			
=		DRILLING & GEO		LLTD	Client:			smission plc Inveralmond HSE	Trial Pit to			1.20	lm
					Engine	ei. 33	- Peru	. Inveralmond hoe					
Lo		E 278976.9	Orie	entation	: Vertica	al		Equipment: 14T Tracked Excavator					
SS		N 708791.3 Samples and Te	ete			Level			Width -		Length -	_	n ickfill
Progress	Sample Depth	1 0 1	SIS			(m)	Depth	Description of Strata		Legend	Water Depth	Symbol	Depth
7/12 202	2					228.97		Soft brown to dark brown spongy amorphous PEAT		71/			
	0.30	B, D				228.57	0.40	Brown to reddish brown sandy clavey GRAVEL with medium to high	cobble	0			
	0.70	B, B, B, B, D						Brown to reddish brown sandy clayey GRAVEL with medium to high content and low boulder content. Sand is fine to coarse. Gravel is fine coarse angular of sandstone. Cobbles and boulders are angular up to 240mm of sandstone	e to o	- · · · ·			
	1.00	В				227.97				. —•-			
7/12	2					227.77	1.20	Medium strong brown SANDSTONE. Rock is slightly to moderately weathered and recovered as: boulders with some cobbles slightly graslightly clayey fine to coarse sand. Gravel is fine to coarse angular os sandstone. Cobbles and boulders are angular up to 500mm of sand	avelly f	<u> ::::</u> :	₹		
7/12								<u>Sandstone.</u> Cobbles and boulders are angular up to 500mm of sand END OF TRIAL PIT	stone_/				
							-						
							-						
							-						
							-						
							:						
							-						
							-						
							-						
Ļ	<u> </u>												
Re		CAT scanned prior					S.						
	3round-v	s of the pit stood ve vater was encount	ered at a de	epth of 1	1.20m.		ng (noon	ible bodreek)					
Suppose the suppose of the suppose o	riai pit w	as terminated at a	a depth of 1.	.20m au	ie to na	ra aiggir	ig (poss	ible bedrock).					
9.5													
-													
3													
	Driller	Originator		Ground ose To		s) Cut C	Off		R	Fig N	0:		
		AD	1.20						RAUBURZ		325		
C	hk & App	Status DRAFT							Ř	1	heet 1 o		
ğ									Ň	5	cale 1:5	iU	

					Site: [_T520	BRA	CO WEST SUBSTATION	Contrac	t No:	26555	5	
F	2 Δ	EBU	JR	N					Trial Pit	No.			
=		DRILLING & GE			Client:			smission plc	TP08			1.50)m
					Engine	er: SSI	= Pertr	Inveralmond HSE	Than to			1.00	
Lo	cation:	E 279149.9	0	rientatior	n: Vertic	al		Equipment: 14T Tracked Excavator					
<u></u>		N 709062.8	\perp						Width -		Length -	_	
Progress	Sample	Samples and Te	ests			Level (m)	Depth	Description of Strata		Legend	Water Depth	oq	ckfill
21/1	Depth	Result				247.01	_	Soft brown to dark brown spongy amorphous PEAT		<u> </u>	Берш	Š XXX	Depth
21/1 2023								. 🐧		1, 11,		₩	
	0.50	B, D, ES				246.31	0.70			<u> </u>		₩	
	1.00	B, B, B, D, ES						Brown to reddish brown very gravelly silty fine to coarse SAND with k cobble content. Gravel is fine to coarse angular to subangular of sar and quartzite. Cobbles are angular and subangular up to 130mm of	ow idstone	₩. (7.) ×. (8.)		₩	
21/1	1.00	B, B, B, D, E3				245 71	1 20	and quartzite. Cobbles are angular and subangular up to 130mm of sandstone		8. y.			
21/1	1					245.71 245.51	1.30	Medium strong brown grey SANDSTONE. Rock is slightly to moderal	tely medium		Dry	₩	
								Medium strong brown grey SANDSTONE. Rock is slightly to moderal weathered and recovered as: gravelly silty fine to medium sand with cobble content and low boulder content. Grave is fine to coarse angular up to 320mm of sandstone. Cobbles and boulders are angular up to 320mm of sands	ular of /				
								END OF TRIAL PIT					
							_						
							-						
							-						
5													
2							_						
20													
5													
Re	marks:	AT scanned prior	to eveny	ation to o	hock for	convicos							
T d	he walls	s of the pit stood ve vater was not enco	ertical thre	oughout e			·.						
T		as terminated at a			ue to ha	ırd diggir	ıg (poss	ible bedrock).					
202													
3													
2													
5													
5													
100													
<u>-</u>	Driller	Originator		Groun	d-water		<u> </u>		p=	Fig N	0.		
	21 mol	AD -	Struck	Rose To		ns) Cut C	Off		RAUBURZ	Fig N			
į C	hk & App	Status							ā		326 heet 1 o	f 1	
Siyle: IRALPT FIRE: F.YGIN IWP-ROJECTS/2003.GFG-F44 (U) 1095 / 1095 / 1095 / 1095 1095 / 10	1.5	DRAFT							Ř	1	cale 1:5		
ر													

	R	Α	EBl	JF	RN	Site: L			ACO WEST SUBSTATION smission plc	Trial Pit	t No.	26555	5	
			278842.5		Orientation		er: SSE		Inveralment HSE	_				
	ss Sa	ample S	708873.5 Samples and Te	sts			Level				pue	Water		ackfill
	07/11		Result B, D			;	(m) 243.84	Depth	Description of Strata Soft brown to dark brown spongy amorphous PEAT with occasional polywood	oieces		Depth	Symbol	Depti
).50 E	ES B, B, D				243.44	0.40	Light brown to light grey very sandy slightly silty GRAVEL with low co content. Sand is fine to coarse. Gravel is fine to coarse angular locall sub-angular of sandstone. Cobbles are angular up to 130mm of sand	bble y dstone	* () × () × () × () × () × () × () × ()			
illing.com	1	.00 E	3, ES				242.94	0.90	Brown to reddish brown very sandy slightly silty GRAVEL with low co and low boulder content. Sand is fine to coarse. Gravel is fine to coar angular of sandstone. Cobbles are angular up to 150mm and of sand Boulders are angular up to 250 mm of sandstone		* 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			
E-mail: enquiries@raeburndrilling.com			3, B, B, B, B, D				244.04				·) 9/9	_		
il: enquiries	27/11 2	2.00 E	ES				241.84	2.00	beneath 1.80m becoming low boulder content END OF TRIAL PIT		.11.22	Ţ	***	
Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177								-						
OHP Tel: (-						
ilton ML3								-						
y Rd, Ham														
Vhistleberr								-						
echnical, V								-						
and Geote								-						
um Drilling														
	Rema							-						
024 13:27:	The Grou	walls o und-wa	T scanned prior of the pit stood version to the pit stood version to the pit stood at a second to the pit stood to the pi	ertical the	roughout e a depth of	excavatio 2.00m.	n.		sible bedrock).					
d: 26/01/2							99	J (
99 Printe														
1698 7109														
PJ+44 (0)														
S\26555.G														
PROJECT														
\MLNI9\:c														
PIT File: F	Dri	ller	Originator _	Struck 2.00	Ground Rose To	d-water Time(mins	s) Cut C	off		RA	Fig N	o: B27		
Style: TRIALPIT File: P.\GINTW\PROJECTS\2655.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:57	Chk &	& App	Status DRAFT							RAUBURZ	s	heet 1 c		

						Site: L	T520	BRA	CO WEST SUBSTATION	Contrac	t No:	26555	,	
	F	Δ	EBU	H	<i>S N</i>					Trial Pit	No.			
			DRILLING & GE			Client:			smission plc	TP10			2.30	lm
						Engine	er: SSE	: Pertr	n Inveralmond HSE	marritto			2.50	,,,,
İ	Loc	ation: E	278982.3		Orientation	n: Vertica	al		Equipment: 14T Tracked Excavator					
	"		N 709176.9							Width -		Length - 3		
	Progress		Samples and Te	ests			Level (m)	Depth	Description of Strata		Legend	Water	Symbol	ckfill
	28/11	Depth	Result				255.65		Soft brown to dark brown spongy amorphous PEAT with occasional p		7/ 7/ F	Depth		Depth
	28/11 2023							-	of wood		1, 11,		\bowtie	
		0.50	B, D, ES								<u> </u>			
۔		1.00	ES					-			<u> </u>		\bowtie	
ng.cor		1.00	LO				254.35	1.30			1/ V/			
mdrilli	28/11	1.40 1.50	ES B, B, B, B, D				204.00	1.50	Brown slightly gravelly silty fine to coarse SAND with low cobble conto Gravel is fine to coarse subangular to subrounded locally angular of sandstone and quartzite. Cobbles are subangular to subrounded up to	ent.	70.5 5.0.8	1	\bowtie	
raebu			_, _, _, _, _						sandstone and quartzite. Cobbles are subangular to subrounded up to 130mm of sandstone	Ю.	× 0.9			
ries@		2 10	ES					_			×0.5		₩	
endni	28/11	2.10 2.20	В				253.45 253.35	2.20	Medium strong brown SANDSTONE slightly to moderately weathered	d	×0.8	Dry	\bowtie	
-mail:								-	Medium strong brown SANDSTONE slightly to moderately weathered. Recovered as silty SAND & GRAVEL with high cobble content. Sand to coarse. Gravel is fine to coarse angular of sandstone. Cobbles an boulders are angular up to 440mm of sandstone	is fine /				
177 E								-	END OF TRIAL PIT					
8-711								-						
0169														
P Tel								-						
L3 0H								_						
ton N														
Hami								-						
y Rd,														
tleber								-						
Whis								-						
hnical														
eotec														
and G								-						
rilling														
purn [-						
Rae	_													
:27:58	Tr		AT scanned prior					3.						
24 13	G	round-w	of the pit stood v vater was not enc as terminated at a	ountere	d.			a (noce	ihle hedrock)					
3/01/20		iai pit w	as terrimated at a	a depui	01 2.30111 u	ue to na	ra alggii	ig (poss	ible bedrock).					
ted: 26														
Prin														
6660														
398 71														
4 (0)1														
3PJ+4														
555.G														
TS\26														
COJEC														
WPR														
File: P:\GINTW\PROJECTS\2655.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:58 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177														
File: P		Driller	Originator			d-water	J -			R≡	Fig N	lo:		
			ĀD	Struck	Rose To	Time(min	s) Cut C	Off		RAUBURZ		B28		
TRIAL	Ch	k & App	Status							B	1	Sheet 1 o	f 1	
Style: TRIALPIT			DRAFT							ZZ	S	cale 1:50)	

						Site: L7	Г520	BRA	CO WEST SUBSTATION	Contrac	t No: 2	26555	5	
	R	Δ	EBI	UF	5 M					Trial Pit	No.			
			DRILLING & GE	OTECHN	ICAL LTD	Client:			smission plc	TP10		:VV	1.70m	_
						Enginee	r: SSE	Perth	Inveralmond HSE	Trial Pit to	1		1.70m	
	Loca	ation: E	279320.5	C	Orientation	: Vertical			Equipment: 14T Tracked Excavator	1				
		N	708826.9							Width -		Length -		
	l B l		samples and T	ests			Level (m)	Depth	Description of Strata		Legend	Water	Backf	
	원 30/11		Result			2	19.82		Topsoil: Dark brown slightly gravelly silty fine to medium SAND. Grav	el is		Depth	oq ⊨ S De	pth —
	2023	0.20 B	3, D			2	19.52	0.30	fine to coarse sub-rounded to sub-angular of sandstone and quartzite	€.	×			
		0.50 B	8, B, B, D					-	Brown to reddish brown slightly gravelly slightly clayey to clayey fine t medium SAND with low cobble content. Gravel is fine to coarse sub-rounded to sub-angular of sandstone. Cobbles are sub-rounded	to	₩. 7.7° ×. 00. 3 ₽. 18. 18			
_								-	sub-angular up to 140mm of sandstone		XX			
E-mail: enquiries@raeburndrilling.com						2	218.72	1.10	Brown to reddish brown gravelly slightly clayey to clayey fine to coars	<u></u>	P. 1			
ndrilli		1.50 B	8, B, B, B, B, D					-	 Brown to reddish brown gravelly slightly clayey to clayey fine to coars SAND with medium cobble content and low to medium boulder content Gravel is fine to coarse angular of sandstone. Boulders and cobbles angular up to 390mm of sandstone 	∍nt. are	×. 05. 2 ×. 05. 2 ×. 75. 0			
raebur						2	18.12	1.70	END OF TRIAL PIT		8.8.			
ries@								_	LIND OF TRIALITY					
enqui								-						
-mail:								-						
-7111								-						
1698								-						
Tel: (
3 OHF								-						
n ML								-						
amilto								-						
Rd, H								-						
berry								_						
/histle								-						
ical, V								-						
techn														
d Geo								-						
ing an								-						
n Drill														
aeburi								-						
58 R		narks:							I					_
13:27:	Th	ne walls o	T scanned prior f the pit stood v	ertical th	roughout e									
2024			ter was not end terminated at			ue to hard	l diggin	g (poss	ible bedrock).					
26/01/														
inted:														
9 P														
10999														
1698 7														
(0)														
3PJ+														
6555.														
STS/2														
ROJEC														
TWPF														
File: P.\GINTWPROJECTS\26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:58 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177														
File: P	[Driller	Originator	C:	Ground			"		R■	Fig No	o:		_
Η			ĀD	Struck	Rose To	Time(mins)	Cut O	#		RAUBURZ		329		
TRIAL	Ch	k & App	Status							B		heet 1 c	f 1	
Style: TRIALPIT			DRAFT							R	So	cale 1:5	0	

				Site: L	_T520	BRA	ACO WEST SUBSTATION	Contrac	ct No:	26555	5	
F	ZΔ	EBU	IRN	J				Trial Pit	t No.			
=		DRILLING & GEO	OTECHNICAL L	TD			smission plc	Trial Pit to			2.50	
				Engine	er: SSI	= Pertr	n Inveralmond HSE	Trial Trial	•		2.00	
Lo	cation:	E 278832.8	Orienta	tion: Vertic	al		Equipment: 14T Tracked Excavator	1				
(0		N 709079.9						Width -	_	Length -	_	
Progress	Sample	Samples and Te	ests		Level (m)	Depth	Description of Strata		Legend	Water	g	ckfill
DI BIO	Depth	Result			257.73	_	Soft brown to dark brown spongy amorphous PEAT		<u> </u>	Depth	₩ ₩	Depth
28/1 202:	3								1, 11,			
	0.50	B, D B, D			257.13	0.60	Light brough to light group and group light CAND with law on hills		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
					256.83	0.90	Light brown to light grey very gravelly very silty SAND with low cobble content. Sand is fine to coarse. Gravel is fine to coarse angular to sub-angular of sandstone. Cobbles are angular to sub-angular up to of sandstone	; 80mm	₩. (A.) ×. (G.)			
ig.com	1.00	B B, B, B, D				-	of sandstone Firm to stiff reddish brown slightly sandy slightly gravelly CLAY with lo	/ w .				
odriji Fili							Firm to stiff reddish brown slightly sandy slightly gravelly CLAY with lo cobble content. Sand is fine to medium. Gravel is fine to coarse suba locally sub-rounded of sandstone, granite and quartzite. Cobbles are subangular up to 140mm of sandstone and granite	ngular	70			
aebur							- Casangala ap to 7.00mm or canacione and grame		100	,		
ies@r	2.40	D D D				_						
endui	2.10	B, B, D			255.43	2.30			-00			
chnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com	2.50	B, B, B, D					Brown very clayey SAND & GRAVEL with medium cobble content an occasional lenses of soft brown clay. Sand is fine to coarse. Gravel is coarse angular of sandstone. Cobbles are angular up to 150mm of	d fine to		į		
ш́ 28/1	1				254.93	2.80	sandstone END OF TRIAL PIT			Dry	\bowtie	
-7111						-	LIND OF TRIALETT					
01698												
- <u>Tel</u>												
딩												
⊠ U												
Hamilt Hamilt												
, Rd, r												
eberry						_						
Whist												
nical,												
sotech												
and Ge						-						
illing												
ᄪ												
Raeb												
g Re ≿ T	marks: Trial pit C	AT scanned prior	to excavation t	o check for	services	S.						
24 13:2	Ground-v	s of the pit stood ve vater was not enco	ountered.									
01/202	rial pit w	as terminated at a	a depth of 2.80r	n due to ha	ırd diggir	ng (poss	ible bedrock).					
d: 26/												
Printe												
666												
8 710												
(0)169												
0+44 1												
55.GF												
S\265												
JECT												
NPRC												
VI NE												
Style: TRIALPIT File: P:\GINTW\PROJECTS\28656.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:58 Raebum Drilling and Geote		·										
Ē ⊢	Driller	Originator _ AD -		ound-water To Time(min	s) Cut C	Off		R	Fig N			
AIALPI	hk & App							Ē		B30 Sheet 1 o	ъf 1	
} }	~ App	DRAFT						RAUBURZ		cale 1:50		
ಹ ∟								13 =	Ь			

						Site: L	.T520	BRA	CO WEST SUBSTATION	Contrac	ct No:	2655	5
	R	Δ	EBI	UF	5 N					Trial Pit		-\^/	
			DRILLING & GE	OTECHN	ICAL LTD	Client:			smission plc	TP1		=VV	2.20m
						Engine	er: SSE	E Perth	Inveralmond HSE	Trial Pit to)		2.20m
Ī	Loca	ation: E	279319.6	(Orientation	n: Vertica	al		Equipment: 14T Tracked Excavator	1			
L			709178.6							Width -		Length -	3.80m
	Progress	Sample	Samples and Το Φ Ι	ests			Level (m)	Depth	Description of Strata		Legend	Water	Backfill
		Depth	Result				250.74		Soft brown to dark brown spongy pseudo-fibrous PEAT		Lee V	Depth	Depth
2	0/11							-	Soft brown to dark brown sporigy pseudo-librous PEAT		1/ 1/		
		0.50	D				250.14	0.60			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
									Reddish brown to brown slightly gravelly silty to very silty fine to medi SAND with low cobble content and low boulder content. Gravel is fine coarse angular and subangular of sandstone. Cobbles and boulders angular and subangular up to 250mm of sandstone	um e to	₩. (). ×. (§.		
J.com		1.00	B, B, B, B, D					-	angular and subangular up to 250mm of sandstone	aic	3.8.		
E-mail: enquiries@raeburndrilling.com							249.24	1.50			\$ 8 G		
eburn							249.24	1.50	Reddish brown slightly gravelly to gravelly slightly clayey to clayey fin medium SAND with low to medium cobble content. Gravel is fine to c	e to	× 0 .		
es@ra		1.90 I	B, B, B, D B				248.74	2.00	angular of sandstone. Cobbles are angular up to 160mm of sandstor	ne	x. y.		
nquirie		2.00					248.54	2.20	Medium strong brown SANDSTONEslightly to moderately weathered Recovered as boulders with some cobbles and much finer material]:::::		
nail: e								-	comprisising of slightly gravelly slightly clayey fine to coarse sand. Grant fine to coarse angular of sandstone. Cobbles and boulders are angulated to 430mm of sandstone	avel is ilar up			
									END OF TRIAL PIT				
71117								_					
1698-7								-					
Tel: 0													
3 OHP								-					
ML								-					
amiltor													
₹d, Hg								-					
berry F								_					
histle								_					
cal, M								-					
techni													
d Geo								_					
ing an								-					
n Drill													
aebur								-					
.59 R		narks:											1 1
13:27	Th	e walls	AT scanned prior of the pit stood v	ertical th	roughout e			i.					
/2024			ater was not end as terminated at			ue to har	rd diggin	ıg (poss	ible bedrock).				
26/01													
inted:													
96 P													
71098													
)1698													
+44 (0													
.GPJ													
26555													
ECTS													
PROJE													
J M													
File: P:\GINTW\PROJECTS\28555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:59 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177													
		Oriller	Originator	Struck	Ground Rose To	d-water Time(mins	s) Cut C	off_		Ŗ	Fig N	lo:	
Style: TRIALPIT		AD ———	AD							RAUBURZ		B31	
: TR	Chl	k & App	Status DRAFT							ដ្ឋ	1	heet 1	
Style			2.341							N		cale 1:	Ю

						Site: L7	Γ520	BRA	CO WEST SUBSTATION	Contrac	t No:	2655	5
	R	Δ	EBI	UF	5 M					Trial Pit		-\ \ /	
			DRILLING & GE	OTECHN	ICAL LTD	Client:			smission plc	TP12		:VV	2.00m
						Enginee	r: SSE	Perth	Inveralmond HSE	Trial Pit to			2.00m
	Loca	ation: E	279448.5	C	Orientation	n: Vertical			Equipment: 14T Tracked Excavator				
			709253.8							Width -		Length -	
	5	Sample S	amples and T	ests			Level (m)	Depth	Description of Strata		Legend	Water	Backfill ☑
	OL D	Depth I	Result				51.72		Soft brown to dark brown spongy amorphous PEAT			Depth	Depth
	30/11 2023	0.20 B	s, D			2	51.37	0.35					
		0.60 B	, B, B, B, D					-	Reddish brown slightly gravelly clayey fine to medium SAND with low content. Gravel is fine to coarse subrounded to subangular of sandst Cobbles subangular to subrounded up to 120mm of sandstone	cobble one.			
_		1 00 B						-	Gozzio cazangana o cazoanaca ap lo lizonni o canacano				
ng.con		1.00 B 1.20 D						-					
ndrilli						2	50.32	1.40	Brown to reddish brown gravelly slightly clavey to clavey fine to medi	um			
raebu		1.60 B	i, B, B, B					-	Brown to reddish brown gravelly slightly clayey to clayey fine to medi SAND with low to medium cobble content and low boulder content. Of fine to coarse angular of sandstone. Boulders and cobbles are angul 335mm of sandstone	ravel is ar up to			
E-mail: enquiries@raeburndrilling.com						2	49.72	2.00	END OF TRIAL PIT				
endni								-	END OF TRIALITY				
E-mail:													
								-					
8-711								-					
: 0169													
1P Tel								-					
/L3 0F								_					
Iton N													
Hami								-					
ry Rd,													
stleber								-					
, Whis													
chnica													
Seotec													
g and (-					
Drilling								-					
eburn													
9 Rae	Rem	narks:											
3:27:59	Tri	al pit CA	T scanned prior f the pit stood v										
024 1;	Gr	ound-wat	ter was not end terminated at	countered	l			a (poss	ible bedrock).				
6/01/2				· ·			55	J (1	,				
ted: 2													
Pri													
66601													
. 2 869													
4 (0)1													
3PJ+4													
3555.0													
TS/26													
OJEC													
W/PR													
File: P.\GINTWPROJECTS\26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:27:59 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177													
File: P		Driller	Originator		Ground					R≡	Fig N	o:	
		AD	AD	Struck	Rose To	Time(mins)	Cut O	ff		RAUBURZ		332	
TRIAL	Chl	« & App	Status							B	1	heet 1 o	of 1
Style: TRIALPIT			DRAFT							RN	S	cale 1:5	0

					Site: L	T520	BRA	ACO WEST SUBSTATION	Contrac	t No: 👍	2655	5
F	2 4	EB	LIF	5 M					Trial Pit	t No.		
30		DRILLING & GE	EOTECHN	ICAL LTD	Client:			smission plc	TP1		-VV	2.40m
					Enginee	er: SSE	E Perth	n Inveralmond HSE	Trial Pit to	,		2.40m
Lo	ocation:	E 279072.2	(Orientation	n: Vertical	l		Equipment: 14T Tracked Excavator	1			
		N 708706.9							Width -		Length -	3.80m
Progress	Sample	Samples and T	ests			Level (m)	Depth	Description of Strata		Legend	Water	Backfill
1/1	Depth 2 0.00	Result B, D				221.41	ļ .	Soft brown to dark brown spongy amorphous PEAT		<u> </u>	Depth	□ Dept
202		В, Б			2	221.21	0.20	. =	V			
	0.50	B, B, B, B, D				220.71	0.70	Brown silty SAND and GRAVEL with medium cobble content and low boulder content. Sand is fine to coarse. Gravel is fine to coarse roun subangular of sandstone and quartzite. Cobbles and boulders are ro to subangular up to 225mm of sandstone	unded			
_	1.00							Brown to reddish brown very gravelly slightly clayey to clayey fine to SAND with medium cobble content. Gravel is fine to coarse angular subangular of sandstone. Cobbles are angular and subangular up to	coarse and	50		
E-mail: enquiries@raeburndrilling.com	1.00	B, B, B, B, B, D					_	subangular of sandstone. Cobbles are angular and subangular up to 160mm of sandstone	1	0.9		
ndrillir										9.6.		
aepnr										.0.6		
ies@r	2.00	B, B, B, B, D					_	beneath 1.80m becoming low boulder content. Boulders are angul	ar, up to	2.0.3		
enduir						240.04		570mm and includes sandštone		1.7		
1/1 E 1/1	2				2	219.01	2.40	END OF TRIAL PIT) <u>./</u> .		XXX
-7111							-					
71698							-					
3 0 1 1							-					
u ML							-					
amilto												
Rd, H												
berry							_					
/histle												
cal, v							-					
techn												
d Geo							-					
ing an							-					
n Dril												
aepni												
R	emarks:											
13:28:	The walls	CAT scanned prions of the pit stood v	vertical th	roughout e	excavation		S.					
2024	Ground- Trial pit v	water was encour vas terminated at	ntered at a depth o	a depth of of 2.40m d	1.50m. ue to harc	d diggir	ng (poss	sible bedrock).				
26/01/												
nted:												
5												
36601												
269												
(0)												
4 1												
0.0000												
218/2												
CODE												
a M												
<u>N</u>												
FIRE PYCIN I WARROJEC I SY26555, GPJ+44 (U)1698 710999 Printed: 26/01/2024 13:28:00 Raebum Drilling and Geotecnnical, Whisteberry Rd, Hamilton ML3 0HP Tel: 01698-711177	Driller	Originator			d-water				P	Fig N	0:	
-		AD	Struck		Time(mins)) Cut C	Off					
RIAL —	Chk & App	o Status							RAUBURN	1	333 heet 1	of 1
Style: TRIALPIT		DRAFT							RN		cale 1:5	

						Site: L	T520	BRA	CO WEST SUBSTATION	Contrac	t No:	26555	5	
	F	2Δ	EBU	JE	5 N					Trial Pit	No.			
			DRILLING & GE			Client:			smission plc	TP19			0.50	
						Engine	er: SSE	E Perth	Inveralmond HSE	Iriai Pit to	1		2.50	m
İ	Loc	ation: E	278933.5		Orientation	n: Vertica	al		Equipment: 14T Tracked Excavator	1				
			N 709111.8							Width -	1.30m	Length -	3.10n	n
	Progress	Sample	Samples and Te	ests			Level (m)	Depth	Description of Strata		Legend	Water		ckfill
	Pro	Depth	Result				255.47	Dopui	·	1		Depth	Symbol	Depth
	28/11 2023	1							Soft brown to dark brown spongy pseudo-fibrous PEAT with occasion pieces of wood	naı	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		₩	
		0.50	B, D								<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	1	₩	
		0.80	B, D				254.77 254.57	0.70	Light brown to light grey slightly gravelly slightly clayey fine to mediun SAND. Gravel is fine to medium subangular of sandstone	n	707		₩	
COM.		1.00 1.10 1.20	B B, B, B, D					-	Firm reddish brown slightly sandy slightly gravelly CLAY with low cob	ble	12		₩	
rilling		1.20	В						Firm reddish brown slightly sandy slightly gravelly CLAY with low cob content. Sand is fine to medium. Gravel is fine to coarse subangular subrounded of sandstone, granite and quartzite. Cobbles are subang to 140mm of sandstone and granite	gular up			₩	
apnrude											7		₩	
s@rae											- (- P./		₩	
quirie		2.10	B, B, D					-					₩	
E-mail: enquiries@raeburndrilling.com	28/11	2.40	В				253.07 252.97	2.40 2.50	Medium strong brown SANDSTONE slightly to moderately weathers	d	700	Dry	₩	
									Medium strong brown SANDSTONE, slightly to moderately weathere Recovered as boulders with some cobbles and much finer material comprising of slightly gravelly slightly clayey fine to coarse angular of sandstone. Cobbles and boulders are angular of 550mm of sandstone.	velis /]		
11177								-	fine to coarse angular of sandstone. Cobbles and boulders are angular of sandstone.	lar up / <i>J</i>				
2-869									END OF TRIAL FIT					
el: 01														
OHP														
ML3								-						
nilton														
d, Har														
erry R														
istleb								-						
al, WF														
chnic														
Geote								_						
gand														
Drillin														
eburn														
Rae	Rer	marks:												
3:28:00	Ti	rial pit C	AT scanned prior of the pit stood ve					S.						
024 13	G	round-w	rater was not enco as terminated at a	ountere	d.			na (poss	sible bedrock)					
3/01/2				. чори.	o. 2.00 a	40 10		.g (pooc	330,300,9					
ed: 26														
Print														
6660														
98 71														
(0)														
J+44														
55.GI														
.S\265														
JECT														
APRC														
MLNIS														
File: P.\GINTWIPROJECTS\2655.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:28:00 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177			<u>.</u>			4				,				
		Driller	Originator AD	Struck	Rose To	d-water Time(min	s) Cut C	Off		R	Fig N	lo:		
Style: TRIALPIT	<u></u>	alz 0 A								RAUBURZ	1	B34	£ A	
ie: TR	Ch	nk & App	Status DRAFT							R		heet 1 o cale 1:50		
Sty										N	ئــــــــــــــــــــــــــــــــــــــ			

				Site:	LT520	BR/	ACO WEST SUBSTATION	Contrac	t No:	26555	5	
F	ZΔ	EBU	JRN	J				Trial Pit	t No.			
=		DRILLING & GEO		TD			smission plc n Inveralmond HSE	Trial Pit to			1.70	m
				Engin	eei. 33i	_ reiii	Tiliveralillong noe					
Lo		E 278760.5	Orienta	ition: Vertic	al		Equipment: 14T Tracked Excavator					
S		N 708969.6	etal		Level	1		Width -		Length -	_	n ckfill
Progress	Sample	Samples and Te	SIS		(m)	Depth	Description of Strata		Legend	Water Depth	- Ioq	Depth
28/1 202	1 3	 			253.41		Soft brown to dark brown spongy pseudo-fibrous PEAT with occasior pieces of wood	nal	77.7			<u> </u>
202	0.50	B, D, ES					pieces of wood		1/2 1/2			
	0.00	2, 2, 20							<u> </u>			
E	1.00	ES				_			71/7	1	₩	
ichnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com	1.40	B, B, B, B, D, ES			252.11	1.30	Croy to raddish brown you gravally sith fine to eagree SAND with his	ıb.	1/ 1/	i	₩	
epurud 28/1	1 60	B			251.81 251.71	1.60	Grey to reddish brown very gravelly silty fine to coarse SAND with hig cobble content. Gravel is fine to coarse angular locally sub-angular of sandstone. Cobbles are angular to subangular of sandstone.	!" 	₩. (). ×. (0.	Dry		
s@rae					231.71	1.70	Medium strong brown SANDSTONE. Slightly to moderately weathere Recovered as cobbles with some boulders and much finer material.	ed.	/	Diy	***	
nduirie						-	comprisisng of slightly gravelly slightly clayey fine to coarse sand. Gra fine to coarse angular of sandstone. Cobbles and boulder are angula 500mm of sandstone	r up to				
nail: er							END OF TRIAL PIT					
7 E-1												
71117						_						
1698-												
<u>Tel:</u>												
3 OHP												
W W						-						
- Jamilt												
y Rd, r												
leberr						-						
Whist												
hnical												
eotec												
and G						-						
Orilling												
J mnq												
- Rae	marks:								<u> </u>	<u> </u>		
28:01	rial pit C	CAT scanned prior s of the pit stood ve				S.						
024 13	Ground-\	water was not enco	ountered.			na (poss	sible bedrock).					
6/01/2	·		,		33	J (1	,					
nted: 2												
<u>.</u>												
10999												
1698 7												
44 (0)												
+GPJ+												
26555												
SECTS												
ROJE												
Ž												
: P:\GI												
E E	Driller	Originator _		ound-water To Time(mi	ns) Cut (Off		R	Fig N	0:		
IALPI	u. i. o .							RAUBURZ		B35		
Style: TRIALPIT File: P:\GINTW\PROJECTS\\26555.GPJ+44 (0)1698 710999 Printed: 26\\0172024 13:28:01 Raebum Drilling and Geote	hk & App	Status DRAFT						R	1	heet 1 o cale 1:50		
ź								N	نَـــــــــــــــــــــــــــــــــــــ			

						Site: L	_T520	BRA	ACO WEST SUBSTATION	Contrac	t No:	26555		
		^	EBU		NC					Trial Pit	No.			_
			DRILLING & GE			Client:	SHI	E Tran	smission plc	TP2				
					1,000,000	Engine	er: SSI	E Perth	n Inveralmond HSE	Trial Pit to	1		3.00m	
	Loc	ation: E	E 279425.0	(Orientation	l n: Vertic	al		Equipment: 14T Tracked Excavator	1				
		١	N 709522.9							Width -	1.30m	Length -	3.80m	
	ress	Sample	Samples and Te	ests			Level	D 11	D : 10- 10- 1		Legend	Water	Backfill	<u> </u>
	Progress	Depth	Result				(m) 242.53	Depth	·		Leg	Depth	Dep	oth
	20/11 2023						242.43	0.10	MADE GROUND: Dark brown slightly gravelly silty fine to coarse SAN cocasional roots. Gravel is fine to coarse subangular to subrounded of	ND with				
		0.50	B, B, B, D, ES						granite and psammite	with				
		0.70	D				241.83 241.78	0.70			<u></u>			
mo		1.00	B, D, ES					_	Dark brown slightly gravelly silty fine to coarse SAND with occasional Gravel is fine to medium subrounded of granite psammite and quartz	roots. ite.	/ <u>-:-</u>			
illing.c							241.33	1.20	Relict/buried Topsoil Soft brown to light brown slightly sandy slightly gravelly CLAY. Sand i	s fine to	1			
E-mail: enquiries@raeburndrilling.com		1.50	B, B, B, D, ES						coarse. Gravel is fine to coarse subangular to subrounded of granite, psammite and sandstone Soft raddish brown slightly grandy slightly gravelly CLAY with low cook	/	4			
@raet									Soft reddish brown slightly sandy slightly gravelly CLAY with low cobb content and low boulder content. Sand is fine to medium. Gravel is fir coarse subrounded locally subangular and includes granite psammite	ne to				
uiries(-	sandstone and quartzite. Cobbles and boulders are sub-rounded up 125mm of granite and psammite	to	5 0			
: endı														
-mail		2.50	B, B, D, ES								-			
77 E									beneath 2.50m becoming very sandy) 7			
Printed: 26/01/2024 13:28:01 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177	20/11						239.53	3.00_	END OF TRIAL PIT		- O - 6	Dry		
1698														
Tel: (
0HP														
ML3								-	-					
nilton														
i, Har														
rry Ro														
stlebe								-	-					
, Whis														
nnical									-					
eotec														
and G								-						
lling a														
ırn Dri														
Raebu														
01 F		narks:	l											_
13:28:	Th	ne walls	AT scanned prior of the pit stood v	ertical th	roughout e			S.						
2024			ater was not enc as terminated at			ue to rea	aching s	chedule	ed depth.					
6/01/2														
ted: 2														
Print														
8 710														
0)169														
+44 (
GPJ.														
26555														
CTS\														
ROJE														
TWNP														
File: P:\GINTW\PROJECTS\26555.GPJ+44 (0)1698 710999														
ile: P:		Driller	Originator		Groun	d-water					Eig N	<u> </u>		
		וסווויט	AD	Struck	Rose To		s) Cut C	Off		A	Fig N			
Style: TRIALPIT	Ch	ık & App	Status							AEBU	1	336 heet 1 o	of 1	
le: TF	Of .	∝ ∪hh	DRAFT							NZ		neet 1 o cale 1:50		
Sty										N				_

					Site: L	T520	BRA	CO WEST SUBSTATION	Contrac	ct No:	26555	5	
) A	EBU	ID	N					Trial Pi	t No.			
					Client:	SHE	Tran	smission plc	TP2	2			
-		DRILLING & GE	OTECHNIC	LALLID	Engine	er: SSE	E Perth	Inveralmond HSE	Trial Pit to	0		2.80)m
-	4:	E 070000 0		.: 4 - 4:	.) /4:	-1		Carriera anti 44T Tractical Consentan	_				
Lo		E 279338.8	Or	rientatior	n: vertica	al		Equipment: 14T Tracked Excavator					
8		N 709439.4				Laval			Width -	_	Length -	_	
Progress	Sample	Samples and Te	ests			Level (m)	Depth	Description of Strata		Legend	Water		ckfill
Pro	Depth	Result				249.20		Coff hypers to doub hypers an angula of three of DEAT		<u> </u>	Depth	Symbol	Deptl
20/1 202	0.30	B, D						Soft brown to dark brown spongy pseudo-fibrous PEAT		1/ 1/			
		B, D, ES			-	248.80	0.40	Firm grey slightly sandy slightly gravelly CLAY with low cobble conter occasional roots. Sand is fine to coarse. Gravel is fine to coarse roun	nt and	10/2	_		
					-	248.50	0.70		_	10	1		
Ē	1.00	B, B, B, D, ES					_	Soft to firm reddish brown slightly sandy gravelly CLAY with medium content and low boulder content. Sand is fine to medium. Gravel is file	cobble ne to	4 5		\bowtie	
ng.c								coarse subrounded, locally subangular of granite, psammite, sandsto quartzite. Cobbles and boulders are sub-rounded up to 128mm of gr and psammite	anite	70/1	1		
III dri								and pourmine		100			
aepn										P./	,		
es@r	2.00	B, B, D, ES					_			7	4		
ndnin											2		
<u>a</u> :										100		\bowtie	
Printed: 26/01/2024 13:28:01 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP 1el: 01698-71177 E-mail: enquiries@raebumdrilling.com	1					246.50 246.40	2.70	Madius street on the CAMPOTON TO SEE		300			
1177						240.40	2.00	Medium strong brown grey SANDSTONE slightly weathered. Recov- slightly silty sandy gravel with medium cobble content and low boulde content. Gravel is fine to coarse angular of sandstone. Cobbles and boulders are angular up to 240mm of sandstone	ered as	/ -	. Diy	***	
38-71								boulders are angular up to 240mm of sandstone.	′				
: 016								END OF TRIAL FIT					
E L													
3 OH							-						
W W							-						
milto													
d, Ha													
Ę.													
stlebe							-						
M													
nical													
otech													
d Ge							-						
ng ar							-						
unge													
ž D	marks:												
5 7	rial pit C	CAT scanned prior					i.						
2 일 기	Ground-v	s of the pit stood ve water was not enco	ountered.	•									
1/202	rial pit w	as terminated at a	a depth of	2.80m d	ue to ha	rd diggir	ıg (poss	ible bedrock).					
76/0													
inted:													
6660													
1.7 88													
91(0)													
1+44													
3.6													
2655													
CTS.													
COLE													
MPR.													
FIIE: P:\GINTW\PROJECTS\Z6555.GPJ+44 (0)1698 710999													
ë. L													
	Driller	Originator _	Struck	Ground Rose To	d-water Time(min	s) Cut C	Off		R	Fig N	o:		
LPIT		AD							Ê	[B37		
Style: TRIALPIT	hk & App								RAUBURZ		Sheet 1 c		
Style:		DRAFT							X	S	cale 1:5	0	

				Site:	Site: LT520 BRACO WEST SUBSTATION				Contract No: 26555				
I	RAEBURN								Trial Pit No. TP23				
10	DRILLING & GEOTECHNICAL LTD Client: SHE Transr Engineer: SSE Perth I			•		<u>. </u>		2.10)m				
				Engine	eer: SSI	= Pertr	I Inversimond HSE						
Lo	ocation: I	E 279253.9	Orient	ation: Vertic	al		Equipment: 14T Tracked Excavator						
L		N 709333.8			Level			Width -		Length -	_	n ickfill	
Progress	Sample Depth	Samples and Te	sts		(m)	Depth	Description of Strata		Legend	Water Depth	Symbol	Depth	
<u>តំ</u> 21/ 20:		F			251.53		MADE GROUND: Grey to brown gravelly silty fine to coarse sand with	<u> </u>		<u> </u>	Š ₩	Бори	
20	0.30	B, D, ES			251.03	0.50	 medium cobble content and occasional roots, pieces of wood and a point. Gravel is fine to coarse angular of granite. Cobbles are angular of 50mm of granite 	ip to			₩		
	0.60	B, D, ES			250.73		Soft brown to dark brown spongy pseudo-fibrous PEAT		<u> </u>	1	₩		
E	0.90	B, D, ES					Brown to orange brown gravelly slightly silty fine to coarse SAND. Grafine to coarse subangular of granite, psammite and quartzite	avel is	×0×		▓		
lling.co	1.25	B, B, B, B, D, ES			250.38	1.15	Reddish brown very gravelly very silty fine to coarse SAND with low content. Gravel is fine to coarse angular of sandstone. Cobbles are a	obble	₩		₩		
ourndri							up to 160mm of sandstone	rigulai	R. D. C				
@rael					040.50	0.00	beneath 1.60m becoming medium cobble content.		× 8.	\$	▓		
E-mail: enquiries@raeburndrilling.com	2.00	B, B, D, ES			249.53 249.43	2.00	Medium strong reddish brown SANDSTONE slightly to moderately weathered. Recovered as gravelly silty fine to coarse sand with medi high cobble content and low boulder content. Gravel is fine to coarse	um to	÷	Dry	\bowtie		
ail: en							¬ \ angular of sandstone. Cobbles and boulders are angular up to ∠80m.	m of					
							\sandstone END OF TRIAL PIT	/					
ichnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177						_							
1698-7													
Tel: 0													
3 OHP													
on ML						-							
damilto													
/ Rd, F													
lebern						-							
Whist													
hnical,													
eotec													
and G						-							
Orilling													
J unq													
Rae	emarks:								<u> </u>				
3:28:02	Trial pit C	AT scanned prior to of the pit stood ve				S.							
024 1	Ground-v	vater was not enco	ountered.			ng (poss	sible bedrock).						
6/01/2	·						,						
ted: 2													
Ë													
710999													
1698													
44 (0)													
GPJ+													
12655													
ECTS													
PROJ													
NT N													
Style: TRIALPIT File: PAGINTWAPROJECTS/26555.GPJ+44 (0)1698 710999 Printed: 26/01/2024 13:28:02 Raebum Drilling and Geote													
<u> </u>	Driller	Originator AD		e To Time(mir	ns) Cut C	Off		RA	Fig N				
SIALPI	Chk & App							E		B38	f 1		
yle: TF	ык ос Арр	DRAFT						RAUBURZ	1	sheet 1 o cale 1:50			
ಹ ∟								IN					

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
V			
	Client:	SHE Transmission plc	
, LD	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX C File: P./GINTWARQJECTS/2655.G.P.J Printed: 25/01/2024 18:25.47 Raeburn Drilling and Geotechnical, Whisteberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH01

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:15 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBUR

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH01

555.GPJ Printed: 2501/2024 18:08:15 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com			
Style: CORE PHOTOS File: P:\GINTW\PROJECTS\26555			
HOTOS		Originator	Γ
ORE PI		RB	l
tyle: C	Chk & App	Status	
S	FMR	FINAL	L

SONIC & ROCK CORE PHOTOGRAPHS

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH02

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:21 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURN

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH02

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:21 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBUR

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH02

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:21 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBUR

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH03

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:30 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH03

Originator
RB
Chk & App Status
FMR FINAL

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:30 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH03

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:30 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH04

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:08:35 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH04

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:35 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH04

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:35 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH05

Originator
RB
Chk & App Status
FMR FINAL

SONIC & ROCK CORE PHOTOGRAPHS

アスに田田フだろ

Fig No:

C5

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:41 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH05

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:41 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH05

Originator
RB
Chk & App Status
FMR FINAL

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:08:41 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com

SONIC & ROCK CORE PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH06

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:08:46 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. **BH06**

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:08:46 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH07

Originator
RB
Chk & App Status
FMR FINAL

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH07

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:08:53 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH07

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:08:53 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH08

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:08:57 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH08

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:08:57 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH09

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:09:02 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH09

Originator

RB

Chk & App Status

FMR FINAL

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH10

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:09:07 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH10

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:09:07 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH11 NEW

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:09:11 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH11 NEW

Originator

RB

Chk & App Status

FMR FINAL

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURN

Fig No:

C11

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:09:11 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH12 NEW

Originator
RB
Chk & App Status
FMR FINAL

CORE PHOTOS File: P:\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:09:16 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH12 NEW

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:09:16 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

ZACBIDZZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH13

CORE PHOTOS File: P./GINTWPROJECTS\2665.GPJ Printed: 25/01/2024 18:09:20 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH13

CORE PHOTOS File: P./GINTWPROJECTS\2665.GPJ Printed: 25/01/2024 18:09:20 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH14 NEW

Originator

RB

Chk & App Status

FMR FINAL

CORE PHOTOS File: P./GINTWPROJECTS\26555.GPJ Printed: 25/01/2024 18:09:24 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@naebumdrilling.com

SONIC & ROCK CORE PHOTOGRAPHS

尺人田田コピス

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH14 NEW

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:09:24 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURN

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH15 NEW

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:09:28 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No.

BH15 NEW

Style: CORE PHOTOS File: P.\GINTWAPROJECTS\26565.GPJ Printed: 25/01/2024 18:09:28 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-71177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH18

CORE PHOTOS File: P./GINTWAPROJECTS/2655.6.PJ Printed: 25/01/2024 18:09:31 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH19

Originator
RB
Chk & App Status
FMR FINAL

CORE PHOTOS File: P./GINTW/PROJECTS/2655.GPJ Printed; 25/01/2024 18:09:36 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

SONIC & ROCK CORE PHOTOGRAPHS

RAUBURZ

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Borehole No. BH19

CORE PHOTOS File: P./GINTW/PROJECTS/2655.GPJ Printed; 25/01/2024 18:09:36 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status FMR **FINAL**

SONIC & ROCK CORE PHOTOGRAPHS

RAEBURY

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP01**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:01 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP01**

OD Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:01 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

ZCBBDZ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP02**

Originator RB Chk & App Status FMR **FINAL**

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:14 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP02**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:14 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

JCBMPJ

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP03**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:26 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP03**

Style: TP PHOTOS File: P.\GINTW\PROJECTS\28555.GPJ Printed: 25/01/2024 17:56:26 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com Originator RB Chk & App Status FINAL FMR

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP04**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:38 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP04**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:38 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP05**

Originator

RB

Chk & App Status

FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:56:51 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamiton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP05**

Originator
RB
Chk & App Status
FMR FINAL

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP06**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:04 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP06**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:04 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

ACBEA

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP07**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:16 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP07**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:16 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP08**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:29 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP08**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GNTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:29 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumndrilling.com

TRIAL PIT PHOTOGRAPHS

ACBED A

Fig No:

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Trial Pit No.

Contract No: 26555

TP09

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:41 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP09**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:41 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP10**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:53 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP10**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:57:53 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP10 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:58:07 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP10 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:58:07 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP11**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:58:19 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP11 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:04:45 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP11 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:04:45 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP12 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:04:56 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP12 NEW**

O Originator

H RB

Chk & App Status

FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:04:56 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP13 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:08 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP13 NEW**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:08 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP19**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:21 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP19**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:21 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP20**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:33 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP20**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:33 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

acamba -

Fig No:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP21**

Originator RB Chk & App Status FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:43 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP21**

Originator

Had RB

Chk & App Status

FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:43 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP22**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:55 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP22**

Originator
ORB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:05:55 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc
Engineer: SSE Perth Inveralmond HSE

Trial Pit No. **TP23**

Contract No: 26555

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:06:07 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAEBUR

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP23**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 18:06:07 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

ACBIN DA

Fig No:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

Trial Pit No. **TP11**

Originator
RB
Chk & App Status
FMR FINAL

File: P.\GINTW\PROJECTS\26555.GPJ Printed: 25/01/2024 17:58:19 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

TRIAL PIT PHOTOGRAPHS

RAUBUR

Fig No:

C29

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
10	Client:	SHE Transmission plc	
U	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX D File: P./GINTWARQJECTS/2655.G.PJ Printed: 25/01/2024 18:26:16 Raeburn Drilling and Geotechnical, Whisteberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com

APPENDIX D INSITU TESTING

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

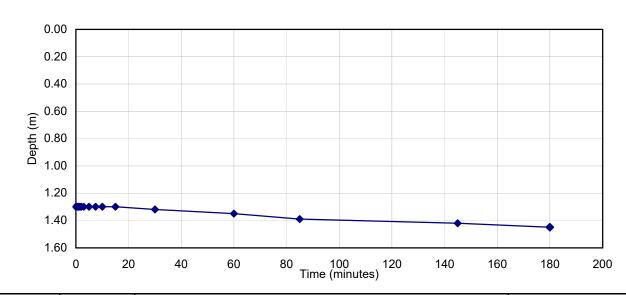
Contract No 26555

Test Pit No TP03

Test Run No 1

Date of Test 06.12.23

Time	Depth to Water
(minute)	(m)
0	1.30
0.5	1.30
1	1.30
1.5	1.30
2 3	1.30
	1.30
5	1.30
7.5	1.30
10	1.30
15	1.30
30	1.32
60	1.35
85	1.39
145	1.42
180	1.45


Weather Conditions			
Dry, cold			
Non Engineering Str	ata Des	cription	
0.00-0.40:			
0.40-0.90: Light greyish brown		and GRAVEL with	
cobble 0.90-2.00: Reddish brown silty		and CRAVEL with	
cobble		IIIG GIVAVEE WIIII	
Test Pit Dime	ensions		
Length	m	2.90	
Width	m	0.80	
Depth	m	2.00	
Test Paran	neters		
Maximum Effective Depth	m	1.30	
75% Effective Depth	m	1.48	
25 % Effective Depth	m	1.83	
Effective Storage Volume	m³	0.81	
Surface Area a _{p50}	m²	4.91	
Time for 75%	min	~	
Time for 25%	min	~	
t _{p75-25}	min	~	

,	Soil Infiltration Rate	
	INDETERMINATE	

Comments

Bedrock at 2.00m.

Test terminated due to slow water outflow.

Originator	Checked & Approved	
RB	14/12/2023	

SOAKAWAY BRE 365

Sheet 1 of 1

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

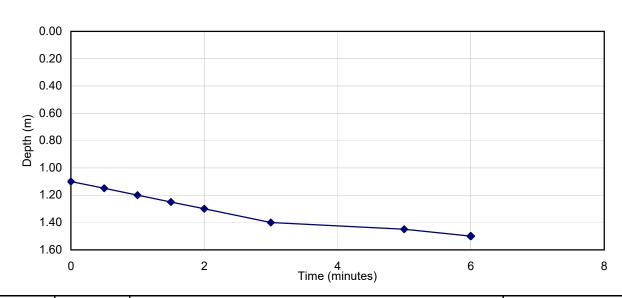
Test Pit No TP06

Test Run No 1

Date of Test 06.12.23

Time	Depth to Water
(minute)	(m)
0	1.10
0.5	1.15
1 1.5	1.20 1.25
	1.30
2 3	1.40
5	1.45
6	1.50

Weather Conditions				
Dry, cold				
Non Engineering Strata Description				
0.00-0.40: PEAT 0.40-1.20: Reddish brown gravelly silty SAND with cobbles and boulders. 1.20-1.50: Greyish brown SANDSTONE.				
Test Pit Dimensions				
Length	m 3.20			
Width	m 1.10			
l				


Test Pit Dimensions			
Length	m	3.20	
Width	m	1.10	
Depth	m	1.50	
Test Parameters			
Maximum Effective Depth	m	1.10	
75% Effective Depth	m	1.20	
25 % Effective Depth	m	1.40	
Effective Storage Volume	m³	0.70	
Surface Area a _{p50}	m²	5.24	
Time for 75%	min	1	
Time for 25%	min	3	
t _{p75-25}	min	2	

Soil Infiltration Rate
1.1E-03 m/s

Comments

Bedrock at 1.50m.

Unable to fill pit above 1.10m due to filtration rate.

Originator	Checked & Approved	
RB	14/12/2023	

SOAKAWAY BRE 365

Sheet 1 of 1

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

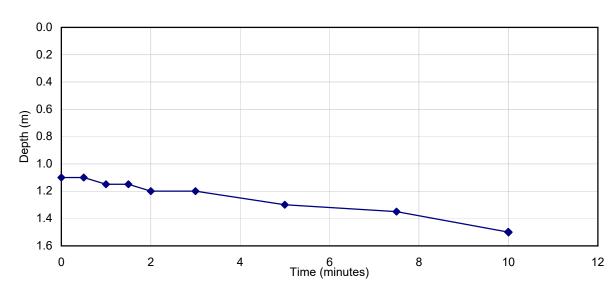
Test Pit No TP06

Test Run No 2

Date of Test 06.12.23

Time (minute)	Depth to Water (m)
0	1.10
0.5	1.10
1	1.15
1.5	1.15
2	1.20
3	1.20
5	1.30
7.5	1.35
10	1.50
ĺ	

Weather Conditions				
Dry, cold				
Non Engineering Strata Description				
0.00-0.40: PEAT 0.40-1.20: Reddish brown gravelly silty SAND with cobbles and boulders. 1.20-1.50: Greyish brown SANDSTONE.				
Test Pit Dimensions				
Length	m	3.20		
Width	m	1.10		
Depth	m	1 50		


Lest Pit Dimensions			
m	3.20		
m	1.10		
m	1.50		
Test Parameters			
m	1.10		
m	1.20		
m	1.40		
m³	0.70		
m²	5.24		
min	2		
min	8.3		
min	6		
	m m m m m m m m m m m m m m m m m m m		

Soil Infiltration Rate	
3.6E-04 m/s	

Comments

Bedrock at 1.50m.

Unable to fill pit above 1.10m due to filtration rate.

Originator	Checked & Approved
RB	14/12/2023

SOAKAWAY BRE 365

Sheet 1 of 1

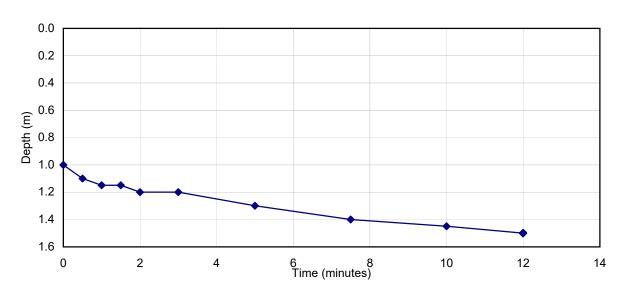
Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Test Pit No TP06

Test Run No 3


Date of Test 06.12.23

Time	Depth to Water
(minute)	(m)
0 0.5	1.00 1.10
0.5	1.15
1.5	1.15
2	1.20
2 3 5	1.20 1.30
7.5	1.40
10	1.45
12	1.50
1	

Weather Conditions			
Dry, cold			
Non Engineering Str	ata Des	cription	
0.00-0.40: PEAT 0.40-1.20: Reddish brown gravelly silty SAND with cobbles and boulders. 1.20-1.50: Greyish brown SANDSTONE.			
Test Pit Dime	ensions		
Length	m	3.20	
Width	m	1.10	
Depth	m	1.50	
Test Parameters			
Maximum Effective Depth	m	1.00	
75% Effective Depth	m	1.13	
25 % Effective Depth	m	1.38	
Effective Storage Volume	m³	0.88	
Surface Area a _{p50}	m²	5.67	
Time for 75%	min	0.78	
Time for 25%	min	7	
t _{p75-25}	min	6	

Soil Infiltration Rate
4.2E-04 m/s

Comments
Bedrock at 1.50m.

Originator	Checked & Approved
RB	14/12/2023

SOAKAWAY BRE 365

Sheet 1 of 1

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

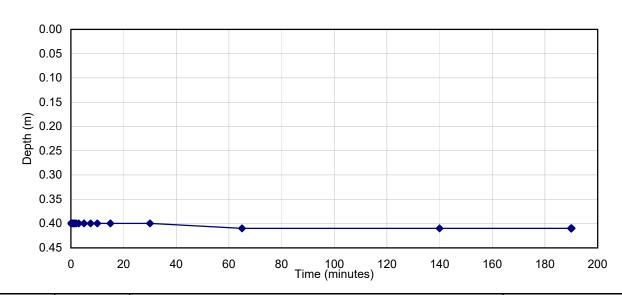
Test Pit No TP07

Test Run No 1

Date of Test 05.12.23

Time	Depth to Water
(minute)	(m)
0	0.40
0.5	0.40
1	0.40
1.5	0.40
2 3	0.40
3	0.40
5	0.40
7.5	0.40
10 15	0.40
30	0.40 0.40
65	0.40
140	0.41
190	0.41

Dry, cold		
Non Engineering Str	ata Des	cription
0.00-0.40:	PEAT	
0.40-1.00: Reddish brown sar	, ,	•
cobbles and b		
1.00-1.20: Greyish brown slightly clayey slightly gravelly SANDSTONE with cobbles and boulders.		
Test Pit Dimensions		
Length	m	2.00
Width	m	1.10
Depth	m	1.20
Test Param	neters	
Maximum Effective Depth	m	0.40
75% Effective Depth	m	0.60
25 % Effective Depth	m	1.00
Effective Storage Volume	m³	0.88
Surface Area a _{p50}	m²	4.68
Time for 75%	min	~
Time for 25%	min	~
t _{p75-25}	min	~


Weather Conditions

INDETERMINATE	
Soil Infiltration Rate	

Comments

Bedrock at 1.20m.

Test terminated due to slow water outflow.

Originator	Checked & Approved
RB	14/12/2023

SOAKAWAY BRE 365

Sheet 1 of 1

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

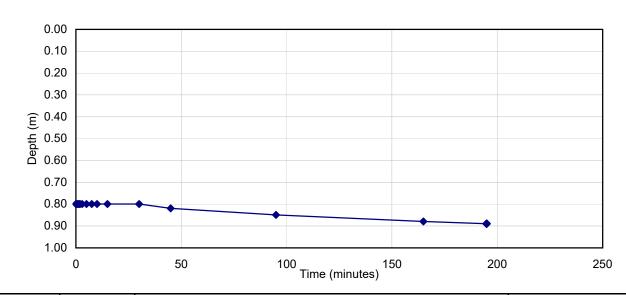
Contract No 26555

Test Pit No TP13

Test Run No 1

Date of Test 05.12.23

Time	Depth to Water
(minute)	(m)
0	0.80
0.5	0.80
1 1.5	0.80 0.80
2	0.80
3	0.80
5	0.80
7.5	0.80
10 15	0.80 0.80
30	0.80
45	0.82
95	0.85
165	0.88
195	0.89
I	I


Weather Conditions			
Dry, cold			
Non Engineering Str	ata Desc	ription	
0.00-0.40:	PEAT		
0.40-0.90: Brown SAND and G		with cobbles and	
boulder	•.		
0.90-2.00: Reddish brown ver	, 0	y clayey SAND	
with cobbles.			
Test Pit Dime	Test Pit Dimensions		
Length	m	2.10	
Width	m	0.90	
Depth	m	1.80	
Test Paran	neters		
Maximum Effective Depth	m	0.80	
75% Effective Depth	m	1.05	
25 % Effective Depth	m	1.55	
Effective Storage Volume	т³	0.95	
Surface Area a _{p50}	m²	4.89	
Time for 75%	min	~	
Time for 25%	min	~	
t _{p75-25}	min	~	

Soil Infiltration Rate	
INDETERMINATE	

Comments

Bedrock at 2.00m.

Test terminated due to slow water outflow.

Originator	Checked & Approved	
RB	14/12/2023	

SOAKAWAY BRE 365

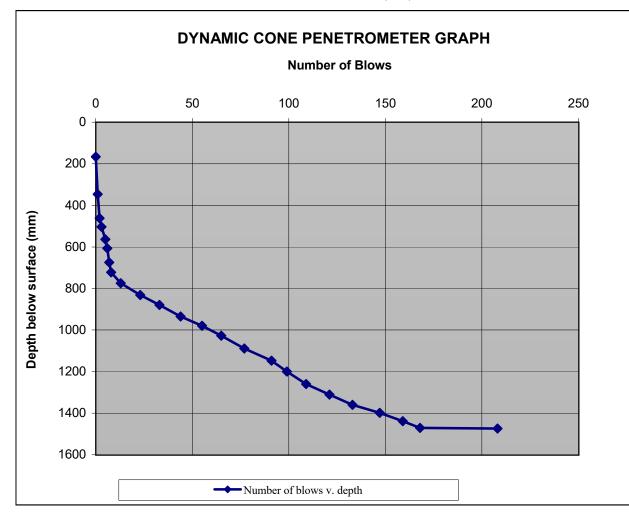
Sheet 1 of 1

RF

Date tested

LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

> **Test Location** TP02

Contract No 26555

1 DCP No.

Tested by Sunny, clear, cold Zero Error (mm) 167 Weather

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
167	722	8	8	Topsoil	69.38	3
722	1259	109	101	Unknown	5.32	52
1259	1471	168	59	Unknown	3.59	78
1471	1474	208	40	Unknown	0.08	4667

Remarks:

Cone Angle 60°

UKAS accredited test - No

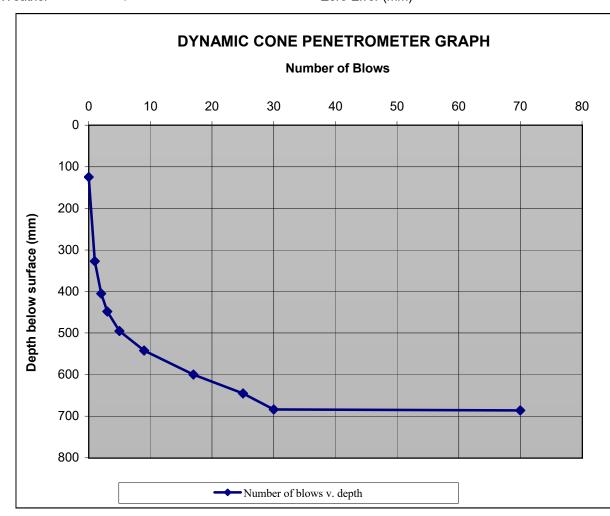
Test stopped to add extension rods at a depth of 892mm

Test stopped at 1474mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1

Date tested

Site LT520 BRACO WEST SUBSTATION


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Test Location TP03

Contract No 26555

Tested by RF DCP No. 2
Weather Sunny, clear, cold Zero Error (mm) 125

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
125	405	2	2	Topsoil	140.00	2
405	495	5	3	Unknown	30.00	8
495	645	25	20	Unknown	7.50	36
645	684	30	5	Unknown	7.80	34
684	686	70	40	Unknown	0.05	7165

Remarks:

Cone Angle 60°

UKAS accredited test - No

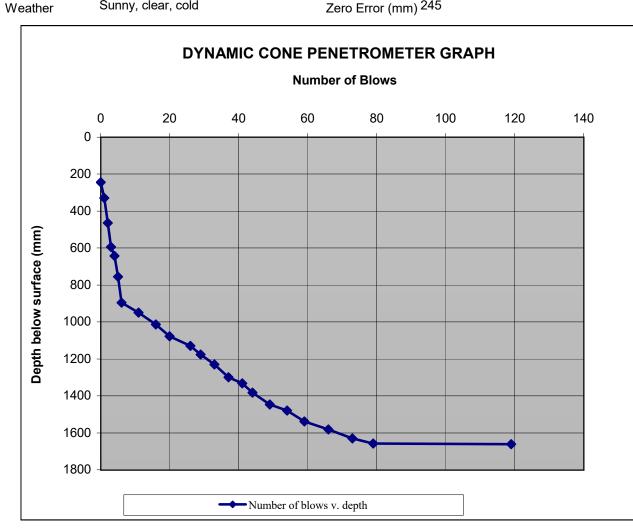
Test stopped to add extension rods at a depth of 892mm

Test stopped at 684mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1

Date tested

Site LT520 BRACO WEST SUBSTATION


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Test Location TP04

Contract No 26555

Tested by RF DCP No. 3 Weather Sunny, clear, cold Zero Error (mm) 245

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
245	895	6	6	Topsoil	108.33	2
895	1129	26	20	Unknown	11.70	22
1129	1333	41	15	Unknown	13.60	19
1333	1658	79	38	Unknown	8.55	31
1658	1661	119	40	Unknown	0.08	4667

Remarks:

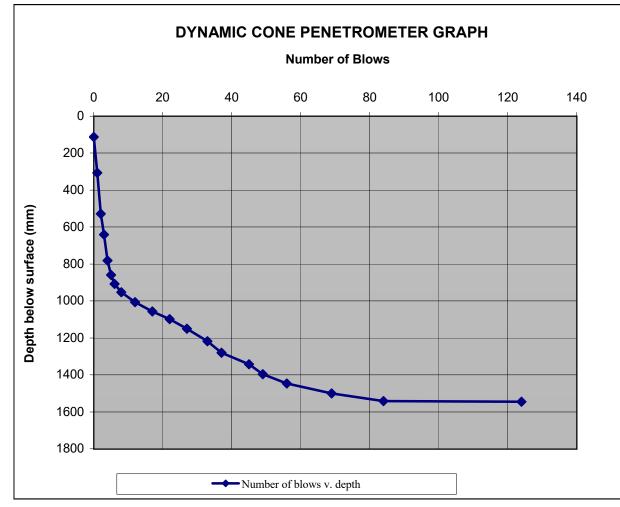
Cone Angle 60°

UKAS accredited test - No

Test stopped to add extension rods at a depth of 895mm

Test stopped at 1661mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location** TP07

Contract No 26555

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
113	907	6	6	Topsoil	132.33	2
907	1280	37	31	Unknown	12.03	22
1280	1446	56	19	Unknown	8.74	31
1446	1542	84	28	Unknown	3.43	82
1542	1545	124	40	Unknown	0.08	4667

Remarks:

Cone Angle 60°

UKAS accredited test - No

Test stopped to add extension rods at a depth of 907mm

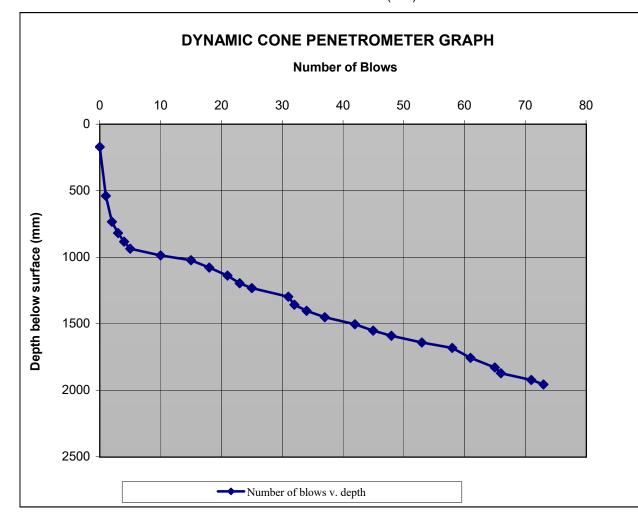
Test stopped at 1545mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1

RF

Date tested

LT520 BRACO WEST SUBSTATION


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location TP09** 5 DCP No.

Contract No 26555

Tested by Sunny, clear, cold Zero Error (mm) 170 Weather

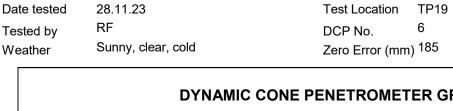
Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
170	735	2	2	Topsoil	282.50	1
735	937	5	3	Unknown	67.33	4
937	1022	15	10	Unknown	8.50	31
1022	1297	31	16	Unknown	17.19	15
1297	1403	34	3	Unknown	35.33	7
1403	1681	58	24	Unknown	11.58	23
1681	1871	66	8	Unknown	23.75	11
1871	1957	73	7	Unknown	12.29	21

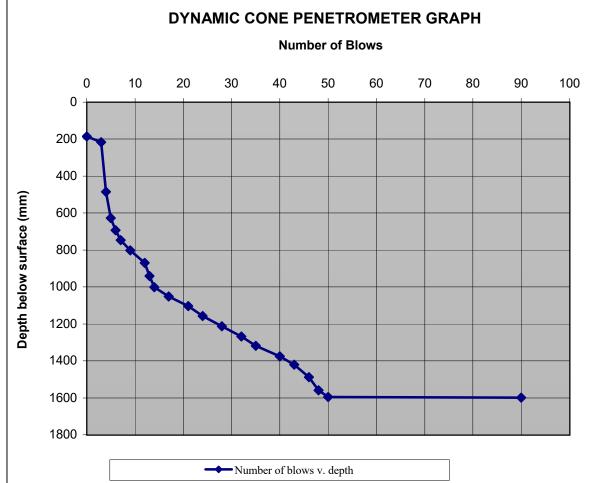
Remarks:

Cone Angle 60° UKAS accredited test - No

Test stopped to add extension rods at depths of 937mm and 1756mm

Test stopped at 1957mm due to refusal of equipment to further penetration


Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location TP19**

Contract No 26555

Start Depth (mm)	Finish Depth (mm)	No. of Blows	s Blows per Layer Material		DCP mm/blow	Estimated average CBR over depth range (%)
185	217	3	3	Topsoil	10.67	25
217	693	6	3	Unknown	158.67	1
693	870	12	6	Unknown	29.50	8
870	1001	14	2	Unknown	65.50	4
1001	1489	46	32	Unknown	15.25	17
1489	1596	50	4	Unknown	26.75	9
1596	1599	90	40	Unknown	0.08	4667

Remarks:

Cone Angle 60° UKAS accredited test - No

Test stopped to add extension rods at depths of 940mm

Test stopped at 1599mm due to refusal of equipment to further penetration

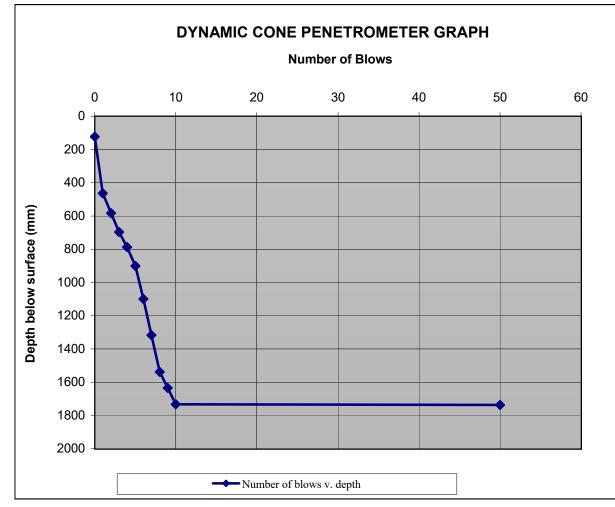
Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1

Date tested

Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE


Test Location TP20

Contract No 26555

Tested by RF
Weather Sunny, clear, cold

28.11.23

r, cold DCP No. 7
Zero Error (mm) 124

Start Depth (mm)	Finish Depth (mm)	No. of Blows per Layer		Material	DCP mm/blow	Estimated average CBR over depth range (%)	
124	464	1	1	Topsoil	340.00	1	
464	900	5	4	Unknown	109.00	2	
900	1538	8	3	Unknown	212.67	1	
1538	1733	10	2	Unknown	97.50	2	
1733	1736	50	40	Unknown	0.08	4667	

Remarks:

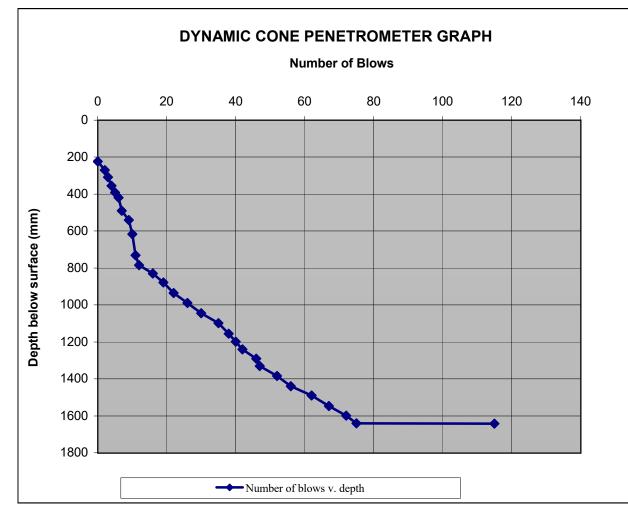
Cone Angle 60°

UKAS accredited test - No

Test stopped to add extension rods at a depth of 900mm

Test stopped at 1736mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1


SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location** TP21

Contract No 26555

Start Depth (mm)	Finish Depth (mm)	h No. of Blows Blows pe Layer		Material	DCP mm/blow	Estimated average CBR over depth range (%)	
223	223 541 9 9		9	Topsoil	35.33	7	
541	784	12	3	Unknown	81.00	3	
784	1331	47	35	Unknown	15.63	17	
1331	1640	75	28	Unknown	11.04	24	
1640	1642	115	40	Unknown	0.05	7165	

Remarks:

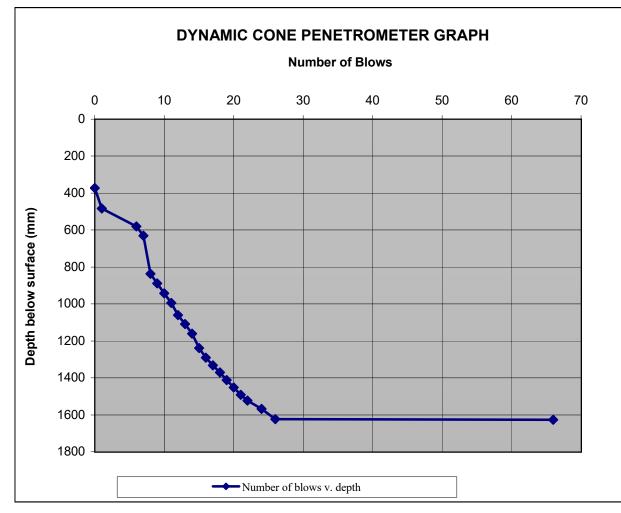
Cone Angle 60°

UKAS accredited test - No

Test stopped to add extension rods at a depth of 805mm

Test stopped at 1642mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location** TP22

Contract No 26555

Date tested 28.11.23 RF 9 DCP No. Tested by Sunny, clear, cold Zero Error (mm) 372 Weather

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
372	484	1	1	Topsoil	112.00	2
484	580	6	5	Unknown	19.20	13
580	837	8	2	Unknown	128.50	2
837	1160	14	6	Unknown	53.83	4
1160	1523	22	8	Unknown	45.38	5
1523	1623	26	4	Unknown	25.00	10
1623	1626 66 40		Unknown	0.08	4667	

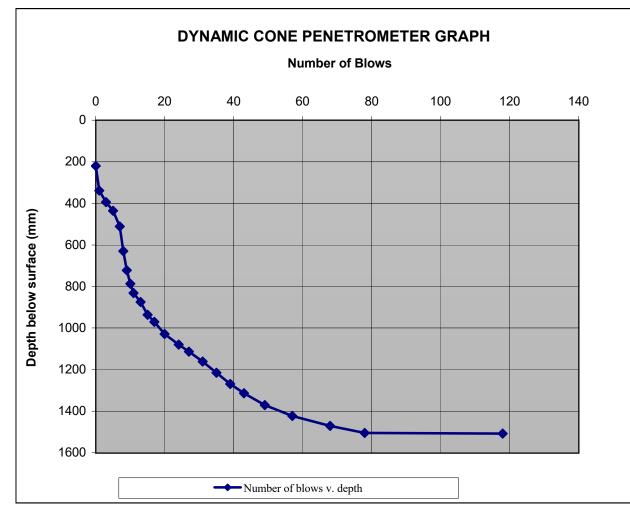
Remarks:

Cone Angle 60° UKAS accredited test - No

Test stopped to add extension rods at a depth of 837mm

Test stopped at 1626mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

> **Test Location** TP23 10 DCP No.

Contract No 26555

Date tested 28.11.23 RF Tested by Sunny, clear, cold Zero Error (mm) 220 Weather

Start Depth (mm)	Finish Depth (mm)	No. of Blows	Blows per Layer	Material	DCP mm/blow	Estimated average CBR over depth range (%)
220	339	1	1	Topsoil	119.00	2
339	512	7	6	Unknown	28.83	9
512	832	11	4	Unknown	80.00	3
832	1028	20	9	Unknown	21.78	12
1028	1423	57	37	Unknown	10.68	25
1423	1505	78	21	Unknown	3.90	72
1505	1508	118	40	Unknown	0.08	4667

Remarks:

Cone Angle 60° UKAS accredited test - No

Test stopped to add extension rods at a depth of 832mm

Test stopped at 1508mm due to refusal of equipment to further penetration

Originator	Checked & Approved	Dynamic Cone Penetrometer	
IM	06/12/2023	In-house procedure TP166 with reference to CS 229 cl 6 of the DMRB	Sheet 1 of 1

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555	
J				
TD.	Client:	SHE Transmission plc		
, L	Engine	er: SSE Perth Inveralmond HSE		

Style: APPENDIX A File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:26:55 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

APPENDIX E MONITORING

Client: SHE Transmission plc Engineer: SSE Perth Inveralmond HSE Contract No: 26555

Water level measurements taken from ground level.

Borehole No.	yed n OD)	Base ipe (r	Date /Time	oheric sure ar)	G	Sas Co	mposit	tion		ential sure	Flow	Depth to Water	# (C	Remarks
	Surveyed Level (m OD)	Depth to Base of Standpipe (m)		Atmospheric Pressure (mBar)	CH ₄ (%vol)	CO ₂ (%vol)	O ₂ (%vol)	H ₂ S	CO (ppm)	Differential Pressure	(l/hr)	(m) (mBGL)	Depth (mOD)	
BH01	227.89		23/01/24 09:00	969	0.00	0.00	19.40	0.00	0.00	-8.00	-1.80	2.44	225.45	Dry, Overcast
	227.89		23/01/24 09:01		0.00	0.10	19.50	0.00	1.00					Dry, Overcast
	227.89		23/01/24 09:02		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	227.89		23/01/24 09:03		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	227.89		23/01/24 09:04		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	227.89		23/01/24 09:05		0.00	0.00	19.40	0.00	0.00		-1.80			Dry, Overcast
BH02	249.18		23/01/24 09:00	965	0.00	0.00	18.60	0.00	0.00	-4.00	-0.80	4.78	244.40	Dry, Overcast
	249.18		23/01/24 09:01		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	249.18		23/01/24 09:02		0.00	0.10	19.30	0.00	0.00					Dry, Overcast
	249.18		23/01/24 09:03		0.00	0.10	19.10	0.00	0.00					Dry, Overcast
	249.18		23/01/24 09:04		0.00	0.10	18.90	0.00	0.00					Dry, Overcast
	249.18		23/01/24 09:05		0.00	0.10	18.80	0.00	1.00		-0.70			Dry, Overcast
BH04	252.35		23/01/24 09:00	962	0.00	0.20	19.30	0.00	1.00	-6.00	-1.30	Dry		Overcast, raining
	252.35		23/01/24 09:01		0.00	0.10	19.30	0.00	0.00					Overcast, raining
	252.35		23/01/24 09:02		0.00	0.10	19.30	0.00	0.00					Overcast, raining
	252.35		23/01/24 09:03		0.00	0.10	19.30	0.00	0.00					Overcast, raining
	252.35		23/01/24 09:04		0.00	0.10	19.30	0.00	0.00					Overcast, raining
	252.35		23/01/24 09:05		0.00	0.10	19.40	0.00	0.00		-1.30			Overcast, raining
BH07	235.10		23/01/24 09:00	970	0.00	0.00	19.30	0.00	1.00	-22.00	-3.40	4.51	230.59	Dry, Overcast
	235.10		23/01/24 09:01		0.00	0.10	19.40	0.00	0.00					Dry, Overcast
	235.10		23/01/24 09:02		0.00	0.10	19.40	0.00	0.00					Dry, Overcast
	235.10		23/01/24 09:03		0.00	0.10	19.40	0.00	1.00					Dry, Overcast
	235.10		23/01/24 09:04		0.00	0.10	19.40	0.00	1.00					Dry, Overcast
	235.10		23/01/24 09:05		0.00	0.10	19.30	0.00	0.00		-3.40			Dry, Overcast
BH10	240.05		23/01/24 09:00	968	0.00	0.00	19.30	0.00	1.00	-22.00	-3.40	Dry		Dry, Overcast
	240.05		23/01/24 09:01		0.00	0.00	19.40	0.00	1.00					Dry, Overcast
	240.05		23/01/24 09:02		0.00	0.10	19.40	0.00	0.00					Dry, Overcast
	240.05		23/01/24 09:03		0.00	0.10	19.30	0.00	0.00					Dry, Overcast
	240.05		23/01/24 09:04		0.00	0.10	19.30	0.00	0.00					Dry, Overcast
	240.05		23/01/24 09:05		0.00	0.10	19.30	0.00	0.00		-3.40			Dry, Overcast
BH11 NEW	216.61		23/01/24 09:00	970	0.00	0.00	19.30	0.00	0.00	0.50	-1.20	1.02	215.59	Dry, Overcast
	216.61		23/01/24 09:01		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	216.61		23/01/24 09:02		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	216.61		23/01/24 09:03		0.00	0.00	19.40	0.00	0.00					Dry, Overcast
	216.61		23/01/24 09:04		0.00	0.10	19.40	0.00	0.00					Dry, Overcast
	216.61		23/01/24 09:05		0.00	0.10	19.30	0.00	0.00		-1.20			Dry, Overcast
BH13	259.53		23/01/24 09:00	963	0.00	0.20	19.00	0.00	1.00	-20.00	-3.30	Dry		Overcast, raining
	259.53		23/01/24 09:01		0.00	0.10	19.40	0.00	0.00					Overcast, raining
	259.53		23/01/24 09:02		0.00	0.10	19*.3	0.00	0.00					Overcast, raining
	259.53		23/01/24 09:03		0.00	0.10	19.30	0.00	1.00					Overcast, raining
	259.53		23/01/24 09:04		0.00	0.10	19.30	0.00	0.00					Overcast, raining
	259.53		23/01/24 09:05		0.00	0.10	19.30	0.00	1.00		-3.30			Overcast, raining
BH14 NEW	246.92		23/01/24 09:00	971	0.00	0.10	19.20	0.00	1.00	-25.00	-3.60	Dry		Dry, Overcast
	246.92		23/01/24 09:01		0.00	0.10	19.40	0.00	1.00					Dry, Overcast
Chk & App	Originator RB Status	Tit		RESUL MC	TS C						EL		RAUBURZ	Fig No:

257.97

257.97

23/01/24 09:04

23/01/24 09:05

Site: LT520 BRACO WEST SUBSTATION

SHE Transmission plc Engineer: SSE Perth Inveralmond HSE

0.00

0.00

0.10

0.10

19.20

19.10

0.00

0.00

0.00

0.00

0.00

Water level measurements taken from ground level.

Overcast, raining

Overcast, raining

Contract No: 26555

Depth to Base of Standpipe (m) Depth Surveyed Level (m OD) Atmospheric Pressure (mBar) Gas Composition Differential Pressure Borehole Date Flow to Remarks /Time Depth (mOD) No. Water (Pa) (m) CO CH₄ CO₂ O_2 H_2S (mBGL) (l/hr) (%vol) (%vol) (%vol) (ppm) (ppm) BH14 NEW 246.92 23/01/24 09:02 0.00 0.10 19.30 0.00 1.00 Dry, Overcast 246.92 23/01/24 09:03 0.00 0.10 19.30 0.00 2.00 Dry, Overcast 246.92 23/01/24 09:04 0.00 0.10 19.30 0.00 1.00 Dry, Overcast 246.92 0.00 -3.60 23/01/24 09:05 0.10 19.30 0.00 2.00 Dry, Overcast BH19 257.97 23/01/24 09:00 962 0.00 0.10 18.80 0.00 0.00 0.00 0.00 8.74 249.23 Overcast, raining 257.97 23/01/24 09:01 0.00 0.10 19.20 0.00 0.00 Overcast, raining 257.97 23/01/24 09:02 0.00 0.10 19.40 0.00 0.00 Overcast, raining 257.97 23/01/24 09:03 0.00 0.10 19.30 0.00 0.00 Overcast, raining

Style: SPIPE MONITORING Flie: P:GINTWMPROJECTS/26555.GPJ Printed: 26/01/2024 17:02:31 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tei: 01698-711177 E-mail: enquiries@raebumdrilling.com Originator RB Chk & App Status **FMR** DRAFT

RESULTS OF GAS AND WATER LEVEL MONITORING IN STANDPIPES

RAMBU

Fig No:

E1

Sheet 2 of 2

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

STANDARD

Contract No: 26555

CLASSIFICATION TESTS

TEST

Determination of water content BS EN ISO 17892-1:2014

Client:

Determination of liquid limit BS 1377: 1990: Part 2: 4.3 and 4.4

Determination of liquid and plastic limits

Determination of bulk density

Determination of particle density

Determination of particle density

BS EN ISO 17892-2:2014

BS EN ISO 17892-3:2016

Determination of particle size distribution

BS EN ISO 17892-4:2016

CHEMICAL TESTS

Determination of organic matter content BS 1377 : 1990 : Part 3 : 3.4 Determination of mass loss on ignition BS 1377 : 1990 : Part 3 : 4.3

Determination of sulphate content of soil and groundwater BS 1377 : 1990 : Part 3 : 5.2, 5.3 and 5.5

Determination of chloride content BS 1377 : 1990 : Part 3 : 7.2 and 7.3

Determination of pH value BS 1377: 1990: Part 3: 9.5

COMPACTION-RELATED TESTS

Determination of dry density/moisture content relationship BS 1377 : 1990 : Part 4 : 3.3 to 3.6

Determination of moisture condition value (MCV) SDD Tech Memo SH7/83; SDD Appls Guide No.1 Rev. 1989

Determination of California Bearing Ratio (CBR) BS 1377 : 1990 : Part 4 : 7.4

CONSOLIDATION AND STRENGTH TESTS

Incremental loading oedemeter test

Unconfined compression test

Unconsolidated undrained triaxial test

Consolidated triaxial compression tests on water saturated soils

BS EN ISO 17892-7:2018

BS EN ISO 17892-8:2018

BS EN ISO 17892-9:2018

Lab Vane Tests BS 1377 : 1990

Direct shear tests BS EN ISO 17892-10:2019
Permeability tests BS EN ISO 17892-11:2019
Fall cone test BS EN ISO 17892-6:2017

ROCK TESTS

Determination of point load strength ISRM Commission on Testing Methods, 1985

Determination of unconfined compressive strength ASTM D7012-14

LA Abrasion Tests BS EN 1097-2-2010 and BS 818 : Part 2 : 1990

Magnesium Soundness Tests BS EN 1367-2

Slake durability ISRM Suggested methods
Rock porosity / density ISRM Suggested methods

Printed: 26/01/2024 12:26:29 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-1

Issue No 01

LABORATORY TEST REPORT

,	INGI	A15044-1	Date samples received	12/12/2023	
Project Number Your Ref Purchase Order		26555 Date written instructions received		29/11/2023	
		26555	Date testing commenced	15/12/2023	
		Please find enclo	sed the results as summarised below		
Figure / Table	Test Quantity		Description	ISO 17025 Accredited	
	12	Determination of Water (Content	Yes	
	4	Atterberg Limit	Yes		
	12	Particle Size Distribution	Yes		
1 Moisture Content / Dry Density Relationship			Yes		
5 Moisture Condition Value			Yes		
	1	California Bearing Ratio		Yes	
	2	Shear Strength by Direct	Shear	Yes	
	1	Resistance to Fragmenta	tion by Los Angeles Method	Yes	
	4	Chemical Analysis		s/c - Yes	

Remarks:

Issued by: C Donnelly Date of Issue: 18/01/2024 Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories : 18/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

SHE Transmission plc

t Table			E	ingineer	SSE Perth Inv	veralmond HSE	
onten	5	Sample Identific	cation				
1212 - Moisture Content Table	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	TP01	0.60		В	2012712	Brown silty sandy fine to coarse GRAVEL with cobbles	15.2
	TP01	0.60		D	2012711	Brown silty sandy fine to coarse GRAVEL	14.1
	TP03	0.60		В	2012714	Brown silty very sandy fine to coarse GRAVEL	16.6
	TP03	0.60		D	2012713	Brown silty very sandy fine to coarse GRAVEL	21.3
	TP03	1.30		D	2012715	Brown silty SAND and GRAVEL. Gravel is fine to coarse	14.4
	TP06	1.00		D	2012718	Brown silty very sandy fine to coarse GRAVEL	13.0
	TP08	1.00		В	2012721	Brown silty very gravelly SAND. Gravel is fine to coarse	17.1
	TP08	1.00		D	2012719	Brown silty very gravelly SAND. Gravel is fine to coarse	18.8
	TP21	1.00		D	2012723	Brown slighty sandy slightly gravelly CLAY. Gravel is fine to coarse	17.9
	TP21	1.50		В	2012725	Brown slightly gravelly slightly sandy CLAY with cobbles. Gravel is fine to coarse	14.0
	TP21	1.50		D	2012724	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	16.4
:29:51	TP22	0.50		D	2012727	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	17.4
11/2024 12	TP22	1.00		В	2012730	Brown very clayey SAND and GRAVEL. Gravel is fine to coarse	15.1
Project No A15044-1: 18/01/2024 12:29:51	TP22	1.00		D	2012728	Brown very clayey SAND and GRAVEL. Gravel is fine to coarse	13.1
A150	Notes						
roject No	Originator	Checked Approve		D		tion of the Water Content EN ISO 17892-1:2014	
Lab Pi	TP	18/01/202	4				Sheet 1 of 2

62 Rochsolloch Road, Airdrie, ML6 9BG

Originator	Checked & Approved
TP	18/01/2024

Contract No

26555

Version 026 - 01/09/2023	1212 - Moisture Content Table - A15044-1.xls	•

SHE Transmission plc

Engineer

SSE Perth Inveralmond HSE

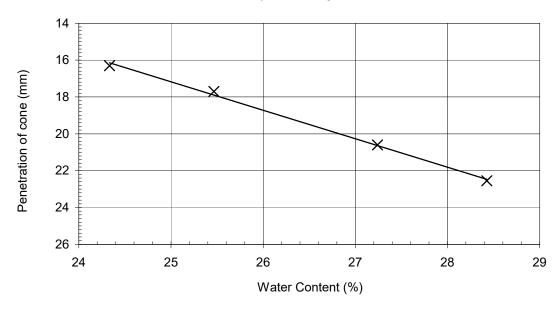
rent 7		Sample Identifi	cation	<u> </u>			
1212 - Moisture Content T	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	TP22	2.00		D	2012731	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	12.0
	TP23	0.90		D	2012734	Brown gravelly silty SAND. Gravel is fine to coarse	30.6
	TP23	1.25		В	2012737	Brown silty very gravelly SAND. Gravel is fine to coarse	15.6
	TP23	1.25		D	2012735	Brown silty very gravelly SAND. Gravel is fine to coarse	16.7
2							
Lab Project No A15044-1 : 18/01/2024 12:29:52							
.1:18/01/20							
5044-	Notes						
Project No A1504	Originator	Checked Approve		D		tion of the Water Content	
Lab Pro	TP	18/01/202	BS EN ISO 17892-1:2014		Sheet 2 of 2		

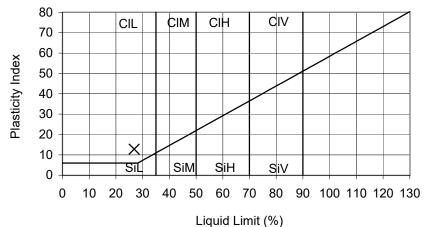
Originator	Checked & Approved	
TP	<u>CD</u>	

62 Rochsolloch Road, Airdrie, ML6 9BG

Contract No

26555




Non Engineering Description : Brown slightly gravelly slightly sandy CLAY. Gravel is fine to

coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content: (BS EN ISO 17892-1:2014)

Percentage retained on 425 µm sieve:

Liquid Limit:

Plastic Limit:

14 %

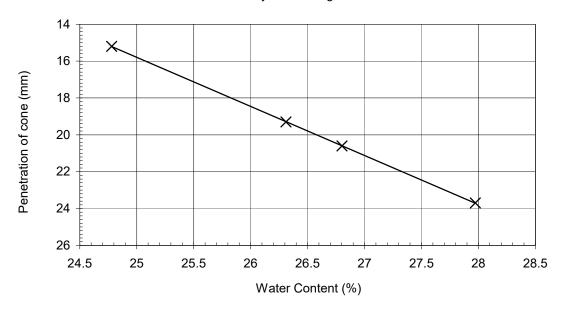
Plasticity Index:

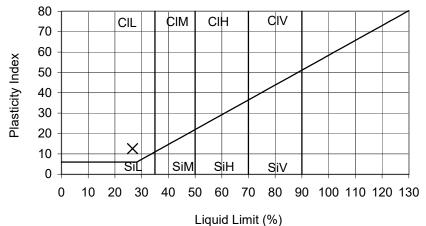

13

Equivalent water content of material passing 425µm sieve : 25.6 % Liquidity Index : 0.89

Originator	Checked & Approved	
NW	CD	

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index




Non Engineering Description: Brown slightly gravelly slightly sandy CLAY. Gravel is fine to

coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

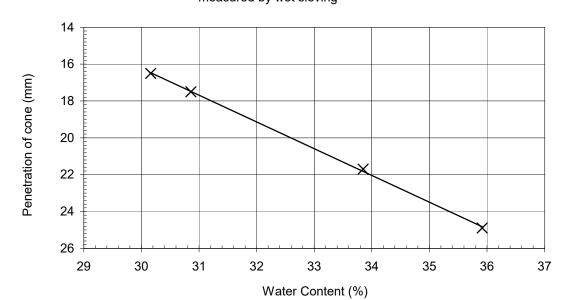
As Received Water Content : (BS EN ISO 17892-1:2014) 17.4 % Percentage retained on 425 μ m sieve : 42 % Liquid Limit : 27 % Plastic Limit : 14 % Plasticity Index : 13

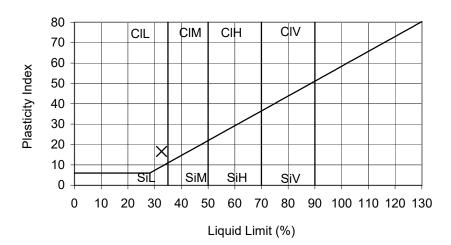
Equivalent water content of material passing 425µm sieve : 30.0 % Liquidity Index : 1.23

Originator	Checked & Approved	
NW	CD 18/01/2024	

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE


Contract No. 26555

Hole ID TP22
Sample Ref
Depth (m) 1.00
Sample Type D

Non Engineering Description: Brown very clayey SAND and GRAVEL. Gravel is fine to coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve measured by wet sieving

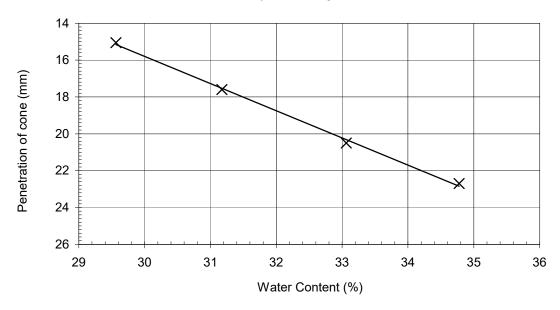
Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

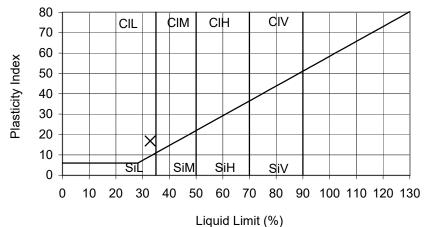
As Received Water Content: (BS EN ISO 17892-1:2014)	13.1 %	6
Percentage retained on 425µm sieve :	49 %	6
Liquid Limit :	33 %	6
Plastic Limit :	16 %	6
Plasticity Index :	17	

Equivalent water content of material passing 425µm sieve : 25.7 % Liquidity Index : 0.57

Originator	Checked & Approved
NW	CD 18/01/2024

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index




Non Engineering Description: Brown slightly gravelly slightly sandy CLAY. Gravel is fine to

coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content: (BS EN ISO 17892-1:2014)

Percentage retained on 425 µm sieve:

Liquid Limit:

Plastic Limit:

16 %

Plasticity Index:

17

Equivalent water content of material passing 425µm sieve : 19.7 % Liquidity Index : 0.22

Originator	Checked & Approved	Plasti
NW	CD	

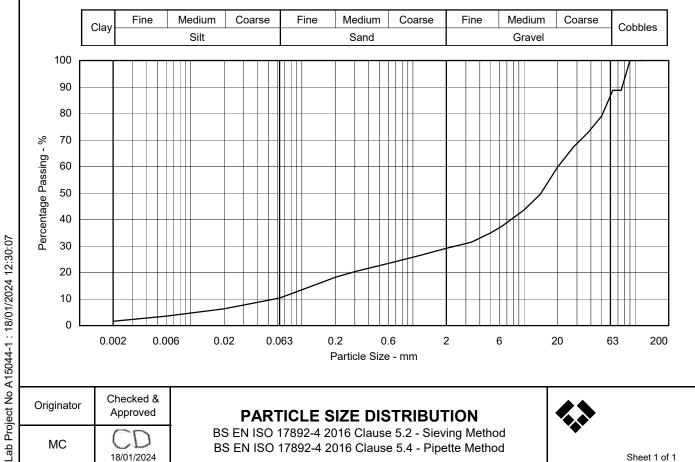
Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

te	LT520 BRACO WEST SUBSTATION
ic	LIDZO DIVACO WEGI GODOTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP01 Hole Sample Ref Depth (m)


0.60 Sample Type В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm	% Passing 100 100 89 89 79 73 67 60 50 44 37 35 31 29 27
630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 6 µm	24 22 20 18 16 10 6 3
θ μπ 2 μm	2

Brown silty sandy fine to coarse GRAVEL with cobbles

Sample Proportions - %	
Cobbles	11.3
Gravel	59.6
Sand	19.1
Silt	8.4
Clay	1.6
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	90
D60	20
D10	0.058
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	344.8

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
МС	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

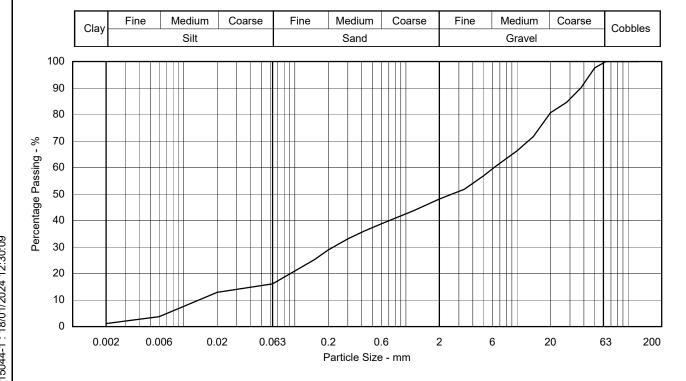
ite LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref De

TP03


Depth (m)	0.60
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 98 90 85 81 72 66 60 57 52 48 44 39 36 33 29 25 16 13 4
·	

Brown silty very sandy fine to coarse GRAVEL	Non Engineering Description
	Brown silty very sandy fine to coarse GRAVEL

Sample Proportions - %	
Cobbles	0.0
Gravel	51.9
Sand	32.2
Silt	14.8
Clay	1.1
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	6.2
D10	0.014
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	442.9

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
МС	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

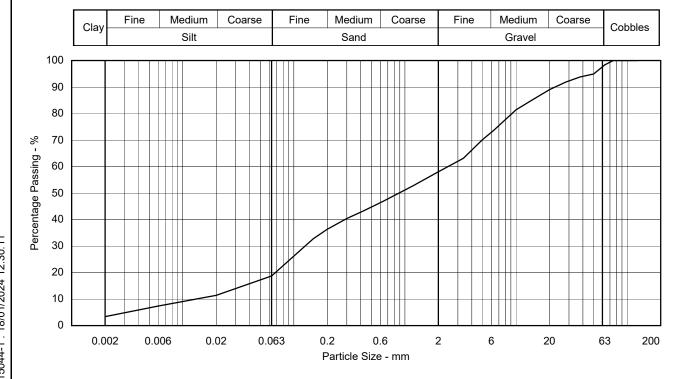
Brown

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP03 Sample Ref


Depth (m) 1.30 Sample Type B

Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	98
50.0 mm	95 95
37.5 mm	94
28.0 mm	92
20.0 mm	89
14.0 mm	85
10.0 mm	81
6.30 mm	74
5.00 mm	70
3.35 mm	63
2.00 mm	58
1.18 mm	53
630 µm	47
425 μm	43
300 μm	40
200 μm	36
150 μm	33
63 µm	19
20 μm	11
20 μm	7
2 μm	3
<u> </u>	

Non Engineering Description
silty SAND and GRAVEL with cobbles. Gravel is
fine to coarse

Sample Proportions - %		
Cobbles	1.6	
Gravel	40.4	
Sand	39.8	
Silt	14.8	
Clay	3.3	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	75	
D60	2.5	
D10	0.013	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	192.3	

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

UBSTATION

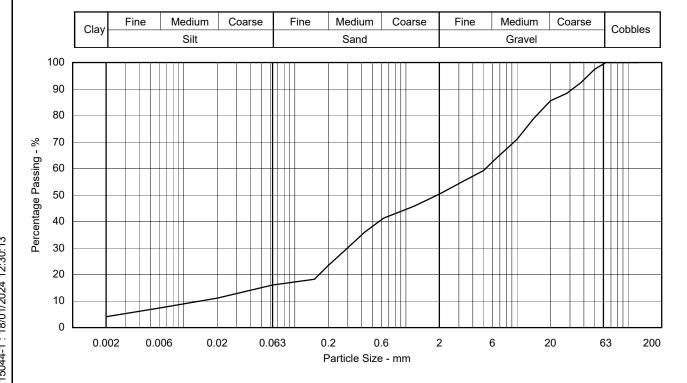
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP06 Hole Sample Ref Depth (m)

1.00 Sample Type В

Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	97
37.5 mm	92
28.0 mm	88
20.0 mm	86
14.0 mm 10.0 mm	79 71 63
6.30 mm 5.00 mm 3.35 mm	59 55
2.00 mm	50
1.18 mm	46
630 μm	41
425 μm	36
300 μm	30
200 μm	23
150 μm	18
63 μm	16
20 μm	11
6 μm	7
2 μm	4


Non Engineering Description

Brown silty very sandy fine to coarse GRAVEL

Sample Proportions - %		
Cobbles	0.0	
Gravel	49.6	
Sand	34.7	
Silt	11.6	
Clay	4.0	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	63	
D60	5.2	
D10	0.014	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	371.4	

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

ite	LT520 BRACO WEST SUBSTATION
ito	LIDZO DIVACO WEGI GODGIATION

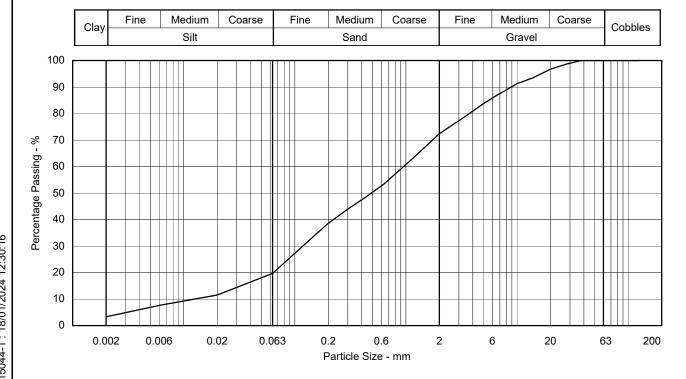
Brown

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP08
Sample Ref


Sample Rei	
Depth (m)	1.00
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 6.30 µm 425 µm 300 µm 200 µm 150 µm 63 µm 200 µm 150 µm 63 µm 20 µm	% Passing 100 100 100 100 100 100 99 97 94 91 86 84 79 72 63 53 48 44 39 34 20 11 8 3

Non Engineering Description
silty very gravelly SAND. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	0.0
Gravel	27.6
Sand	53.3
Silt	15.8
Clay	3.3
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	38
D60	0.95
D10	0.013
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	73.1

Notes	
Sedimentation sample not pre-treated	

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

Client SHE Transmission plc

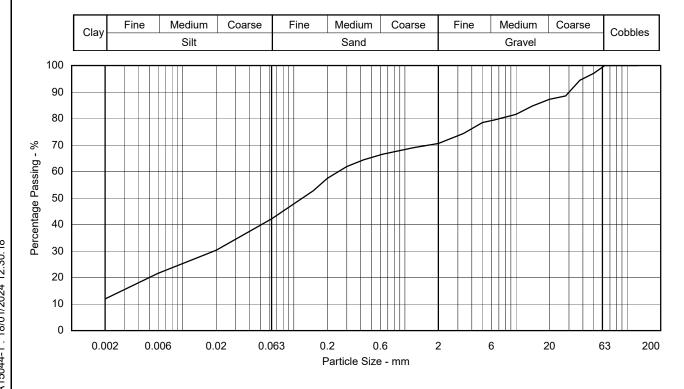
Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP21 Sample Ref

Depth (m) 1.00 Sample Type B

1
% Passing
100
100
100
100
97
94
88
87
85
82
79
78
74
71
69
67
64
62
57
53
42
30
22
12


Non Engineering Description

Brown slighty sandy slightly gravelly CLAY. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	0.0
Gravel	29.4
Sand	29.3
Silt	29.4
Clay	11.9
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	0.25
D10	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

te	LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP21 Sample Ref

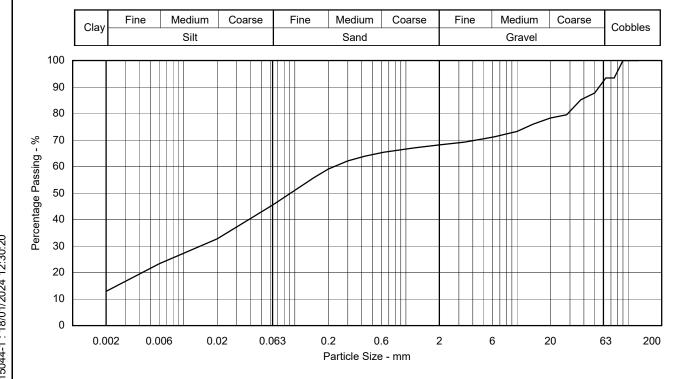
Depth (m) 1.50 Sample Type B

Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	93
63.0 mm	93
50.0 mm	88
37.5 mm	85
28.0 mm	80
20.0 mm	78
14.0 mm	76
10.0 mm	73
6.30 mm	71
5.00 mm	70
3.35 mm	69
2.00 mm	68
1.18 mm	67
630 µm	65
425 μm	64
300 µm	62
200 μm	59
150 µm	56
63 µm	45
20 µm	33
6 µm	23

2 µm

13

Non Engineering Description


Brown slightly gravelly slightly sandy CLAY with cobbles.

Gravel is fine to coarse

Sample Proportions - %	
Cobbles	6.6
Gravel	25.3
Sand	23.6
Silt	31.7
Clay	12.9
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	90
D60	0.23
D10	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

ite	LT520 BRACO WEST SUBSTATION

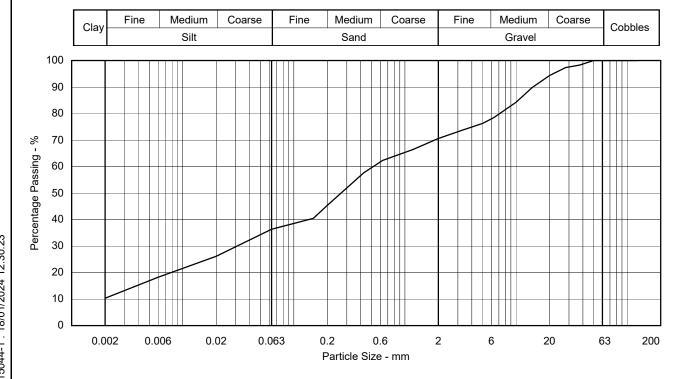
Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP22 Sample Ref

Depth (m) 0.50 Sample Type B


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm	% Passing 100 100 100 100 100 98 97 94 90 84 78 76 74 71 66 62 58 52 45 40
63 µm 20 µm 6 µm 2 µm	36 26 18 10

Non	Engineering	Description	

Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	0.0	
Gravel	29.4	
Sand	34.9	
Silt	25.3	
Clay	10.3	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	50	
D60	0.52	
D10		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A	

Notes	
Sedimentation sample not pre-tr	eated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

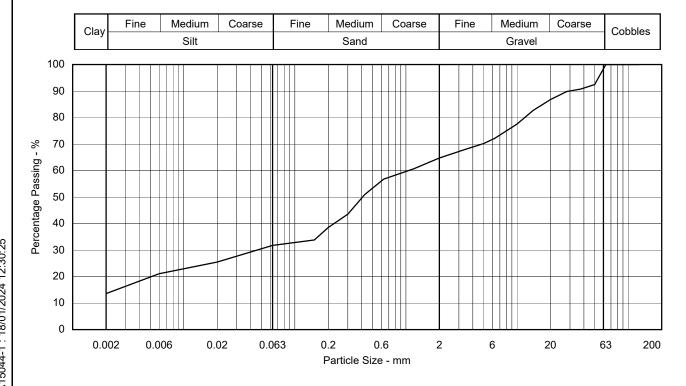
Hole TP22 Sample Ref

Depth (m) 1.00 Sample Type B

Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	92
37.5 mm	91
28.0 mm	90
20.0 mm	87
14.0 mm	83
10.0 mm	78
6.30 mm	72
5.00 mm	70
3.35 mm	68
2.00 mm	65
1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm	61 57 51 43 39 34
20 μm	25
6 μm	21

2 µm

14


Non Engineering Description

Brown very clayey SAND and GRAVEL. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	0.0	
Gravel	35.3	
Sand	33.4	
Silt	17.8	
Clay	13.5	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	63	
D60	1.1	
D10		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A	

Notes

Sedimentation sample not pre-treated

Originator Checked & Approved

RF CD
18/01/2024

PARTICLE SIZE DISTRIBUTION

Client SHE Transmission plc

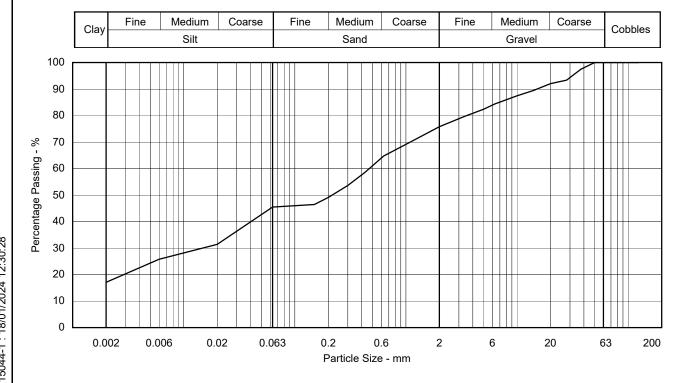
Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP22 Sample Ref

Sample Ref
Depth (m) 2.00
Sample Type B

Particle Size	% Passing
	_
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	97
28.0 mm	93
20.0 mm	92
14.0 mm	89
10.0 mm	87
6.30 mm	84
5.00 mm	82
3.35 mm	80
2.00 mm	76
1.18 mm	71
630 µm	65
425 µm	58
300 µm	54
200 µm	49
150 µm	46
63 µm	45
20 µm	31
6 µm	26
2 µm	17


Non Engineering Description	1
-----------------------------	---

Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	0.0	
Gravel	24.2	
Sand	31.3	
Silt	27.4	
Clay	17.0	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	50	
D60	0.47	
D10		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A	

Notes

Sedimentation sample not pre-treated

Originator Checked & Approved

RF CD
18/01/2024

PARTICLE SIZE DISTRIBUTION

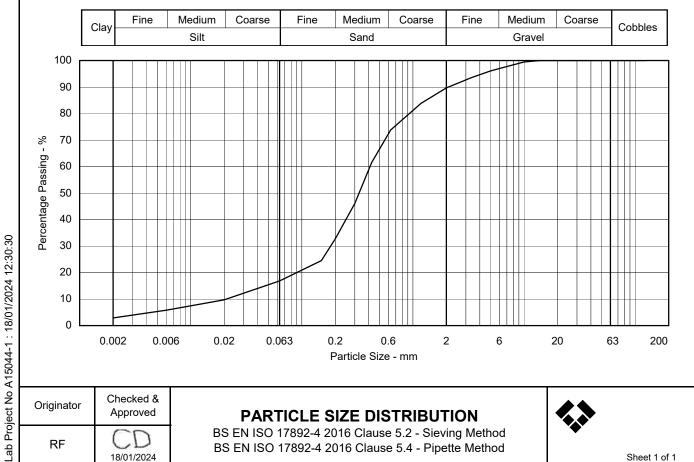
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref

0.90

TP23


Depth (m) Sample Type В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 100 100 100 100 100 99 97 96 94 90 84 74 61 46 33 24 17 10 6

Non Engineering Description	
Brown gravelly silty SAND. Gravel is fine to coarse	

Sample Proportions - %	
Cobbles	0.0
Gravel	10.4
Sand	73.3
Silt	13.5
Clay	2.8
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	14
D60	0.41
D10	0.021
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	19.5

Notes
Sedimentation sample not pre-treated

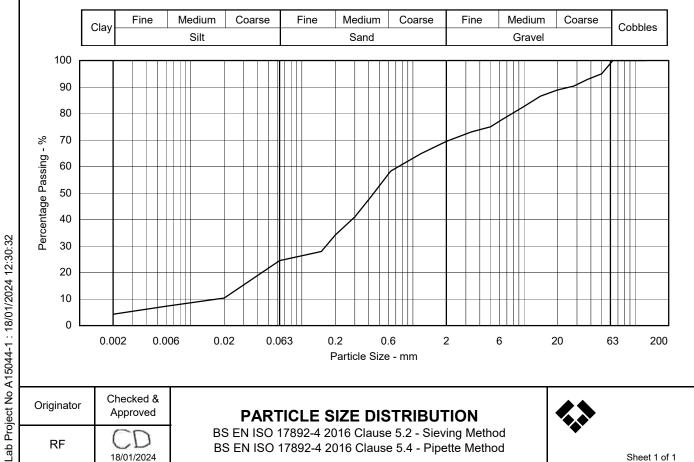
Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP23 Hole Sample Ref


Depth (m) 1.25 Sample Type В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm	100 100 100 100 95 93 90 89 87 83 78 75 73 70 65 58 49 41 34 28 24 10 7
2 µm	

Non Engineering Description	
Brown silty very gravelly SAND. Gravel is fine to coarse	

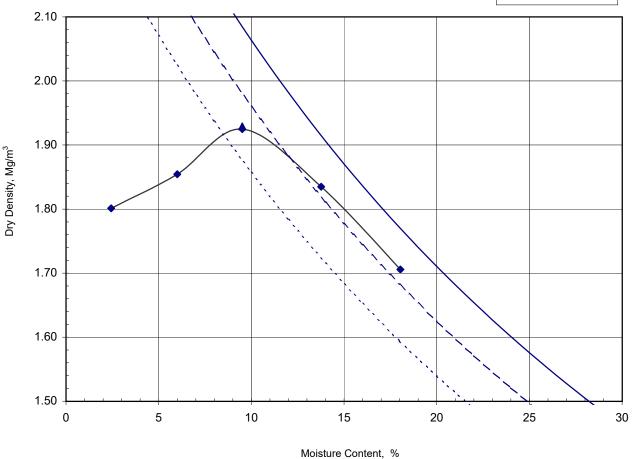
Sample Proportions - %	
Cobbles	0.0
Gravel	30.5
Sand	46.0
Silt	19.2
Clay	4.3
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	0.75
D10	0.018
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	41.7

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

SHE Transmission plc

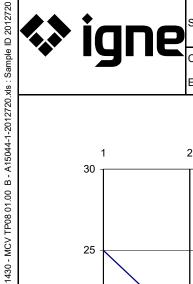

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

TP08 Hole Sample Ref Depth (m)

Sample Type

1.00 В

0 % Air Voids 5 % Air Voids - - - -10 % Air Voids

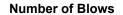

Non Engineering Description		Brown silty very gravelly SAND. Gravel is fine to coarse
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with particles up to medium-gravel size
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	0
Mass Retained on 20.0 mm Sieve	%	3
Particle Density - Assumed	Mg/m³	2.60
Natural Moisture Content	%	0.0
Maximum Dry Density	Mg/m³	1.93
Optimum Moisture Content	%	9.5

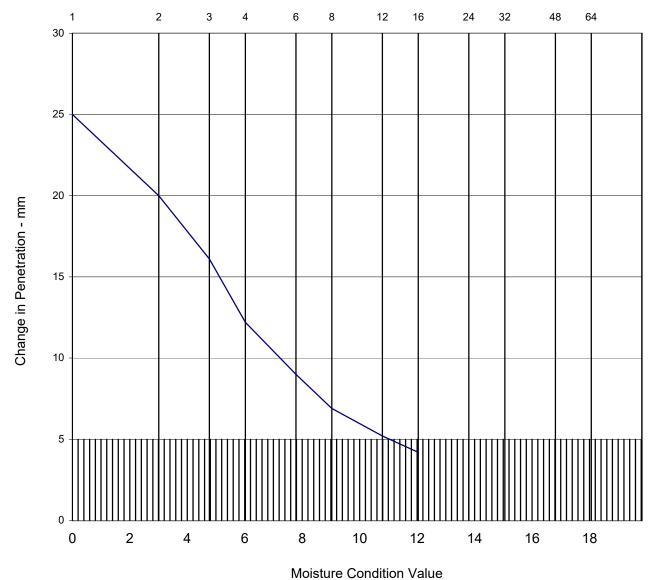
Originator	Checked & Approved
SM	CD 18/01/2024

Moisture Content / Dry Density Relationship

Lab Project No A15044-1: 18/01/2024 12:30:37 62 Rochsolloch Road, Airdrie, ML6 9BG

Site LT520 BRACO WEST SUBSTATION


Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID TP08 Sample Ref

Depth (m) 1.00 Sample Type В

Non Engineering Description	Brown silty very gravelly SAND. Gravel is fine to coarse
Determination No	1
Moisture Condition Value	8.3
Moisture Content	6 19
Method of determining MCV	Steepest fit line
Mass retained on 20mm sieve	6 3.0
Notes	

Originator	Checked & Approved
SM	CD 18/01/2024

MOISTURE CONDITION VALUE

BS1377:Part 4:1990 Clause 5.4

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555
Hole ID TP01

Sample No
Depth (m) 0.60
Sample Type B

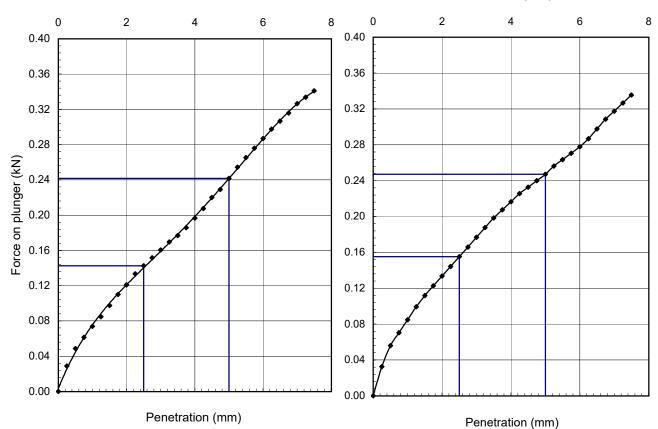
Non Engineering Brown silty sandy fine to coarse GRAVEL with cobbles **Description:**

Preparation Details:

Specimen was prepared at Natural Moisture Content

Compaction using 4.5kg compactive effort

Specimen Bulk Density 2.03 Mg/m³
Specimen Dry Density 1.69 Mg/m³
Mass of sample > 20 mm 41.3 %


Specimen Unsoaked

Test Details: Top Base 2.0 2.0 Surcharge: kg kg 10 10 Seating Load: Ν Ν Moisture Content: 20 20 % %

CBR Value: 1.2 % 1.2 %

Top of Specimen Penetration (mm)

Base of Specimen Penetration (mm)

Non-standard test due to % retained on 20mm sieve

Originator	Checked & Approved
NW	CD

ab Project No A15044-1: 18/01/2024 12:30:39

62 Rochsolloch Road, Airdrie, ML6 9BG

CALIFORNIA BEARING RATIO

BS1377 : Part 4 : Clause 7 : 1990

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Hole ID TP03 Sample No Depth (m)

Sample Type

0.60 В

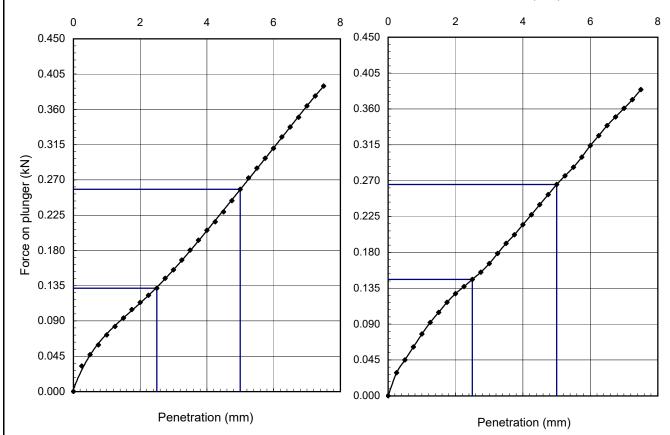
Non Engineering Brown silty very sandy fine to coarse GRAVEL **Description:**

Preparation Details:

Specimen was prepared at Natural Moisture Content

Compaction using 4.5kg compactive effort

Specimen Bulk Density 1.95 Mg/m³ Specimen Dry Density 1.59 Mg/m³ 17.7 % Mass of sample > 20 mm


Specimen Unsoaked

Test Details: Top Base 2.0 2.0 Surcharge: kg kg 10 10 Seating Load: Ν Ν Moisture Content: 23 23 % %

CBR Value: 1.3 % 1.3 %

> Top of Specimen Penetration (mm)

Base of Specimen Penetration (mm)

Originator	Checked & Approved
NW	CD 18/01/2024

CALIFORNIA BEARING RATIO

BS1377: Part 4: Clause 7: 1990

ite	LT520 BRACO WEST SUBSTATION
ile	LIBZU BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID TP21 Sample No

Depth (m) 1.50 Sample Type B

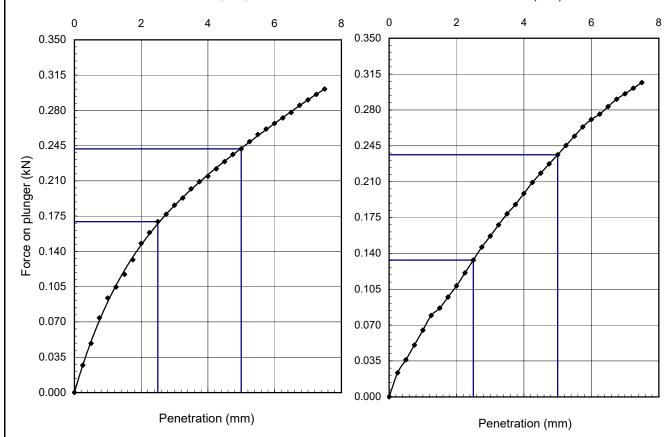
Non Engineering Brown slightly gravelly slightly sandy CLAY with cobbles. Gravel is fine to coarse

Preparation Details:

Specimen was prepared at Natural Moisture Content

Compaction using 2.5kg compactive effort

Specimen Bulk Density 2.16 Mg/m³
Specimen Dry Density 1.85 Mg/m³
Mass of sample > 20 mm 20.8 %


Specimen Unsoaked

Test Details: Top Base 2.0 Surcharge: 2.0 kg kg 10 10 Seating Load: Ν Ν Moisture Content: 17 17 % %

CBR Value: 1.3 % 1.2 %

Top of Specimen Penetration (mm)

Base of Specimen Penetration (mm)

Originator	Checked & Approved
NW	CD

CALIFORNIA BEARING RATIO

BS1377 : Part 4 : Clause 7 : 1990

Site	LT520 BRACO	WEST	SUBSTATION
JILC .	LIJZU DINAGO	VVLOI	CODOIATION

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID TP22 Sample No

Depth (m) 1.00 Sample Type B

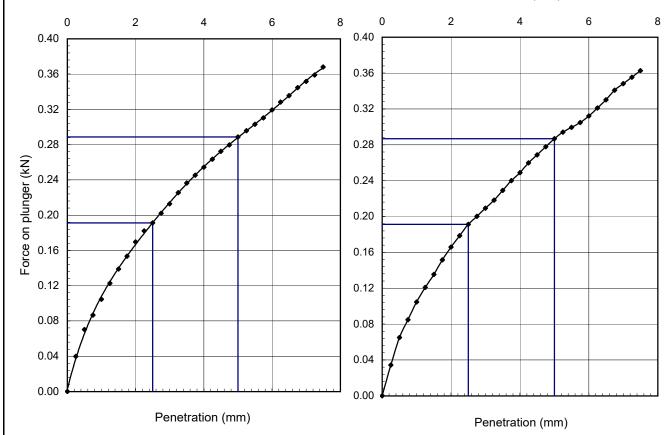
Non Engineering Brown very clayey SAND and GRAVEL. Gravel is fine to coarse **Description:**

Preparation Details:

Specimen was prepared at Natural Moisture Content

Compaction using 2.5kg compactive effort

Specimen Bulk Density 2.15 Mg/m³
Specimen Dry Density 1.84 Mg/m³
Mass of sample > 20 mm 12.2 %


Specimen Unsoaked

Test Details: Base Top 2.0 Surcharge: 2.0 kg kg 10 10 Seating Load: Ν Ν Moisture Content: 17 17 % %

CBR Value: 1.4 % 1.4 %

Top of Specimen Penetration (mm)

Base of Specimen Penetration (mm)

Originator	Checked & Approved
NW	CD

CALIFORNIA BEARING RATIO

BS1377 : Part 4 : Clause 7 : 1990

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Hole ID TP23 Sample No Depth (m)

Sample Type

1.25 В

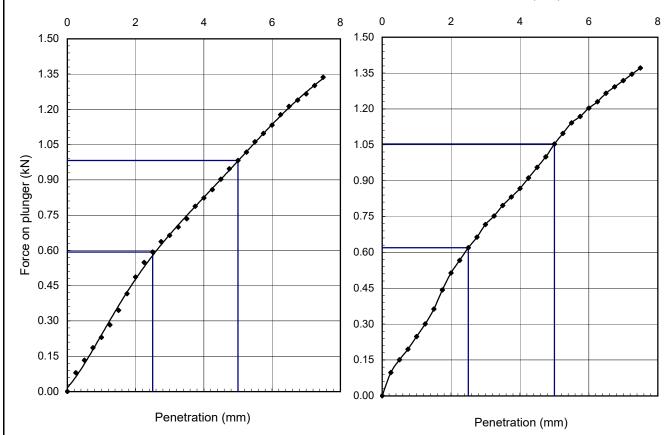
Non Engineering Brown silty very gravelly SAND. Gravel is fine to coarse **Description:**

Preparation Details:

Specimen was prepared at Natural Moisture Content

Compaction using 4.5kg compactive effort

Specimen Bulk Density 2.08 Mg/m³ Specimen Dry Density 1.76 Mg/m³ 13.7 % Mass of sample > 20 mm


Specimen Unsoaked

Test Details: Top Base Surcharge: 2.0 2.0 kg kg 50 50 Seating Load: Ν Ν Moisture Content: 18 18 % %

5.3 **CBR Value:** 4.9 % %

> Top of Specimen Penetration (mm)

Base of Specimen Penetration (mm)

Originator	Checked & Approved
NW	CD

CALIFORNIA BEARING RATIO

BS1377: Part 4: Clause 7: 1990

Site	LT520 BRACO	WEST	CHESTATION
JILC		V V L O I	

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

3

Sample Type

Specimen Details

Specimen Number

Depth within original sample n/a
Orientation within original sample n/a

Test condition Submerged

Non Engineering Description Brown silty sandy fine to coarse GRAVEL with cobbles

Preparation Material > 2mm removed (69% passing). Remoulded using 2.5kg

compactive effort at as-received moisture content

1

<u>. </u>				-
Length	mm	60.0	60.1	60.0
Width	mm	60.0	60.0	60.0
Height	mm	25.0	25.0	25.0
Initial moisture content	%	15	15	15
Initial wet density	Mg/m³	1.99	1.99	1.99
Initial dry density	Mg/m³	1.73	1.73	1.73
Particle Density (assumed)	Mg/m³	2.65	2.65	2.65
Consolidation Stage				
Normal stress	kPa	25	50	100
Height change	mm	-2.6	-3.2	-4.3
Duration	day(s)	1	1	1
Shearing Stage				
Normal stress	kPa	25	50	100
Peak Conditions:				
Rate of horizontal displacement	mm/min	0.06	0.06	0.06
Maximum shear stress	kPa	29	43	72
Horizontal displacement	mm	3.6	4.7	5.1
Height change	mm	1.1	0.9	1.2
Final Conditions				
Final moisture content	%	23	23	22
Duration	day(s)	1	1	1

Shear Strength Parameters

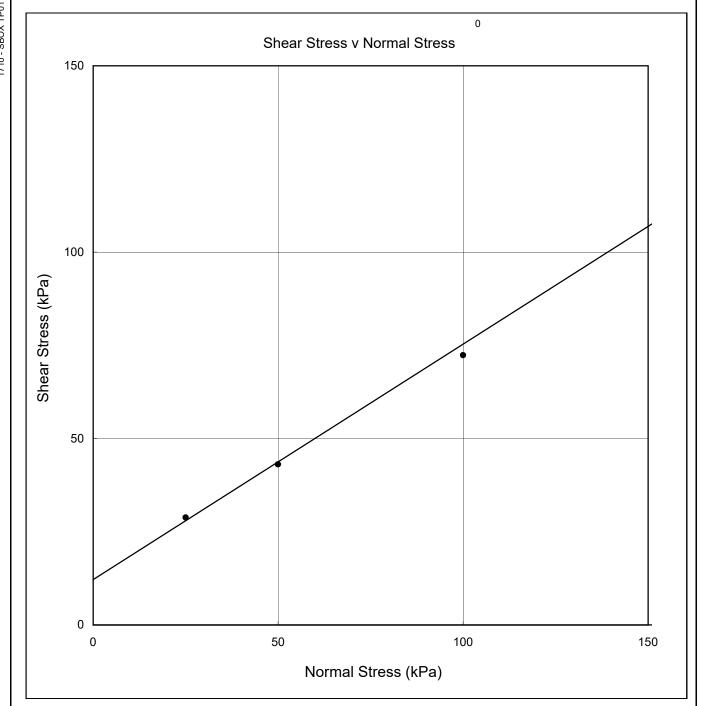
Maximum Condition: (linear tangent interpretation)

Effective Cohesion kPa 12
Effective Angle of Shearing Resistance degrees 32.5

Originator	Checked & Approved
SG	CD 18/01/2024

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/2024 12:30:52

Shear Strength by Direct Shear (small shearbox)


SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole Sample Ref Depth (m) TP01

Depth (m) 0.60 Sample Type B

Shear Strength Parameters

Originator	Checked & Approved
SG	CD 18/01/2024

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/202

Shear Strength by Direct Shear (small shearbox)

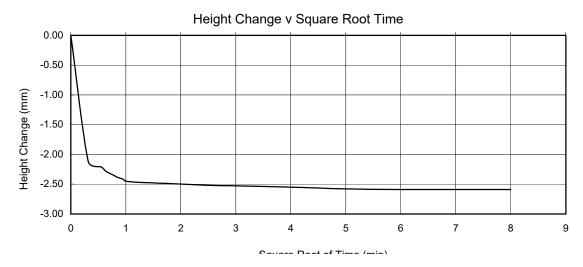
BS1377:Part 7:1990 Clause 4

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Client

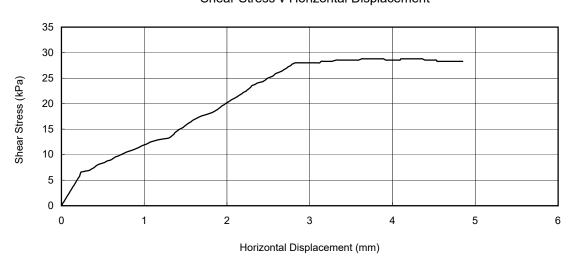
Contract No 26555


TP01 Hole Sample Ref Depth (m)

Sample Type


0.60

Specimen No. 1


Normal Pressure = 25 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

Originator	Checked & Approved			
SG	CD 18/01/2024			

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

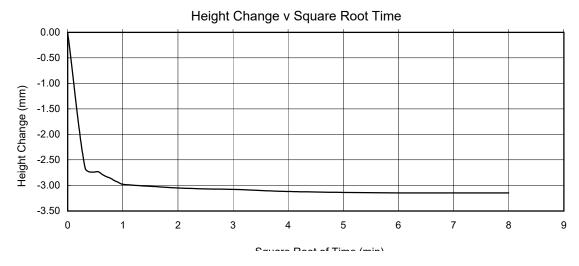
62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1: 18/01/202

Sheet 3 of 5

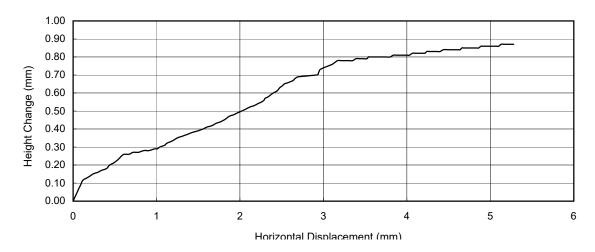
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Client


Contract No 26555

Hole TP01 Sample Ref


Depth (m) 0.60 Sample Type B

Specimen No. 2

Normal Pressure = 50 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

Originator	Checked & Approved		
SG	18/01/2024		

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/202

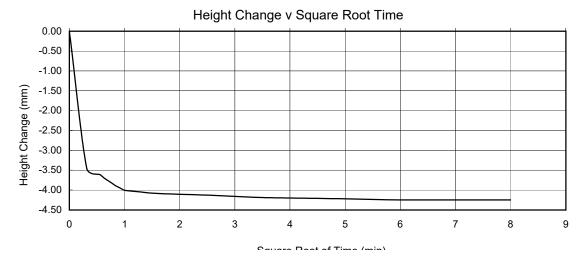
Sheet 4 of 5

SHE Transmission plc

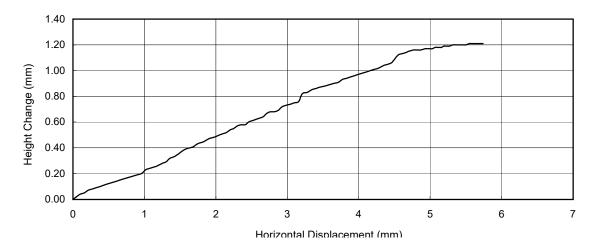
Engineer SSE Perth Inveralmond HSE

Client

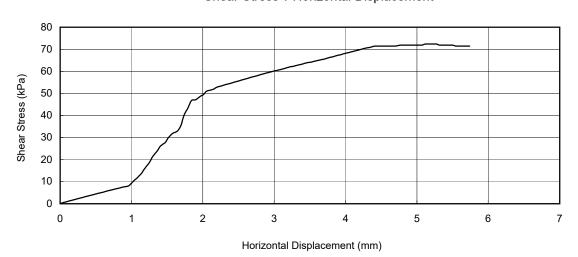
Contract No 26555


Hole Sample Ref

TP01


Depth (m) 0.60 Sample Type B

Specimen No. 3


Normal Pressure = 100 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

Originator	Checked & Approved		
SG	18/01/2024		

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/202

Sheet 5 of 5

Site	LT520 BRACO	WEST	SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole TP03 Sample Ref Depth (m)

Sample Type

0.60

Specimen Details

Depth within original sample n/a n/a Orientation within original sample

Test condition Submerged

Brown silty very sandy fine to coarse GRAVEL Non Engineering Description

Preparation Material>2mm removed (52% passing). Remoulded using 2.5kg

compactive effort at as-received moisture content

Specimen Number		1	2	3
Length	mm	60.0	60.0	60.0
Width	mm	60.0	59.9	60.0
Height	mm	25.0	25.0	25.0
Initial moisture content	%	17	17	17
Initial wet density	Mg/m³	2.02	2.02	2.02
Initial dry density	Mg/m³	1.73	1.73	1.73
Particle Density (assumed)	Mg/m³	2.65	2.65	2.65
Consolidation Stage				
Normal stress	kPa	25	50	100
Height change	mm	-1.9	-2.5	-4.3
Duration	day(s)	1	1	1
Shearing Stage				
Normal stress	kPa	25	50	100
Peak Conditions:				
Rate of horizontal displacement	mm/min	0.06	0.06	0.06
Maximum shear stress	kPa	15	27	48
Horizontal displacement	mm	3.8	4.5	4.9
Height change	mm	0.7	1.3	2.2
Final Conditions				
Final moisture content	%	20	21	21
Duration	day(s)	1	1	1

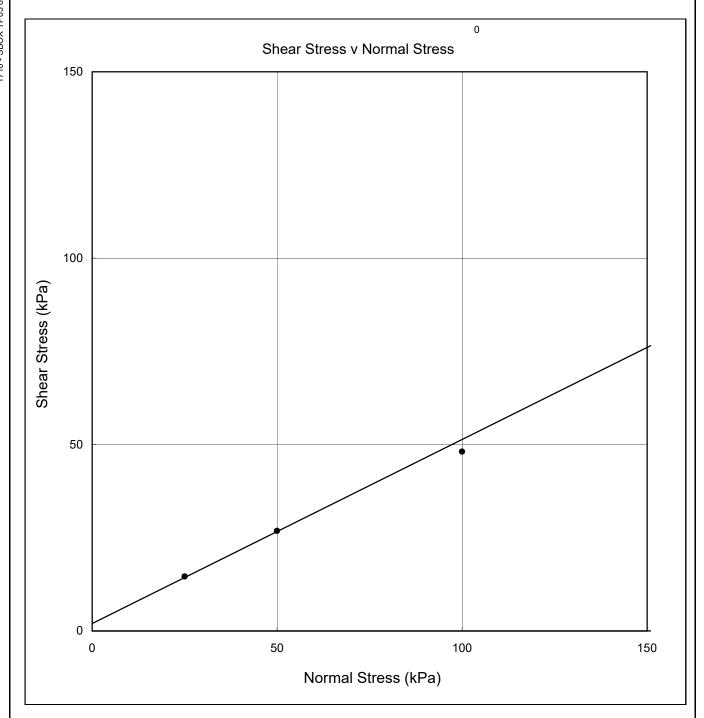
Shear Strength Parameters

Maximum Condition: (linear tangent interpretation)

2 **Effective Cohesion** kPa 26.5 Effective Angle of Shearing Resistance degrees

Originator	Checked & Approved		
SG	CD 18/01/2024		

SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

Contract No 26555

26555 TP03

Hole Sample Ref Depth (m) Sample Type

0.60 B

Shear Strength Parameters

Originator	Checked & Approved
SG	CD 18/01/2024

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/202

Shear Strength by Direct Shear (small shearbox)

SHE Transmission plc

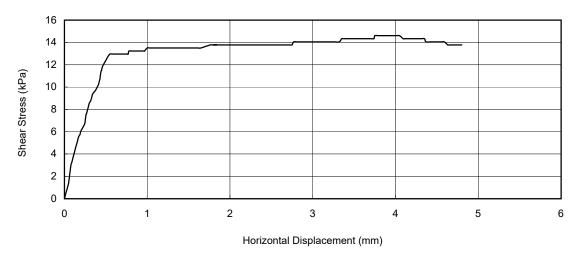
Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP03 Sample Ref


Depth (m) 0.60 Sample Type B

Specimen No. 1


Normal Pressure = 25 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

Originator	Checked & Approved
SG	CD 18/01/2024

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1 : 18/01/202

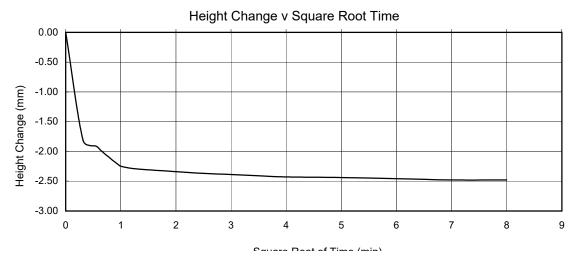
Sheet 3 of 5

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Client

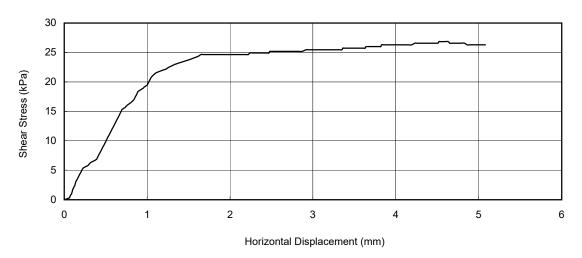
Contract No 26555


Hole Sample Ref Depth (m)

Sample Type

TP03

Specimen No. 2


Normal Pressure = 50 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

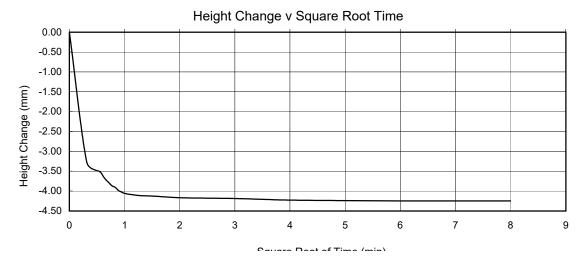
Originator Checked & Approved

SG D
18/01/2024

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

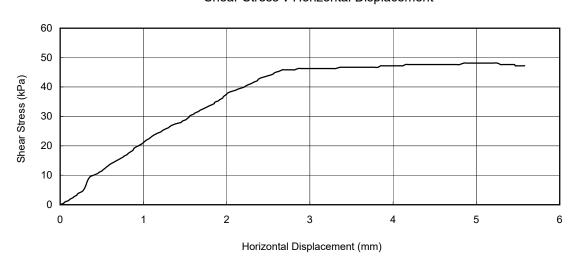
SHE Transmission plc


Engineer SSE Perth Inveralmond HSE Contract No 26555

TP03 Hole Sample Ref Depth (m)

0.60 Sample Type

Specimen No. 3


Normal Pressure = 100 kPa

Height Change v Horizontal Displacement

Shear Stress v Horizontal Displacement

Originator	Checked & Approved
SG	18/01/2024

Shear Strength by Direct Shear (small shearbox)

BS1377:Part 7:1990 Clause 4

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-1: 18/01/202

Sheet 5 of 5

Contract No 26555

\	י יצי		Client	SHE Transmission plc						
		E	ngineer	SSE Perf	SE Perth Inveralmond HSE					
Hole ID	Sample Identifi Depth m	Sample Ref	Sample Type	Lab Sample ID	10-14mm Size Fraction Passing 11.2mm Sieve	Particle Density (8-12.5 mm)	Los Angeles Coefficient	Impact Value	Test Date	
					%	Mg/m³	LA	SZ		
TP06	1.00		В	2012717	35	~	27	~	~	
					UKAS	accredited test	Yes	No		
Notes O									1	

Notes Opinions and interpretations are outside the scope of UKAS accreditation.

Originator Approved DW

Lab Project No A15044-1: 18/01/2024 12:31:02 62 Rochsolloch Road, Airdrie, ML6 9BG

RESISTANCE TO FRAGMENTATION BY LOS ANGELES AND IMPACT TEST METHODS BS EN 1097-2:2020

Summary of Chemical Analysis Soil Samples

Our Ref 23-30018 Client Ref A15044-1 Contract Title A15044-1

Lab No	2280455	2280456	2280457	2280458
.Sample ID	TP01	TP03	TP03	TP08
Depth	0.60	0.60	1.30	1.00
Other ID	2072711	2072713	2072715	2072719
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
Inorganics							
рН	DETSC 2008#		рН	7.1	6.1	6.5	5.9
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	200	49	160	32

Information in Support of the Analytical Results

Our Ref 23-30018 Client Ref A15044-1 Contract A15044-1

Containers Received & Deviating Samples

Date Inappropriate container for

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2280455	TP01 0.60 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
2280456	TP03 0.60 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
2280457	TP03 1.30 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
2280458	TP08 1.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-2

Issue No 01

LABORATORY TEST REPORT

Project Nar Project Nur		LT520 BRACO WEST SUBSTATION A15044-2 Date samples received		13/12/2023	
Your Ref	IIDCI	26555	Date written instructions received	14/12/2023	
Purchase Order		26555		19/12/2023	
ruiciiase (Jidei		Date testing commenced d the results as summarised below	19/12/2023	
F: /	Ι		a the results as summarised selection	1	
Figure / Table	Test Quantity	Description		ISO 17025 Accredited	
	12	Determination of Water Content Yes			
	2	Atterberg Limit Yes			
	8	Particle Size Distribution			
	2	Moisture Content / Dry Density Relationship		Yes	
	4 Moisture Condition Value		Yes		

Remarks:

Issued by: C Donnelly Date of Issue: 18/01/2024 Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories : 18/01/20

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Version 026 - 01/09/2023	2 - Moisture Content Table - A15044-2 vls

SHE Transmission plc

Engineer

SSE Perth	Inveralmond HSE

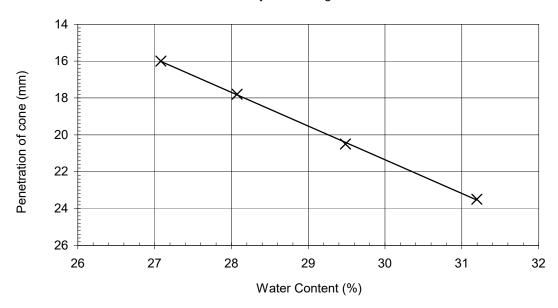
ent T		Sample Identifi	cation			<u> </u>	
1212 - Moisture Content T.	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	TP02	0.70		В	2013055	Brown silty SAND and GRAVEL. Gravel is fine to coarse	16.8
	TP02	0.70		D	2013053	Brown silty SAND and GRAVEL. Gravel is fine to coarse	7.2
	TP02	1.50		D	2013057	Brown silty SAND and GRAVEL. Gravel is fine to coarse	15.2
	TP10	2.20		В	2013058	Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse	8.0
	TP11	0.70		D	2013060	Brown very silty very gravelly SAND. Gravel is fine to coarse	18.2
	TP11	1.00		В	2013061	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	9.7
	TP11	1.10		D	2013063	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	15.3
	TP11	2.50		D	2013065	Brown very clayey SAND and GRAVEL. Gravel is fine to coarse	16.7
	TP19	1.10		В	2013068	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	15.8
	TP19	1.10		D	2013067	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse	16.1
	TP20	1.40		В	2013071	Brown clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse	13.1
16:25:38	TP20	1.40		D	2013069	Brown clayey SAND and GRAVEL. Gravel is fine to coarse	17.3
Project No A15044-2: 18/01/2024 16:25:38							
3044-2 : 18	Notes						
Notes Notes Checked & Approved Originator Approved Determination of the					tion of the Water Content		
Lab Proje	TP	18/01/202)	BS EN ISO 17892-1:2014 Sheet 1 of 1			Sheet 1 of 1

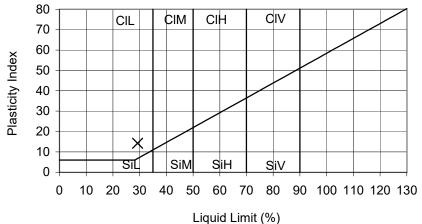
Originator	Checked & Approved
TP	CD 18/01/2024

62 Rochsolloch Road, Airdrie, ML6 9BG

Contract No

26555




Non Engineering Description: Brown slightly gravelly slightly sandy CLAY. Gravel is fine to

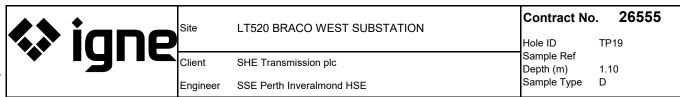
coarse

Preparation: Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone Results:

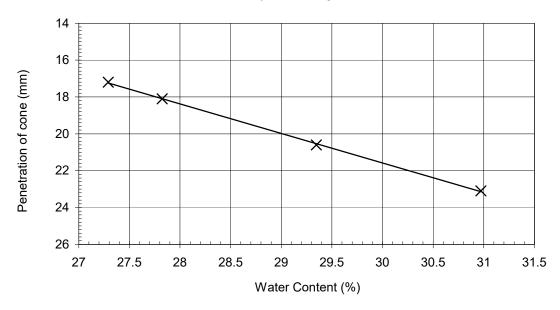
As Received Water Content: (BS EN ISO 17892-1:2014)	15.3	%
Percentage retained on 425µm sieve :	40	%
Liquid Limit :	29	%
Plastic Limit :	15	%
Plasticity Index :	14	

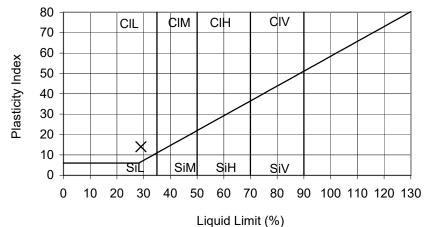

Equivalent water content of material passing 425µm sieve : 25.5 % Liquidity Index: 0.75

Originator	Checked & Approved
NW	CD 18/01/2024

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5




Non Engineering Description: Brown slightly gravelly slightly sandy CLAY. Gravel is fine to

coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content: (BS EN ISO 17892-1:2014)

Percentage retained on 425µm sieve:

Liquid Limit:

Plastic Limit:

15 %

Plasticity Index:

Equivalent water content of material passing 425µm sieve : 31.6 % Liquidity Index : 1.19

Originator	Checked & Approved	Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index
NW	CD 18/01/2024	BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

NC

SHE Transmission plc

6

4

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref Depth (m)

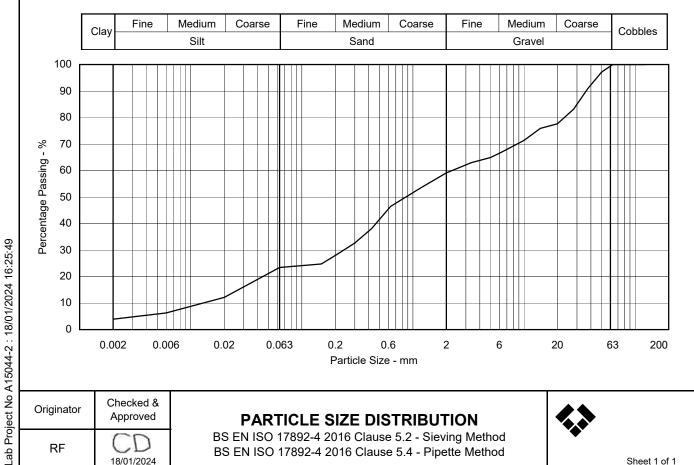
0.70 Sample Type В

TP02

Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	97
37.5 mm	91
28.0 mm	83
20.0 mm	78
14.0 mm	76
10.0 mm	71
6.30 mm	67
5.00 mm	65
3.35 mm	63
2.00 mm	59
1.18 mm	53
630 µm	46
425 μm	38
300 µm	33
200 µm	28
150 µm	25
63 µm	23
20 µm	12

6 µm

2 µm


Non Engineering	Description

Brown silty SAND and GRAVEL. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	0.0	
Gravel	40.9	
Sand	36.5	
Silt	18.8	
Clay	3.9	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	63	
D60	2.3	
D10	0.013	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	176.9	

Notes

Sedimentation sample not pre-treated

Checked & Originator Approved RF 18/01/2024

PARTICLE SIZE DISTRIBUTION

ite	LT520 BRACO WEST SUBSTATION
ito	LIDZO DIVACO WEGI GODGIATION

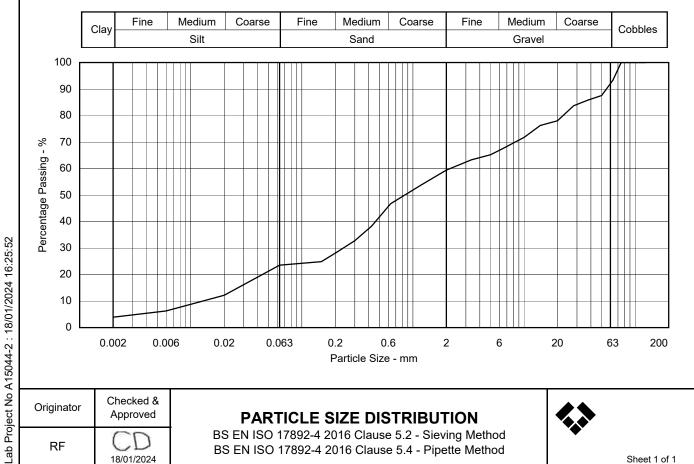
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP02 Hole Sample Ref

Depth (m)	1.50
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm	100 100 100 93 88 86 84 78 76 72 67 65 63 59 54 47 38 33 28 25 24
6 μm 2 μm	6 4


Non Engineering	g Description

Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	6.7	
Gravel	33.9	
Sand	36.6	
Silt	18.9	
Clay	3.9	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	75	
D60	2.2	
D10	0.013	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	169.2	

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

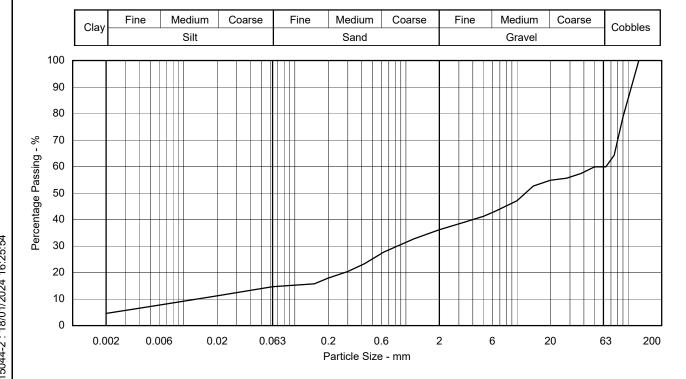
te	LT520 BRACO WEST SUBSTATION
ic	LIDZO DIVACO WEGI GODOTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP10 Sample Ref


Depth (m) 2.20 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm	100 79 64 60 60 57 56 55 53 47 43 41 39 36 33 28 23 20 18 16 15
2 µm	5

Non Engineering Description		
Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse		

Sample Proportions - %		
Cobbles	40.1	
Gravel	23.7	
Sand	21.8	
Silt	9.8	
Clay	4.5	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	125	
D60	63	
D10	0.013	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	4846.2	

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

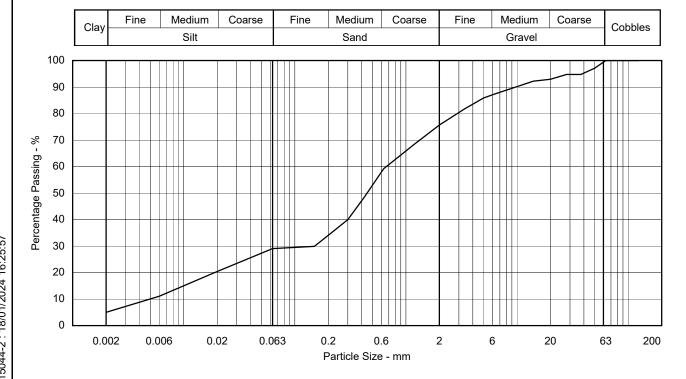
ite	LT520 BRACO WES	ST SUBSTATION
-----	-----------------	---------------

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref

TP11


Depth (m)	0.70
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 200 µm 150 µm 63 µm 20 µm	100 100 100 100 97 95 95 93 92 90 87 86 82 76 68 59 49 40 34 30 29 20 11
2 μπ	Ŭ

Non Engineering Description	
Brown very silty very gravelly SAND. Gravel is fine to coarse	

Sample Proportions - %		
Cobbles	0.0	
Gravel	24.3	
Sand	47.2	
Silt	23.5	
Clay	5.0	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	63	
D60	0.67	
D10	0.0050	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	134.0	

Notes	
Sedimentation sample not pre-treated	

Originator	Checked & Approved
RF	CD 18/01/2024

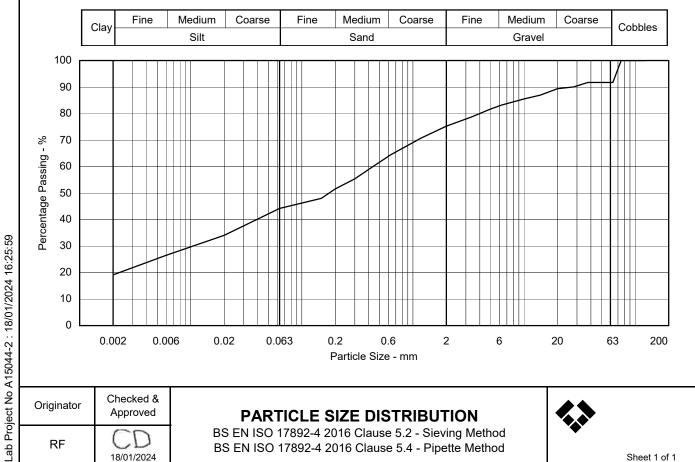
PARTICLE SIZE DISTRIBUTION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP11 Hole Sample Ref

Depth (m) 1.10 Sample Type В


Particle Size	% Passing
Particle Size 125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 28.0 mm 28.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 μm 425 μm 300 μm 200 μm 150 μm 63 μm 20 μm 63 μm 20 μm	% Passing 100 100 100 92 92 92 90 89 87 85 83 82 79 75 71 64 60 55 52 48 44 34 26
6 μm 2 μm	26 19

Non Engineering Description

Brown slightly gravelly slightly sandy CLAY with cobbles. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	8.3
Gravel	16.5
Sand	31.7
Silt	24.4
Clay	19.1
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	75
D60	0.44
D10	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

SHE Transmission plc

23

16

8

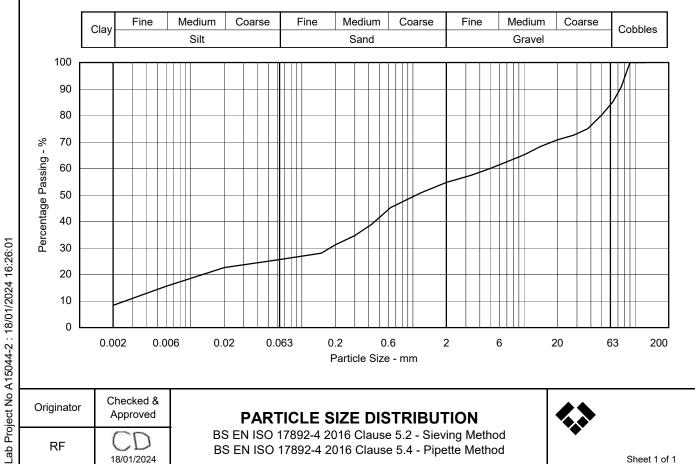
Engineer SSE Perth Inveralmond HSE Contract No 26555

TP11 Hole Sample Ref

Depth (m) 2.50 Sample Type В

% Passing
100
100
91
85
80
75
73
71
68
65
62
60
57
55
51
45
39
35
31
28
26

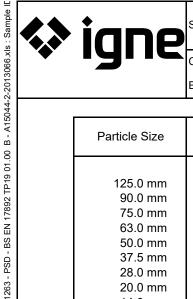
20 µm 6 µm


2 µm

Brown very clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	14.9
Gravel	30.4
Sand	29.3
Silt	17.1
Clay	8.4
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	90
D60	5.0
D10	0.0026
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	1923.1

Notes


Sedimentation sample not pre-treated

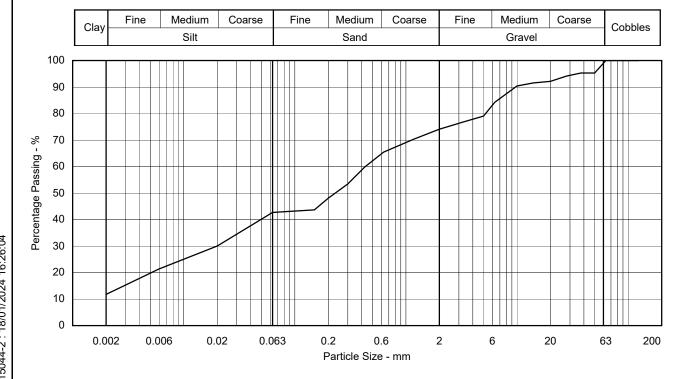
Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP19 Hole Sample Ref

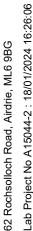

Depth (m)	1.00
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm 20 µm	100 100 100 100 95 95 94 92 92 90 84 79 77 74 70 65 60 53 48 44 43 30 21 12

Non Engineering Description	
Sample Proportions %	

Sample Proportions - %	
Cobbles	0.0
Gravel	25.9
Sand	32.3
Silt	30.0
Clay	11.7
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	0.43
D10	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A

Notes	
Sedimentation sample not pre-treated	



Originator	Checked & Approved
SG	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

1263 - PSD - BS EN 17892 TP20 01.40 B - A15044-2-2013070.xls : Sample ID 2013070

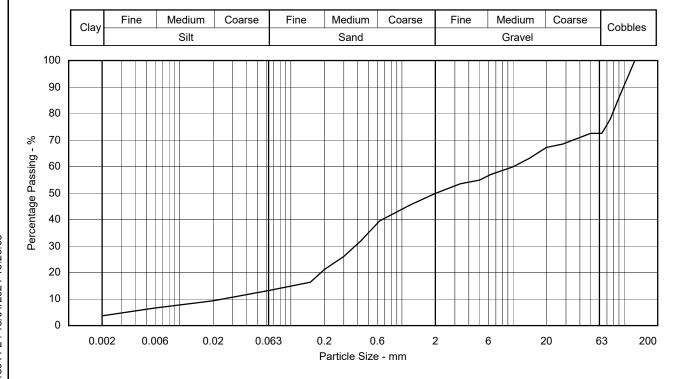
ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP20 Sample Ref


Depth (m) 1.40 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 86 78 72 72 71 68 67 63 60 57 55 53 50 45 39 32 26 21 16 13 9 7

Non Engineering Description		
Brown clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse		

Sample Proportions - %		
Cobbles	27.5	
Gravel	22.6	
Sand	36.9	
Silt	9.3	
Clay	3.6	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	125	
D60	10	
D10	0.025	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	400.0	

Notes		
Sedimentation sample not pre-treated		

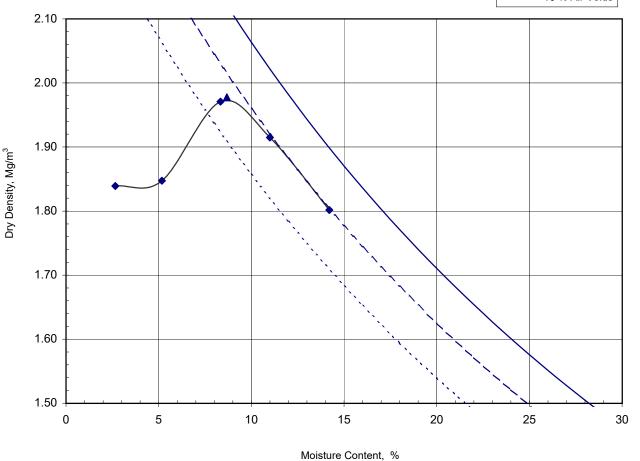
Originator	Checked & Approved
RF	CD 18/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Sheet 1 of 1

Site	LT520 BRACO WEST SUBSTATION


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP02 Sample Ref

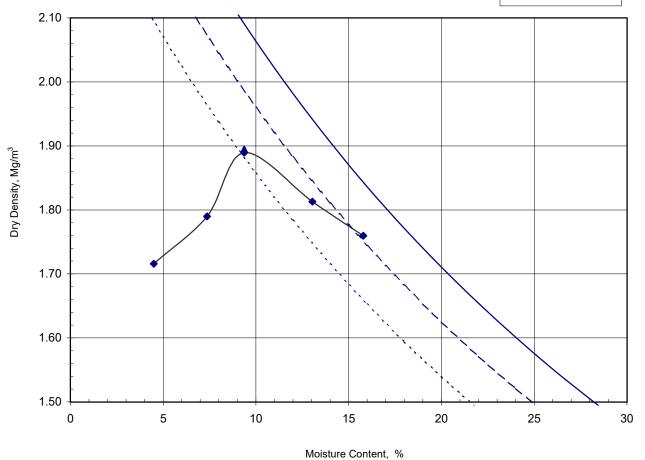
Depth (m) 0.70 Sample Type B

Non Engineering Description		Brown silty SAND and GRAVEL. Gravel is fine to coarse
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	9
Mass Retained on 20.0 mm Sieve	%	23
Particle Density - Assumed	Mg/m³	2.60
Natural Moisture Content	%	17
Maximum Dry Density	Mg/m³	1.98
Optimum Moisture Content	%	8.7

Originator	Checked & Approved
SM	CD 18/01/2024

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE


Contract No 26555

Hole TP11 Sample Ref Depth (m) 1.00

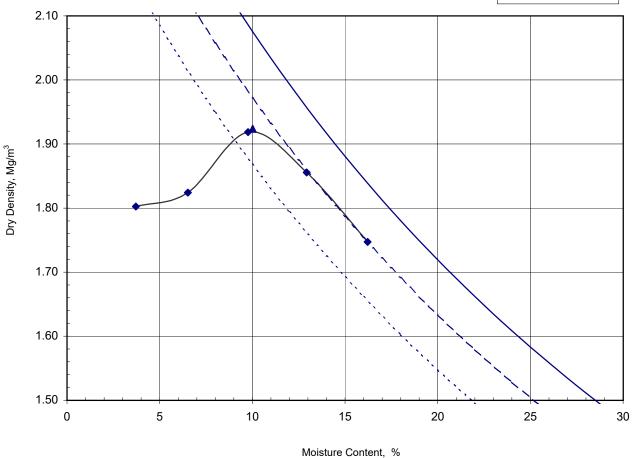
Sample Type

0 % Air Voids
- — 5 % Air Voids
- - - - 10 % Air Voids

В

Non Engineering Description		Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse
Preparation		Oven dried
Test Method		2.5kg Rammer for soils with particles up to medium-gravel size
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	0
Mass Retained on 20.0 mm Sieve	%	4
Particle Density - Assumed	Mg/m³	2.60
Natural Moisture Content	%	9.7
Maximum Dry Density	Mg/m³	1.89
Optimum Moisture Content	%	9.4

Originator	Checked & Approved
RF	CD 18/01/2024



lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

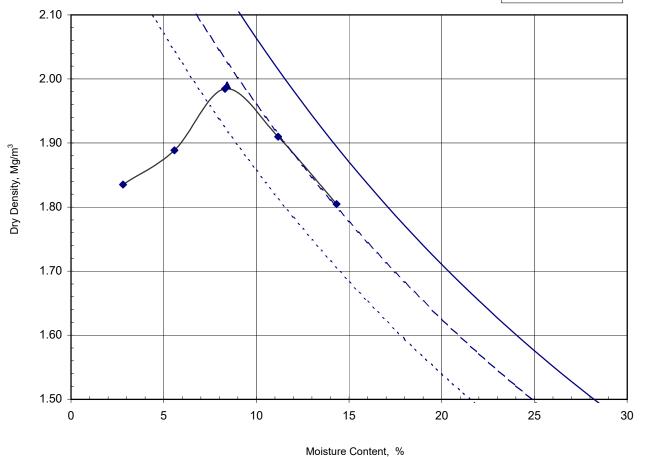
Contract No 26555

Hole TP19
Sample Ref
Depth (m) 1.10
Sample Type B

Non Engineering Description		Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse
Preparation		Oven dried
Test Method		2.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	3
Mass Retained on 20.0 mm Sieve	%	15
Particle Density - Assumed	Mg/m³	2.62
Natural Moisture Content	%	16
Maximum Dry Density	Mg/m³	1.92
Optimum Moisture Content	%	10.0

Originator	Checked & Approved
SM	CD 18/01/2024

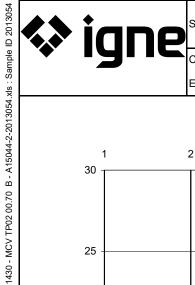
Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP20 Sample Ref

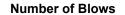
Depth (m) 1.40 Sample Type B

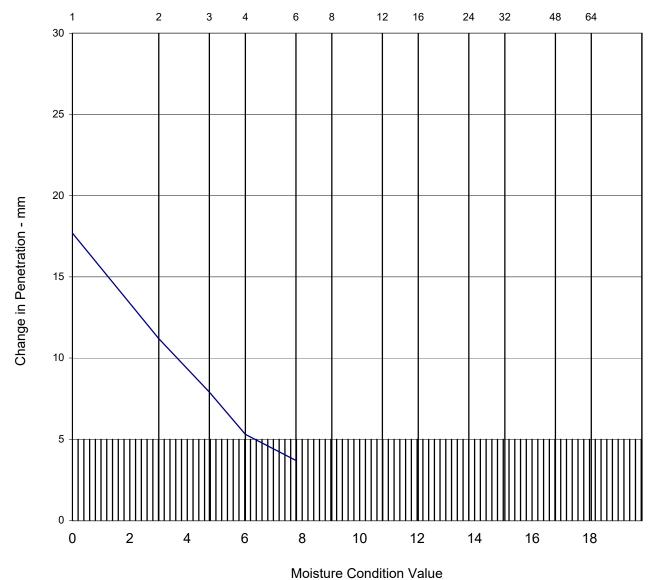

Non-standard test due to % retained on 20mm/37.5mm sieve

Non Engineering Description		Brown clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	28
Mass Retained on 20.0 mm Sieve	%	31
Particle Density - Assumed	Mg/m³	2.60
Natural Moisture Content	%	13
Maximum Dry Density	Mg/m³	1.99
Optimum Moisture Content	%	8.4

Originator	Checked & Approved
SM	CD 18/01/2024

Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE


26555 **Contract No**

Hole ID TP02

Sample Ref Depth (m)

0.70 Sample Type В

Non Engineering Description		Brown silty SAND and GRAVEL. Gravel is fine to coarse
Determination No		1
Moisture Condition Value		5.9
Moisture Content	%	19
Method of determining MCV		Steepest fit line
Mass retained on 20mm sieve	%	22.0
Notes		

Originator	Checked & Approved
SM	CD 18/01/2024

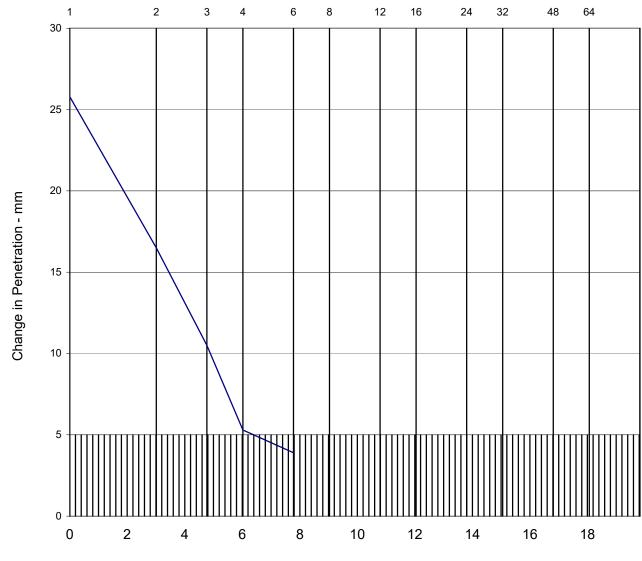
MOISTURE CONDITION VALUE

1430 - MCV TP11 01.00 B - A15044-2-2013061.xls : Sample ID 2013061

Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE


Contract No 26555

Hole ID TP11 Sample Ref

1.00

Depth (m) 1.00 Sample Type B

Number of Blows

Moisture Condition Value

Non Engineering Description	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse
Determination No	1
Moisture Condition Value	6.1
Moisture Content %	14
Method of determining MCV	Steepest fit line
Mass retained on 20mm sieve %	11.0
Notes	

Originator	Checked & Approved
SM	CD 18/01/2024

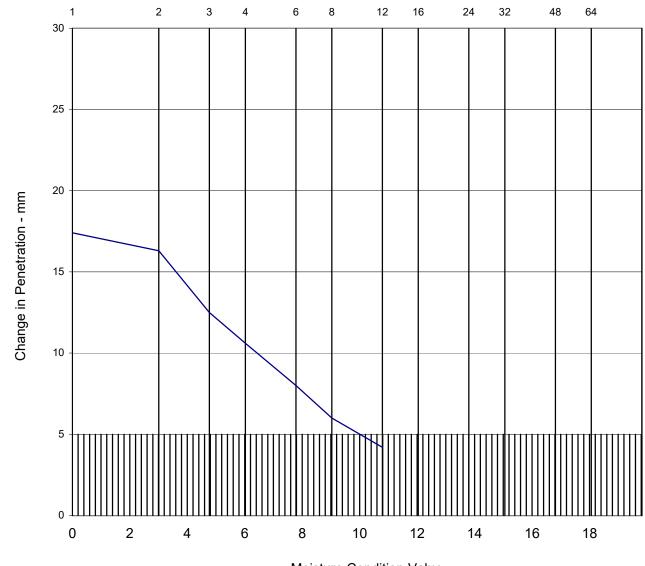
MOISTURE CONDITION VALUE

1430 - MCV TP19 01.10 B - A15044-2-2013068.xls : Sample ID 2013068

Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE


26555 **Contract No**

Hole ID TP19

Sample Ref Depth (m)

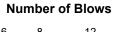
1.10 Sample Type В

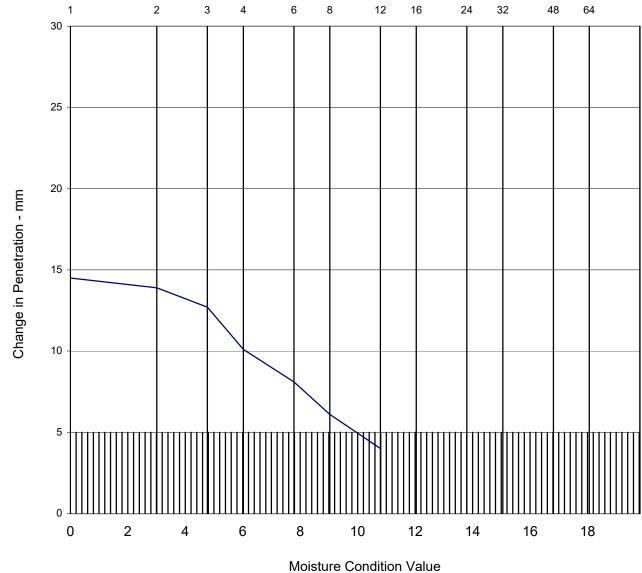
Moisture Condition Value

Non Engineering Description	Brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse
Determination No	1
Moisture Condition Value	8.2
Moisture Content %	17
Method of determining MCV	Steepest fit line
Mass retained on 20mm sieve %	7.0
Notes	

Originator	Checked & Approved
SM	CD 18/01/2024

MOISTURE CONDITION VALUE


Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID Sample Ref Depth (m) TP20 1.40

Depth (m) 1.40 Sample Type B

Non Engineering Description	Brown clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse
Determination No	1
Moisture Condition Value	8.5
Moisture Content	6 18
Method of determining MCV	Steepest fit line
Mass retained on 20mm sieve	6 33.0
Notes	

Originator	Checked & Approved
SM	CD 18/01/2024

MOISTURE CONDITION VALUE

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-3

Issue No 01

LABORATORY TEST REPORT

Project Name LT520 BRACO WEST SUBSTATION Project Number A15044-3 Date samples received Your Ref 26555 Date written instructions received Purchase Order 26555 Date testing commenced		13/12/2023		
		26555		13/12/2023
Purchase C	Jider	26555	Date testing commenced ed the results as summarised below	18/12/2023
		Tiease illia eliciose	the results as summarised below	
Figure / Table	Test Quantity		Description	ISO 17025 Accredited
	9	Determination of Water Co	ntent	Yes
	5	Particle Size Distribution		Yes
	4	Moisture Content / Dry Density Relationship		Yes
	4	Moisture Condition Value		Yes

Remarks:

Issued by: C Donnelly Date of Issue: 19/01/2024 Key to symbols used in this report

S/C: Testing was sub-contracted

(,)

Approved Signatories : 19/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Version 026 - 01/09/2023	1212 Moisture Content Table A15041 3 vis

SHE Transmission plc

Engineer

SSE Perth Inveralmond HSE

ıt Tal			E	ngineer	SSE Perth Inv	veralmond HSE	ı
onten	5	Sample Identifi	cation				
1212 - Moisture Content Tak	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	TP04	0.60		В	2012986	Brown slightly grvaelly slighty sandy clayey SILT. Gravel is fine to coarse	13.7
	TP04	0.60		D	2012984	Brown slightly grvaelly slighty sandy clayey SILT. Gravel is fine to coarse	9.7
	TP04	1.60		В	2012989	Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse	16.9
	TP04	1.60		D	2012987	Brown silty SAND and GRAVEL. Gravel is fine to coarse	20.1
	TP05	2.00		В	2012990	Brown silty SAND and GRAVEL. Gravel is fine to coarse	13.9
	TP09	0.60		В	2012991	Brown slightly silty very sandy fine to coarse GRAVEL	18.4
	TP09	0.60		В	2012992	Brown slightly silty very sandy fine to coarse GRAVEL	17.5
	TP09	1.00		В	2012993	Brown slightly silty very sandy fine to coarse GRAVEL with cobbles	15.5
	TP09	1.50		В	2012994	Brown slightly silty very sandy fine to coarse GRAVEL	17.3
2:15:56							
Lab Project No A15044-3 : 19/01/2024 12:15:56							
044-3:19/	Notes						
, A150	Notes	ı	ı				
Project No A1504	Originator	Checked Approve		D	Determination of the Water Content BS EN ISO 17892-1:2014		
Lab F	TP	19/01/202	24				Sheet 1 of 1

62 Rochsolloch Road, Airdrie, ML6 9BG

Contract No

26555

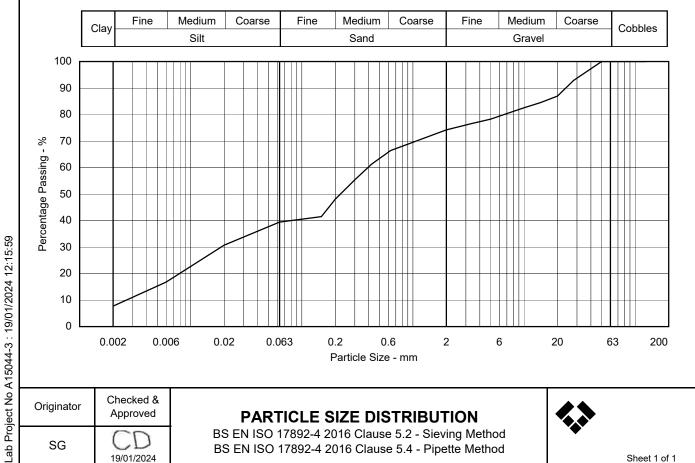
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref

Depth (m) 0.60 Sample Type

В


TP04

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 100 97 93 87 84 83 80 78 77 74 71 66 61 55 48 41 39 31 17 8

Non Engineering Description		

Sample Proportions - %				
Cobbles	0.0			
Gravel	25.8			
Sand	35.4			
Silt	31.1			
Clay	7.6			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100	50			
D60	0.39			
D10	0.0027			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	144.4			

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
SG	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

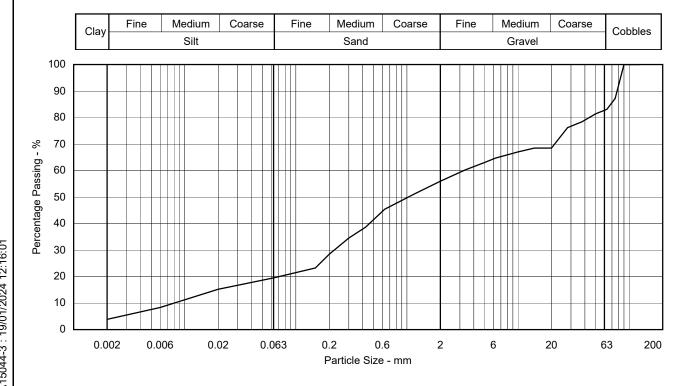
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

TP04 Hole Sample Ref Depth (m)

1.60 Sample Type В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 200 µm	% Passing 100 100 87 83 81 78 76 68 68 67 65 63 60 56 51 45 39 35 28 23 19 15
6 μm 2 μm	8 4


Non Engineering Description

Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse

Sample Proportions - %			
Cobbles	16.9		
Gravel	27.1		
Sand	36.8		
Silt	15.4		
Clay	3.8		
Particle Density - Assumed (Mg/m3)	2.65		
Particle Diameter - mm			
D100	90		
D60	3.3		
D10	0.0081		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	407.4		

Notes

Sedimentation sample not pre-treated

Checked & Originator Approved RF 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

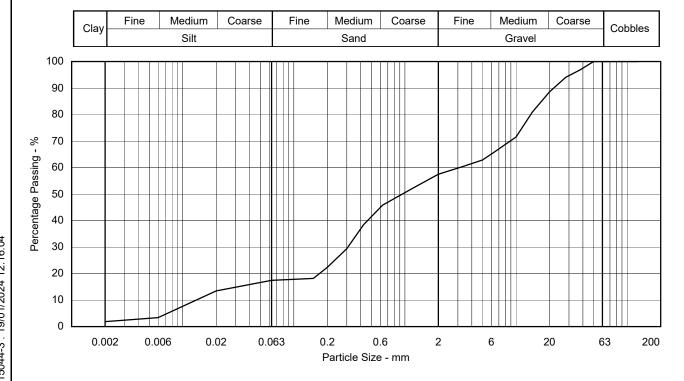
te LT520 BRACO WEST SUBSTATION	e	LT520 BRACO WEST SUBSTATION
--------------------------------	---	-----------------------------

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP05 Sample Ref


Depth (m) 2.00 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 200 µm 150 µm 63 µm 20 µm	100 100 100 100 100 97 94 89 81 72 66 63 60 57 52 46 38 29 22 18 17 13 3

Non Engineering Description			
Brown silty SAND and GRAVEL. Gravel is fine to coarse			

Sample Proportions - %			
Cobbles	0.0		
Gravel	42.6		
Sand	40.3		
Silt	15.4		
Clay	1.8		
Particle Density - Assumed (Mg/m3)	2.65		
Particle Diameter - mm			
D100	50		
D60	3.1		
D10	0.013		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	238.5		

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
SG	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

ite	LT520 BRACO W	EST SUBSTATION
ILC .		LOI GODO IATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref

0.60

TP09

Depth (m) Sample Type В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm	100 100 100 100 79 74 69 62 49 42 34 30 28 26 25 21 17 12 7

Non	Engi	neering	Description	

Brown slightly silty very sandy fine to coarse GRAVEL

Sample Proportions - %						
Cobbles	0.0					
Gravel	74.0					
Sand	23.6					
Silt & Clay	2.4					
Particle Density - Assumed (Mg/m3)	2.65					
Particle Diameter - mm						
D100	63					
D60	19					
D10	0.26					
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	73.1					

Notes

requirements

		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobbles
		Olay		Silt			Sand			Gravel		CODDICS
	100 г					I II I I I			<u> </u>			
	90											
	80										$ \cdot \cdot \mathcal{J} $	
vo.	70											
Percentage Passing - %												
assir	60											
Je P	50											
entaç	40											
Perce	30											
ш												
	20											
	10											
	ا ٥											
		0.00	0.0	006 0	.02 0.0		.2 0		2 (6 2	20 6	3 200
		Particle Size - mm										

Checked & Originator Approved SG 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method

Sheet 1 of 1

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP09 Sample Ref

Depth (m) 1.00 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm	100 100 94 91 79 60 48 41 36 32 29 28 27 26 24 21 18 14 10 7
150 μm 63 μm	

Non Engineering Description
Brown slightly silty very sandy fine to coarse GRAVEL with cobbles

Sample Proportions - %						
Cobbles	9.1					
Gravel	64.8					
Sand	20.0					
Silt & Clay	6.1					
Particle Density - Assumed (Mg/m3)	2.65					
Particle Diameter - mm						
D100	90					
D60	38					
D10	0.20					
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	190.0					

Notes
Sample does not comply with BS EN ISO 17892-4 minimum mass
requirements

		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobbles
		Olay		Silt			Sand			Gravel		CODDICS
	100 —								<u> </u>			
	90											
	80										$\bot \bot \bot \diagup$	
%	70										$\bot\bot\bot\bot$	
Percentage Passing - %	60										+ / / +	
e Pas	50											
entag	40										$\angle \Box \Box$	
Perc	30											
	20											
	10											
	٥L											
		0.00	2 0.0	06 0	0.02 0.0		0.2 0 Particle Size		2	6	20 6	33 200

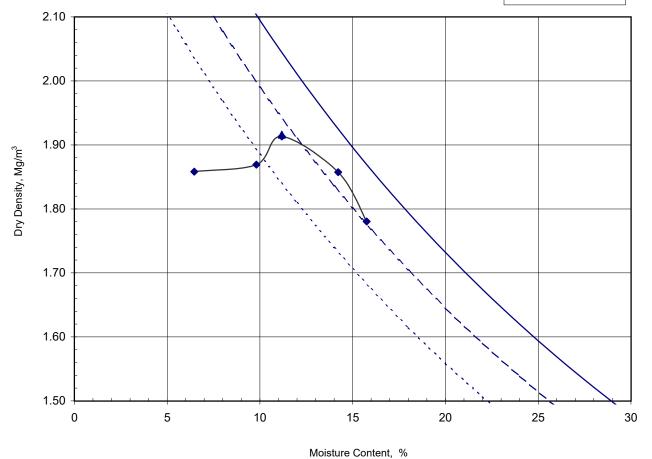
Originator	Checked & Approved
SG	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method

Alrarie, ML6 9BG	ab Project No A15044-3 · 19/01/2024 12·16·12
z Kocnsolloch Koad, Airdrie, ML6 966	b Project No A15044
N	π

2.10 - Comp TP04 00.60 B - A15044-3-2012986 xls : Sample ID 2012986 xls : Samp


Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole TP04
Sample Ref
Depth (m) 0.60
Sample Type B

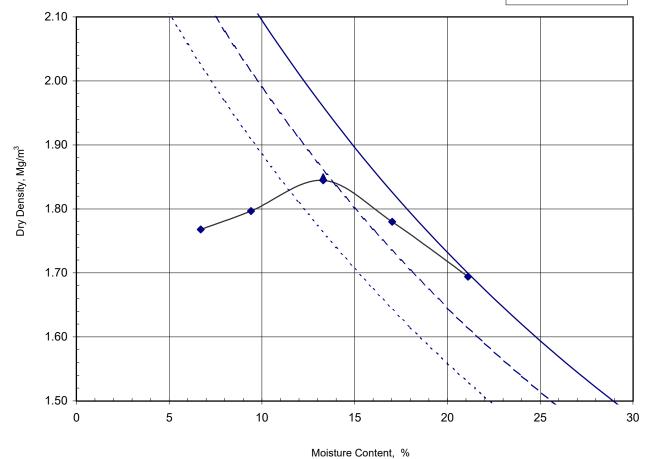
Non Engineering Description		Brown slightly grvaelly slighty sandy clayey SILT. Gravel is fine to coarse
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	4
Mass Retained on 20.0 mm Sieve	%	10
Particle Density - Assumed	Mg/m³	2.65
Natural Moisture Content	%	14
Maximum Dry Density	Mg/m³	1.92
Optimum Moisture Content	%	11.2

Originator	Checked & Approved
NW	CD 19/01/2024

Moisture Content / Dry Density Relationship

Site	LT520 BRACO WEST SUBSTATION

SHE Transmission plc


Engineer SSE Perth Inveralmond HSE **Contract No** 26555

TP04 Hole Sample Ref Depth (m) 1.60 Sample Type

Non-standard test due to % retained on 20mm/37.5mm sieve

0 % Air Voids 5 % Air Voids - - - - 10 % Air Voids

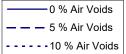
В

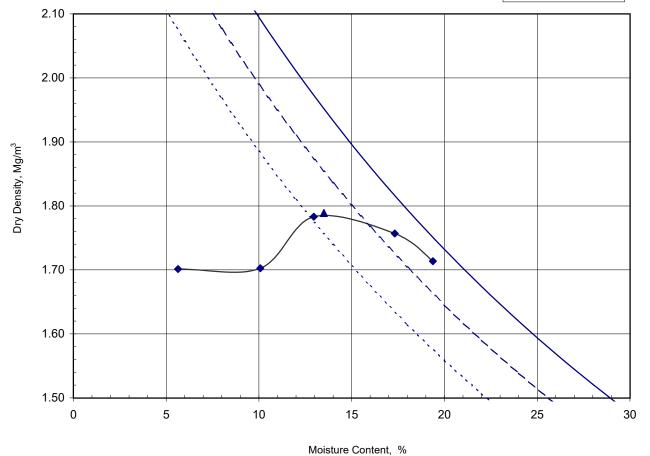
Non Engineering Description		Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	19
Mass Retained on 20.0 mm Sieve	%	28
Particle Density - Assumed	Mg/m³	2.65
Natural Moisture Content	%	17
Maximum Dry Density	Mg/m³	1.85
Optimum Moisture Content	%	13.3

Originator	Checked & Approved
NW	CD 19/01/2024

Site	LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

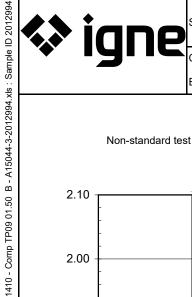

Engineer SSE Perth Inveralmond HSE


Contract No 26555

Hole TP09 Sample Ref Depth (m) 0.60

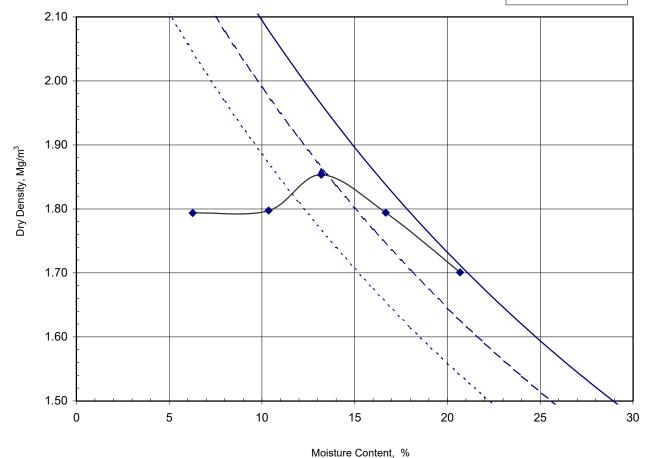
Depth (m) 0.60 Sample Type B

Non-standard test due to % retained on 20mm/37.5mm sieve



Non Engineering Description		Brown slightly silty very sandy fine to coarse GRAVEL
Preparation		Oven dried
Test Method		4.5kg Rammer for soils with some coarse gravel-size particles
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	24
Mass Retained on 20.0 mm Sieve	%	37
Particle Density - Assumed	Mg/m³	2.65
Natural Moisture Content	%	18
Maximum Dry Density	Mg/m³	1.79
Optimum Moisture Content	%	13.5

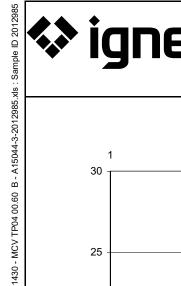
Originator	Checked & Approved
NW	CD


Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

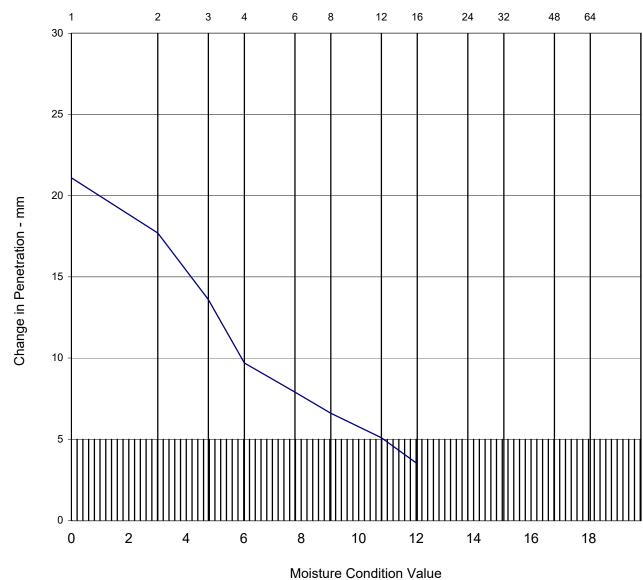
Hole TP09
Sample Ref
Depth (m) 1.50
Sample Type B


Non-standard test due to % retained on 20mm/37.5mm sieve

Non Engineering Description		Brown slightly silty very sandy fine to coarse GRAVEL
Preparation		Oven dried
Test Method		-
Samples Used		Single
Mass Retained on 37.5 mm Sieve	%	16
Mass Retained on 20.0 mm Sieve	%	30
Particle Density - Assumed	Mg/m³	2.65
Natural Moisture Content	%	17
Maximum Dry Density	Mg/m³	1.86
Optimum Moisture Content	%	13.2

Originator	Checked & Approved
NW	CD 19/01/2024

Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE

Contract No 2

26555

Hole ID Sample Ref Depth (m) Sample Type TP04 0.60 B

Number of Blows

Non Engineering Description	Brown slightly grvaelly slightly sandy clayey SILT. Gravel is fine to coarse
Determination No	1
Moisture Condition Value	7.5
Moisture Content 9	6 17
Method of determining MCV	Steepest fit line
Mass retained on 20mm sieve %	28.0
Notes	

Originator	Checked & Approved	
SM	CD 19/01/2024	

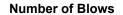
MOISTURE CONDITION VALUE BS1377:Part 4:1990 Clause 5.4

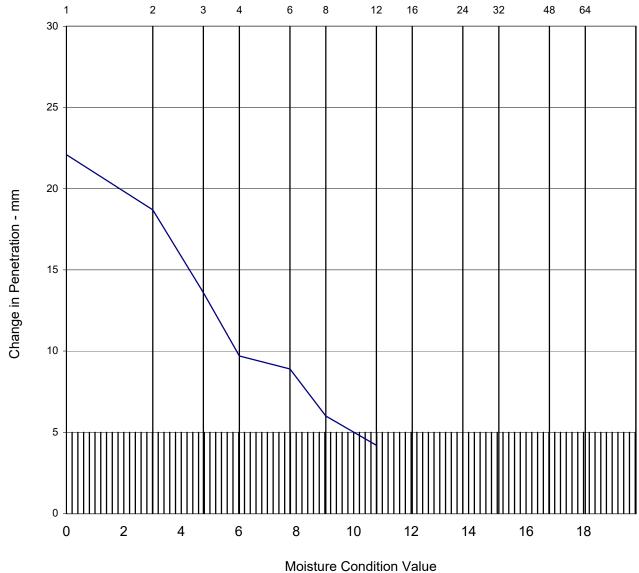
Sheet 1 of 1

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-3 : 19/01/2024 12:16:23 1430 - MCV TP04 01.60 B - A15044-3-2012988.xls : Sample ID 2012988

Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc


Engineer SSE Perth Inveralmond HSE


Contract No 26555

Hole ID TP Sample Ref

TP04

Depth (m) 1.60 Sample Type B

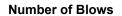
Non Engineering Description		Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse
Determination No		1
Moisture Condition Value		7.5
Moisture Content	%	16
Method of determining MCV		Steepest fit line
Mass retained on 20mm sieve	%	28.0
Notes		

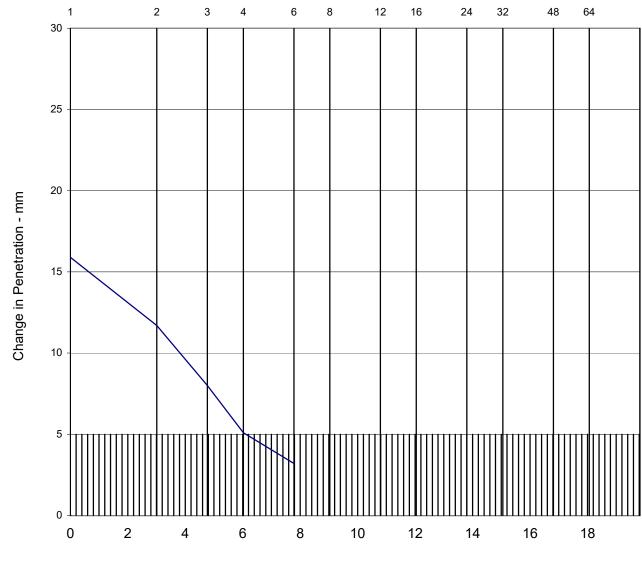
Originator	Checked & Approved	
SM	CD 19/01/2024	

MOISTURE CONDITION VALUE BS1377:Part 4:1990 Clause 5.4

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-3: 19/01/2024 12:16:26

Client SHE Transmission plc

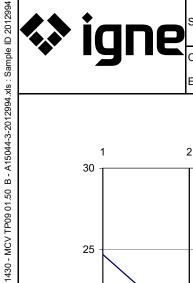

Engineer SSE Perth Inveralmond HSE


Contract No 2

26555 TP09

Hole ID Sample Ref Depth (m) Sample Type

0.60 B


Moisture Condition Value

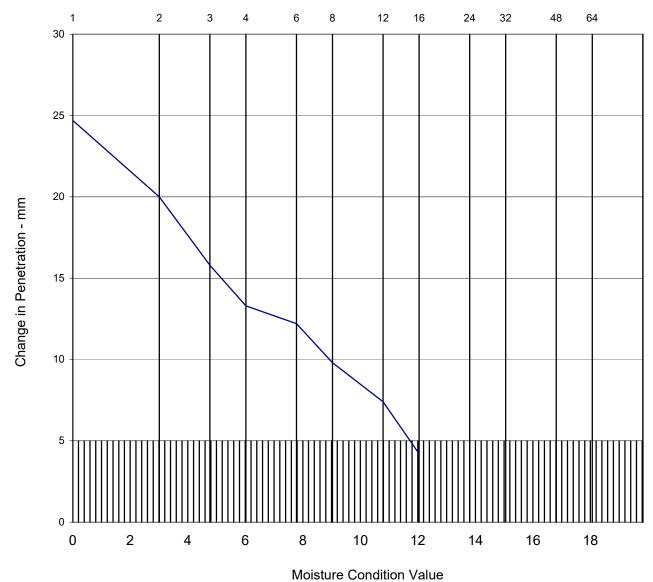
Non Engineering Description		Brown slightly silty very sandy fine to coarse GRAVEL
Determination No		1
Moisture Condition Value		6.1
Moisture Content	%	21
Method of determining MCV		Steepest fit line
Mass retained on 20mm sieve	%	31.3
Notes		

Originator	Checked & Approved	
SM	CD	

MOISTURE CONDITION VALUE

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE


Contract No 26555

Hole ID Sample Ref

TP09

Depth (m) 1.50 Sample Type B

Number of Blows

Non Engineering Description		Brown slightly silty very sandy fine to coarse GRAVEL
Determination No		1
Moisture Condition Value		11.7
Moisture Content	%	18
Method of determining MCV		Steepest fit line
Mass retained on 20mm sieve	%	28.4
Notes		

Originator	Checked & Approved
SM	CD

MOISTURE CONDITION VALUE

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

> Report No: A15044-4

01 Issue No

LABORATORY TEST REPORT

Project Nar Project Nur		A15044-4	Date samples received	13/12/2023
-	libei			
Your Ref		26555	Date written instructions received	13/12/2023
Purchase (Order	26555	Date testing commenced	18/12/2023
	ı	Please find enclosed the	results as summarised below	
Figure / Table	Test Quantity		Description	ISO 17025 Accredited
	2	Determination of Water Content		Yes
	2	Atterberg Limit		Yes
	2	Particle Size Distribution		Yes
	1	Chemical Analysis		s/c - Yes

Key to symbols used in this report Issued by: C Donnelly Date of Issue: 22/01/2024 S/C : Testing was sub-contracted

Approved Signatories:

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory. The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849 airdrie@igne.com www.igne.com Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham and Aston Clinton

ntent Table - A15044-4.xls	4 \$	ian	Si	te	LT520 BRA	CO WEST SUBSTATION	Contract No
e - A15(igne Site Client		lient	SHE Transmi			
nt Tabl	Engineer				SSE Perth In	veralmond HSE	
version uzo - 01709/zuzz 1212 - Moisture Content Table - A15044 4.xls	Exploratory Hole	Sample Identifi Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	n
	BH01	1.20		D	2012996	Brown silty SAND and GRAVEL. Gravel is fi	ne to coarse
	BH01	2.70		D	2012998	Brown silty SAND and GRAVEL. Gravel is fi	ne to coarse
: 22/01/2024 14:17:47							

62 Rochsolloch Road, Aird Lab Project No A15044-4:

Notes

Checked & Originator Approved 22/01/2024 TP

Determination of the Water Content BS EN ISO 17892-1:2014

Sheet 1 of 1

26555

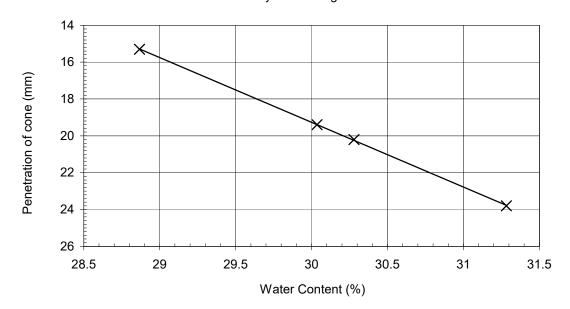
Water Content

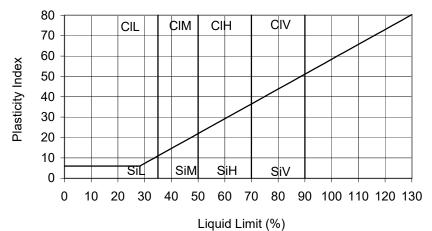
20.5

15.8

SHE Transmission plc Client

SSE Perth Inveralmond HSE Engineer


Contract No. 26555


Hole ID BH01 Sample Ref Depth (m)

1.20 Sample Type D

Non Engineering Description: Brown silty SAND and GRAVEL. Gravel is fine to coarse

Preparation: Sample oven dried, Percentage retained on 425µm sieve measured by wet sieving

Sample was determined to be Non-Plastic after preparation Liquid Limit was determined by mixing using increasing water content and 30° cone Results:

> As Received Water Content: (BS EN ISO 17892-1:2014) 20.5 % Percentage retained on 425µm sieve : 66 % Liquid Limit: 30 % Plastic Limit: Non-Plastic %

> Equivalent water content of material passing 425µm sieve : 60.3 %

Originator	Checked & Approved
NW	<u>CD</u>

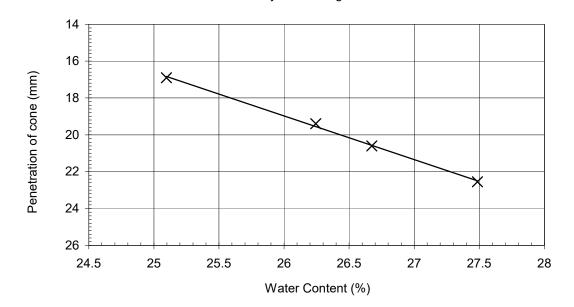
Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

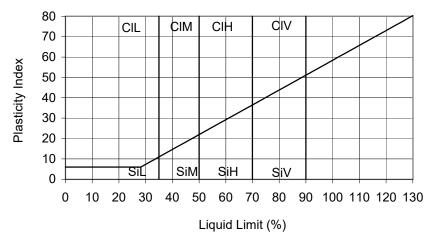
BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No. 26555


D


Hole ID BH01 Sample Ref Depth (m) 2.70

Sample Type

Non Engineering Description: Brown silty SAND and GRAVEL. Gravel is fine to coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve measured by wet sieving

Sample was determined to be Non-Plastic after preparation Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content : (BS EN ISO 17892-1:2014) 15.8 % Percentage retained on 425 μ m sieve : 43 % Liquid Limit : 26 % Plastic Limit : Non-Plastic %

Equivalent water content of material passing 425µm sieve : 27.7 %

Originator	Checked & Approved
NW	<u>CD</u> 22/01/2024

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

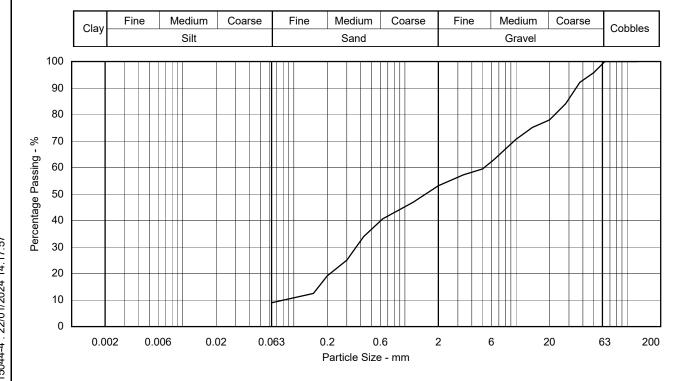
	ite	LT520 BRACO WEST SUBSTATION
--	-----	-----------------------------

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole BH01 Sample Ref

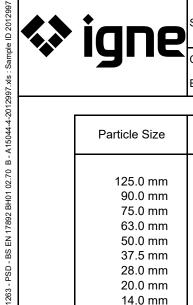

Depth (m) 1.20 Sample Type B

Non	Engineering	Description
-----	-------------	-------------

Brown silty SAND and GRAVEL. Gravel is fine to coarse

Sample Proportions - %				
Cobbles 0.0				
Gravel	46.9			
Sand	44.1			
Silt & Clay	9.0			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100 63				
D60	5.2			
D10	0.082			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	63.4			

Notes


Originator	Checked & Approved
RF	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method

Sheet 1 of 1

SHE Transmission plc

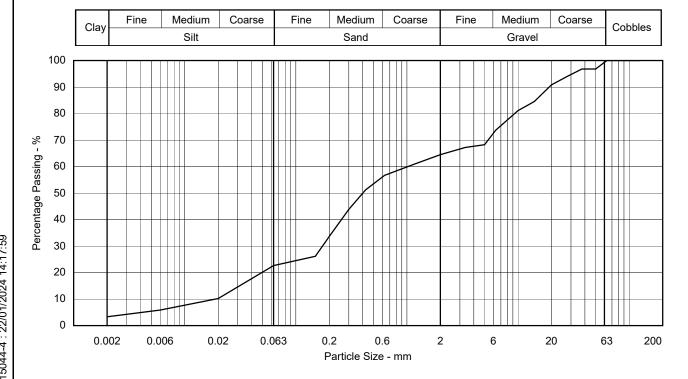
Engineer SSE Perth Inveralmond HSE

26555 Contract No

BH01 Hole Sample Ref

Depth (m) 2.70 Sample Type

В


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 97 97 94 91 85 81 74 68 67 64 61 57 51 44 34 26 23 10 6

Non	Engineering	Description

Brown silty SAND and GRAVEL. Gravel is fine to coarse

Sample Proportions - %					
Cobbles 0.0					
Gravel	35.5				
Sand	42.7				
Silt	18.5				
Clay	3.2				
Particle Density - Assumed (Mg/m3)	2.65				
Particle Diameter - mm					
D100 63					
D60	1.0				
D10	0.019				
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	52.6				

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Sheet 1 of 1

Summary of Chemical Analysis Soil Samples

Our Ref 23-29978 Client Ref A15044-4 Contract Title

Lab No	2280106
.Sample ID	BH01
Depth	1.20
Other ID	2012996
Sample Type	SOIL
Sampling Date	n/s
Sampling Time	n/s

Test	Method	LOD	Units	
Inorganics				
Organic matter	DETSC 2002#	0.1	%	4.7

Inappropriate

Information in Support of the Analytical Results

Our Ref 23-29978 Client Ref A15044-4 Contract

Containers Received & Deviating Samples

		Date	Date		
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2280106	BH01 1.20 SOIL		PT 500ml	Sample date not supplied, Organic Matter (Manual)	
				(28 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :- Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Rihcard Butler

Report No: A15044-5

Issue No 01

LABORATORY TEST REPORT

Project Nai		LT520 BRACO WEST SUBSTATION	JN .		
Project Number		A15044-5 Date samples received		13/12/2023	
Your Ref		26555	Date written instructions received	13/12/2023	
Purchase (Order	26555	Date testing commenced	08/01/2024	
	_	Please find enclosed the	results as summarised below		
Figure / Table	Test Quantity	Description		ISO 17025 Accredited	
	1	Determination of Water Content		Yes	
	1	Bulk Density		Yes	
	1	Particle Size Distribution		Yes	

Approved Signatories : 22/01/2024

Date of Issue: 22/01/2024

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

Issued by: C Donnelly

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Key to symbols used in this report

S/C : Testing was sub-contracted

ntent Table - A15044-5.xls	4 5	ian	S	ite	LT520 BRA	CO WEST SUBSTATION	Contract No 20
- A15C				lient	SHE Transmi		
: Table				ngineer	SSE Perth In	veralmond HSE	
e Content	Ş	Sample Identif	ication	1			
1212 - Moisture Content Table - A15044-5.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Descriptio	n
	BH02	1.55		В	2012999	Brown silty SAND and GRAVEL with organi fine to coarse	c material. Gravel is
0							
5 : 22/01/2024 17:07:20							
5 : 22/01/2024 1							

Notes

Originator Checked & Approved

TP CD 22/01/2024

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

26555

Water Content

45.8

Client SHE Transmission plc								
Engineer			ngineer	SSE Perth In	veralmond HSE			
Hole ID	Sample Identifi Depth	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Bulk Density	Dry Density	Water Content
	m					Mg/m³	Mg/m³	%
BH02	1.55		В	2012999	Brown silty SAND and GRAVEL with organic material. Gravel is fine to coarse	2.11	1.45	45.8
Notes	<u> </u>			<u> </u>				

Lab Project No A15044-5: 22/01/2024 17:07:23 62 Rochsolloch Road, Airdrie, ML6 9BG

Originator	Checked & Approved
TP	<u>CD</u>

BULK DENSITY

BS EN ISO 17892-2 Determination of bulk density Linear measurement method

Contract No

26555

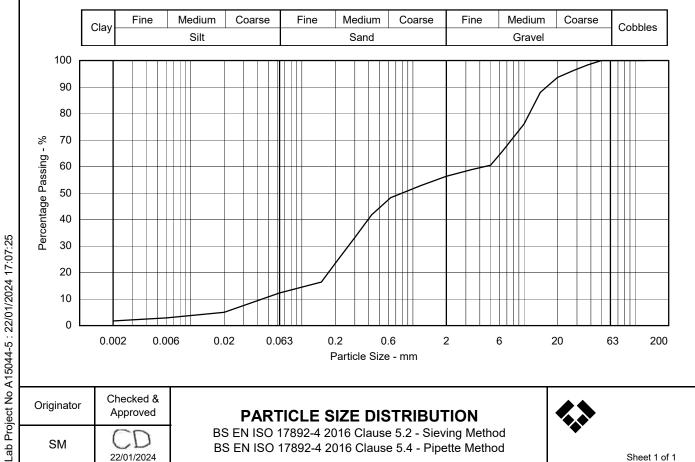
te LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH02 Hole Sample Ref

Depth (m) 1.55 Sample Type В


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm	100 100 100 100 100 98 96 94 88 76 65 60 59 56 53 48 42 33 23 16 12 5
2 µm	2

Non Engineering Description

Brown silty SAND and GRAVEL with organic material. Gravel is fine to coarse

Sample Proportions - %					
Cobbles	0.0				
Gravel	43.7				
Sand	44.6				
Silt	10.0				
Clay	1.7				
Particle Density - Assumed (Mg/m3)	2.65				
Particle Diameter - mm					
D100	50				
D60	4.5				
D10	0.044				
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	102.3				

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
SM	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-6

Issue No 01

LABORATORY TEST REPORT

Project Name Project Number		LT520 BRACO WEST SUBSTATION A15044-6	Date samples received	13/12/2023
	libei			
Your Ref		26555	Date written instructions received	13/12/2023
Purchase C	Order	26555 Date testing commenced		18/12/2023
	T	Please find enclosed the	e results as summarised below	
Figure / Test Table Quantity			Description	ISO 17025 Accredited
2 Determination of Water Content				Yes
1 Atterberg Limit				Yes
1 Particle Size Distribution				Yes

Issued by: C Donnelly Date of Issue: 19/01/2024 Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories : 19/01/20

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

tent Table - A15044-6.xls	45			ite	LT520 BRA	CO WEST SUBSTATION Contract No	26555
- A150		y i		lient	SHE Transmi	ssion plc	
Table				ngineer	SSE Perth Inv	veralmond HSE	
re Content	Sample Identification						
1212 - Moisture Content Table - A15044-6.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water
	BH03	1.20		D	2013002	Brown gravelly very silty SAND with organic material. Grav fine to coarse	el is
	ВН03	2.00		D	2013003	Brown gravelly very silty SAND. Gravel is fine to coarse	
:34							
3: 19/01/2024 14:11:34							
3: 19/01/2024 1							

Notes

Originator	Checked & Approved
TP	CD 19/01/2024

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

Water Content

32.5

14.1

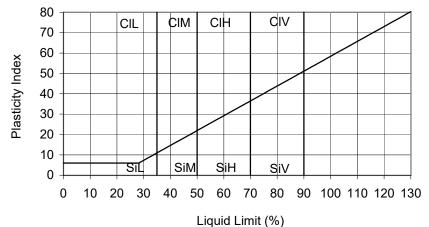
LT520 BRACO WEST SUBSTATION

SHE Transmission plc Client

Engineer SSE Perth Inveralmond HSE Contract No. 26555

Hole ID **BH03** Sample Ref Depth (m)

1.20 Sample Type D


Non Engineering Description: Brown gravelly very silty SAND with organic material. Gravel is

fine to coarse

Preparation: Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Sample was determined to be Non-Plastic after preparation Liquid Limit was determined by mixing using increasing water content and 30° cone Results:

> As Received Water Content: (BS EN ISO 17892-1:2014) 32.5 % Percentage retained on 425µm sieve : 21 % Liquid Limit: 35 % Plastic Limit: Non-Plastic %

> Equivalent water content of material passing 425µm sieve : 41.1 %

Originator	Checked & Approved
NW	<u>CD</u>

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

LT520 BRACO WEST SUBSTATION

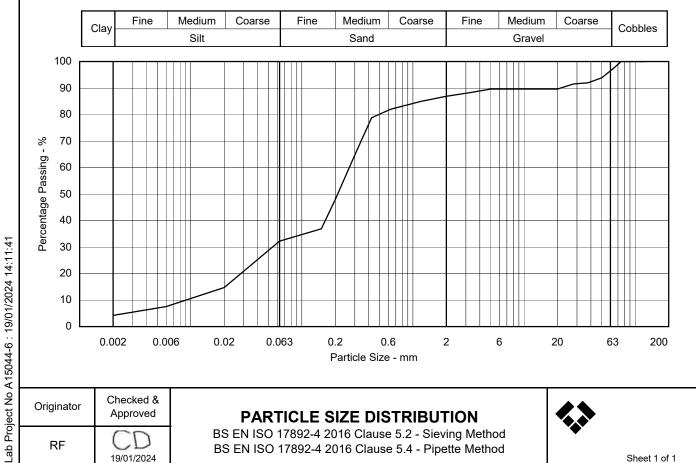
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH03 Hole Sample Ref

0

epth (m)	2.00
Sample Type	В


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 200 µm 150 µm 63 µm 20 µm	100 100 100 97 94 92 92 90 90 90 90 90 90 88 87 85 82 79 65 48 37 32 15 7
·	

Non Engineering Description

Brown gravelly very silty SAND with cobbles. Gravel is fine to coarse

Sample Proportions - %				
Cobbles	2.8			
Gravel	10.3			
Sand	55.9			
Silt	26.8			
Clay	4.2			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diamete	r - mm			
D100	75			
D60	0.27			
D10	0.0091			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	29.7			

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-7

Issue No 01

LABORATORY TEST REPORT

Project Name		LT520 BRACO WEST SUBSTATIO		
Project Number Your Ref Purchase Order		A15044-7 Date samples received		13/12/2023
		26555	Date written instructions received	13/12/2023
		26555	Date testing commenced	18/12/2023
		Please find enclosed the	results as summarised below	
Figure / Table	Test Quantity		Description	ISO 17025 Accredited
	3	Determination of Water Content		Yes
	3	Particle Size Distribution		Yes

S/C : Testing was sub-contracted

Date of Issue: 19/01/2024

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory
This report should not be reproduced except in full without the written approval of the laboratory.
tisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) labora

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

Issued by: C Donnelly

Approved Signatories:

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Key to symbols used in this report

Sample Ider Exploratory Depth Hole m	1
Exploratory Depth Hole m	
BH04 1.00	
BH04 1.20	
BH04 2.00	

Site	LT520 BRACO WEST SUBSTATION	Contract No	26555	
Client	SHE Transmission plc			
Engineer	SSE Perth Inveralmond HSE			

sion			Er	ngineer	SSE Perth Inv	veralmond HSE	
Version Content Tak		Sample Identifi	cation			<u> </u>	
Version 1212 - Moisture Content Tak	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	BH04	1.00		D	2013005	Brown slightly gravelly sandy SILT. Gravel is fine to coarse	25.9
	BH04	1.20		D	2013007	Brown silty SAND and GRAVEL. Gravel is fine to coarse	12.2
	BH04	2.00		D	2013009	Brown silty very gravelly SAND with cobbles. Gravel is fine to coarse	12.9
3:30							
62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-7 : 19/01/2024 14:23:30							
62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-7 : 19/01/2024 1							
oad, A 5044-	Notes						
solloch Reect No A1	Originator	Checked Approve		De	etermina	tion of the Water Content	
62 Roch Lab Proj	TP	19/01/202) 24			S EN ISO 17892-1:2014	Sheet 1 of 1

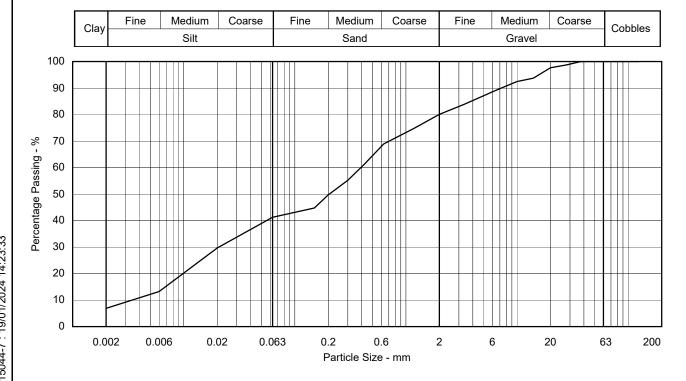
Originator	Checked & Approved
TP	19/01/2024

Site LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole BH04 Sample Ref


Depth (m)	1.00
Sample Type	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 100 100 99 98 94 92 89 87 84 80 75 69 61 55 50 45 41 30 13
,	

Non Engineering Description	
Brown slightly gravelly sandy SILT. Gravel is fine to coarse	

Sample Proportions - %	
Cobbles	0.0
Gravel	19.9
Sand	39.7
Silt	33.6
Clay	6.8
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	38
D60	0.39
D10	0.0035
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	111.4

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

NC

SHE Transmission plc

28

22

18

10 5

3

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH04 Hole Sample Ref

Depth (m) 1.20 Sample Type В

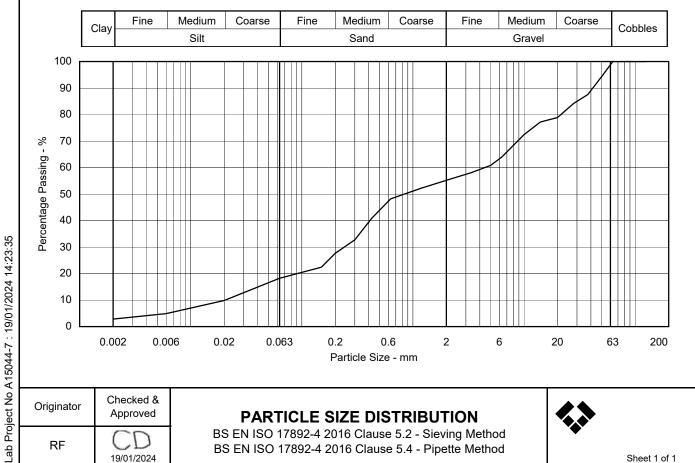
Particle Size	% Passing
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	94
37.5 mm	88
28.0 mm	84
20.0 mm	79
14.0 mm	77
10.0 mm	72
6.30 mm	64
5.00 mm	61
3.35 mm	58
2.00 mm	55
1.18 mm	52
630 µm	48
425 µm	41
300 µm	33

200 µm

150 µm

63 µm

20 µm


6 µm

2 µm

Non Engineering Description	
Brown silty SAND and GRAVEL. Gravel is fine to coarse	

Sample Proportions - %	
Cobbles	0.0
Gravel	44.8
Sand	37.6
Silt	14.8
Clay	2.8
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	4.5
D10	0.021
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	214.3

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

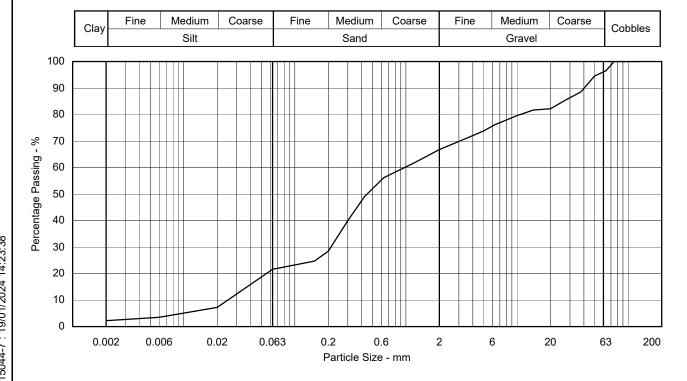
te LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole BH04 Sample Ref


Depth (m) 2.00 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 97 95 88 86 82 82 80 76 74 71 67 62 56 49 40 28 25 22 7

Non Engineering Description
Brown silty very gravelly SAND with cobbles. Gravel is fine to coarse

Sample Proportions - %				
Cobbles	3.5			
Gravel	29.8			
Sand	46.2			
Silt	18.4			
Clay	2.2			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100	75			
D60	0.97			
D10	0.025			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	38.8			

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-8

Issue No 01

LABORATORY TEST REPORT

Project Nar Project Nur		A15044-8	Date samples received	13/12/2023	
	libei				
Your Ref		26555	Date written instructions received	14/12/2023	
Purchase (Order	26555 Date testing commenced Please find enclosed the results as summarised below		08/01/2024	
	T	Please find enclosed the	results as summarised below		
Figure / Table	Test Quantity	Description			
	3	Determination of Water Content		Yes	
	1	Atterberg Limit Ye			
	3	Particle Size Distribution	Yes		

Issued by: C Donnelly Date of Issue: 22/01/2024 Key to symbols used in this report

S/C: Testing was sub-contracted

Approved Signatories : 22/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

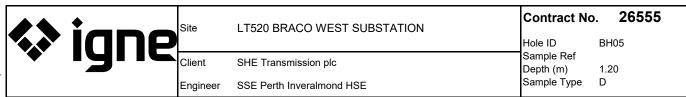
Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

)44-8.xls	4 > 1	ian		Site	LT520 BRA	со
e - A150		Ign		Client	SHE Transm	ssio
t Table			I	Engineer	SSE Perth In	vera
Sonten	\$	Sample Identifi	cation	_		
1212 - Moisture Content Table - A15044-8.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	
	BH05	1.00		D	2013011	В
	BH05	1.20		D	2013014	В
	BH05	2.00		D	2013015	В
1/2024 14:31:14						

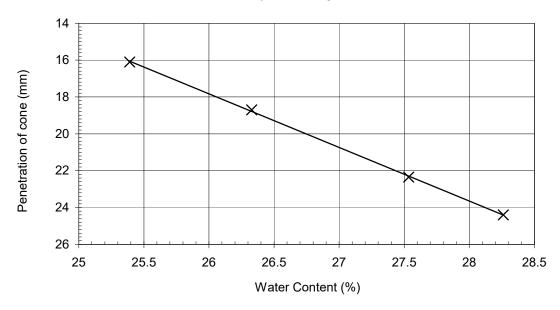
Contract No 26555 WEST SUBSTATION n plc

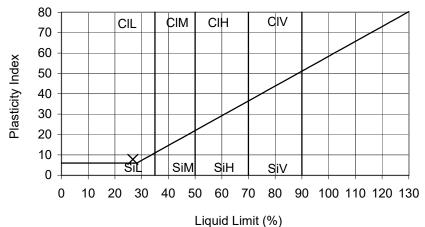

apic				Engineer	SSE Perth In	veralmond HSE		
OILCILL	5	Sample Identifi	cation					
O SIEST - MOISIGNE O	Exploratory Hole	Depth m	Sampl Ref	e Sample Type	Lab Sample ID	Non Enginering Description		Water Content %
	BH05	1.00		D	2013011	Brown silty very gravelly SAND with rootlets. coarse	Gravel is fine to	28.2
	BH05	1.20		D	2013014	Brown slightly sandy slightly gravelly CLAY. Coarse	Gravel is fine to	20.0
	BH05	2.00		D	2013015	Brown very silty SAND and GRAVEL. Gravel	is fine to coarse	18.2
+								
-	Notes		<u> </u>	1				

Checked & Originator Approved 22/01/2024 TP

Determination of the Water Content BS EN ISO 17892-1:2014

Sheet 1 of 1




Non Engineering Description : Brown slightly sandy slightly gravelly CLAY. Gravel is fine to

coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content : (BS EN ISO 17892-1:2014) 20.0 % Percentage retained on 425 μ m sieve : 45 % Liquid Limit : 27 % Plastic Limit : 19 % Plasticity Index : 8.0

Equivalent water content of material passing 425µm sieve : 36.4 % Liquidity Index : 2.18

Originator	Checked & Approved	Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index
NW	CD	BS EN ISO 17892-12:2018 Clause 5.3
	22/01/2024	BS EN ISO 17892-12:2018 Clause 5.5

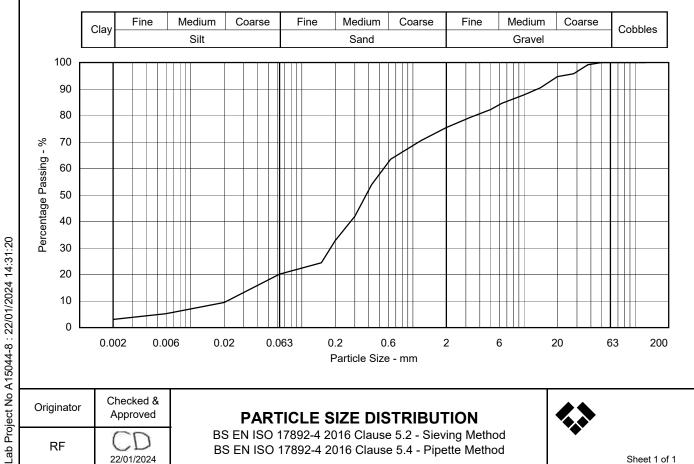
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH05 Hole Sample Ref

Depth (m) 1.00 Sample Type В

Particle Size	% Passing		
125.0 mm	100		
90.0 mm	100		
75.0 mm	100		
63.0 mm	100		
50.0 mm	100		
37.5 mm	99		
28.0 mm	96		
20.0 mm	95		
14.0 mm	90		
10.0 mm	88		
6.30 mm	85		
5.00 mm	82		
3.35 mm	79		
2.00 mm	75		
1.18 mm	71		
630 µm	63		
425 μm	54		
300 μm	42		
200 μm	33		
150 µm	24		
63 µm	20		
20 μm	9		
6 µm	5		
2 μm	3		


Non Engineering	Description

Brown silty very gravelly SAND with rootlets. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	0.0
Gravel	24.5
Sand	56.1
Silt	16.4
Clay	3.0
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	50
D60	0.55
D10	0.021
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	26.2

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Sheet 1 of 1

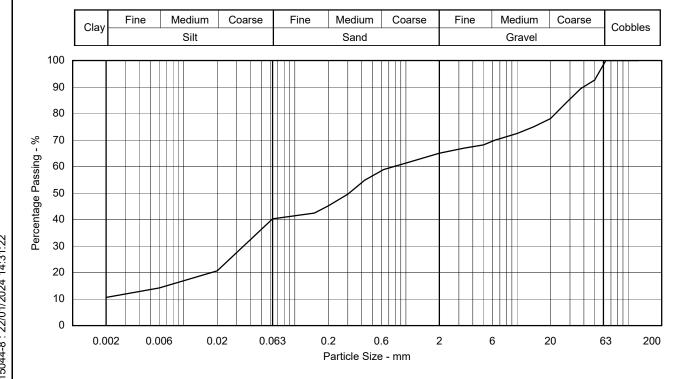
Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole BH05 Sample Ref


Depth (m) 1.20 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm	100 100 100 100 93 89 84 75 72 70 68 67 65 62 59 55 50 45 42 40 21
6 μm 2 μm	14 11

Non Engineering Description	
Brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse	

Sample Proportions - %		
Cobbles	0.0	
Gravel	35.0	
Sand	26.1	
Silt	28.3	
Clay	10.6	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	63	
D60	0.78	
D10		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A	

Notes	
Sedimentation sample not pre-treated	

Originator	Checked & Approved
JM	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

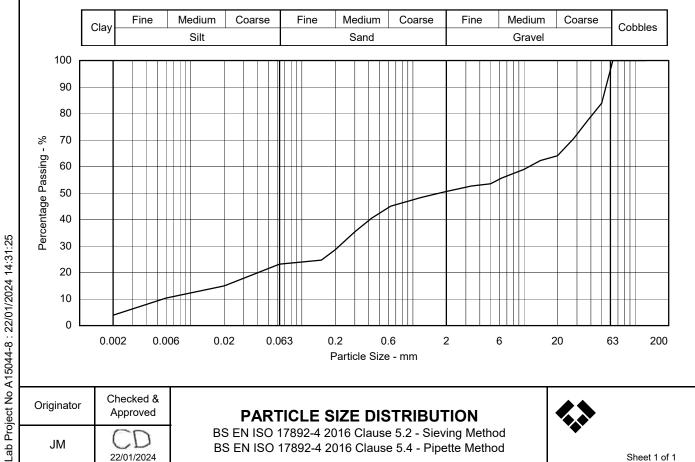
LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH05 Hole Sample Ref

Depth (m)	1.90
Sample Type	В


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 84 77 70 64 62 59 56 54 53 51 48 45 40 35 29 25 23 15 10 4

Non Engineering Description

Brown silty very sandy fine to coarse GRAVEL. Gravel is fine to coarse

Sample Proportions - %	
Cobbles	0.0
Gravel	49.4
Sand	28.0
Silt	18.7
Clay	3.9
Particle Density - Assumed (Mg/m3)	2.65
Particle Diameter - mm	
D100	63
D60	11
D10	0.0057
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	1929.8

Notes requirements Sedimentation sample not pre-treated

Originator	Checked & Approved
JM	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-9

Issue No 01

LABORATORY TEST REPORT

Project Number Your Ref Purchase Order		A15044-9 Date samples received		14/12/2023
		26555	Date written instructions received	14/12/2023
		26555 Date testing commenced		08/01/2024
		Please find enclosed the re	esults as summarised below	
Figure / Test Table Quantity		Description		ISO 17025 Accredited
	2	Determination of Water Content		Yes
	2	Particle Size Distribution		Yes

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Date of Issue: 19/01/2024

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

Issued by: C Donnelly

Approved Signatories:

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Key to symbols used in this report

S/C: Testing was sub-contracted

ntent Table - A15044-9.xls	4 > i	ian	Si	te	LT520 BRA	CO WEST SUBSTATION	Contract No
Table - A150		ign		lient ngineer	SHE Transmi	ission plc veralmond HSE	
- Content		Sample Identif	ication				
1212 - Moisture Content Table - A15044-9.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	on
	BH07	1.20		D	2013019	Brown silty very sandy fine to coarse GRA\	/EL
	BH07	2.00		D	2013018	Brown silty SAND and GRAVEL. Gravel is	fine to coarse
one; wito 9DG 9: 19/01/2024 13:15:31							

Notes

Originator	Checked & Approved
TP	<u>CD</u>

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

26555

Water Content

7.1

8.4

te LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole BH07 Sample Ref

Depth (m) 1.20 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 95 90 81 76 67 60 60 56 53 50 47 43 39 34 28 22 18 13 13 6 3
Ζ μιτι	2

Non Engineering Description

Brown silty very sandy fine to coarse GRAVEL with cobbles

Sample Proportions - %			
Cobbles	10.2		
Gravel	46.3		
Sand	31.3		
Silt	10.6		
Clay	1.5		
Particle Density - Assumed (Mg/m3)	2.65		
Particle Diamete	r - mm		
D100	90		
D60	14		
D10	0.040		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	350.0		

Notes	
Sedimentation sample not pre-treated	

		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobbles
		Clay		Silt			Sand			Gravel		Copples
	100 г					I						
	90											
	80										$++ \mathcal{V}$	
٠.0	70											
Percentage Passing - %	70											
ssinę	60										\leftarrow	
Pas	50											
age												
cent	40											
Per	30							1111				
	20											
	20											
	10											
	0											
	J	0.00	0.0	06 0.	02 0.0	063 0	0.2 0.	.6	2	6	20 6	3 200
							Particle Size					

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Sheet 1 of 1

Particle Size

125.0 mm

90.0 mm

75.0 mm

63.0 mm

50.0 mm

37.5 mm

28.0 mm

20.0 mm

14.0 mm

10.0 mm

6.30 mm

5.00 mm

3.35 mm

2.00 mm

1.18 mm

630 µm

425 µm

300 µm

200 µm

150 µm

63 µm

20 µm

6 µm

2 µm

LT520 BRACO WEST SUBSTATION

SHE Transmission plc

% Passing

100

100

100

97

90

83

77

69

68

65

60

57

54

50

46

41

36

30

23

15

11

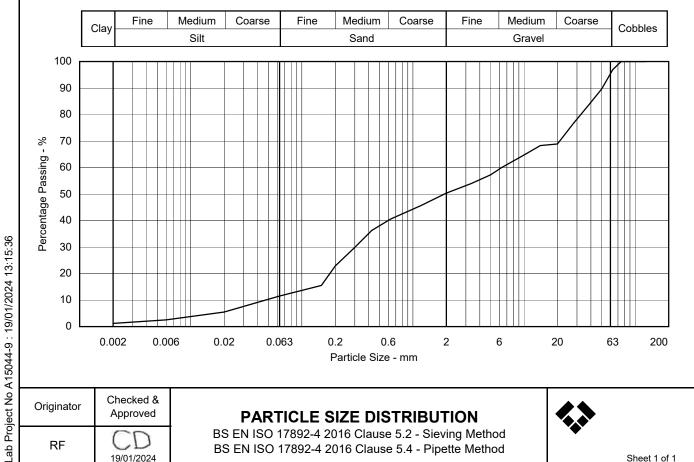
5 2

1

SSE Perth Inveralmond HSE Engineer

26555 Contract No

Hole **BH07** Sample Ref


2.00 Depth (m) Sample Type В

Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse

Non Engineering Description

Sample Proportions - %			
Cobbles	3.0		
Gravel	46.7		
Sand	39.3		
Silt	9.9		
Clay	1.1		
Particle Density - Assumed (Mg/m3)	2.65		
Particle Diameter - mm			
D100	75		
D60	6.3		
D10	0.048		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	131.3		

Notes				
Sedimentation sample not pre-treated				

Checked & Originator Approved RF 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-10

Issue No 01

LABORATORY TEST REPORT

Project Nar		LT520 BRACO WEST SUBSTATION					
Project Number Your Ref		A15044-10	Date samples received	14/12/2023			
		26555 Date written instructions received		14/12/2023			
Purchase C	Order	26555	Date testing commenced	09/01/2024			
		Please find enclosed the	results as summarised below				
Figure / Test Table Quantity		Description		ISO 17025 Accredited			
	1	Determination of Water Content		Yes			
	1	Particle Size Distribution		Yes			

S/C : Testing was sub-contracted

Date of Issue: 19/01/2024

Approved Signatories : 19/01/2024

Issued by: C Donnelly

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Key to symbols used in this report

/09/2023 44-10.xls	4 > 1	ian	Si	ite	LT520 BRA	CO WEST SUBSTATION	Contract No	26555
Version 026 - 01/09/2023 ent Table - A15044-10.xls	igne			lient ngineer	SHE Transmission plc SSE Perth Inveralmond HSE			
Vers re Content T	:	Sample Identif	ication					
Version 026 - 01/09/2023 1212 - Moisture Content Table - A15044-10.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description		Wate
	BH08	0.90		D	2013091	Brown silty very gravelly SAND with pockets Gravel is fine to coarse	of clay and rootle	ets.
6:21								
, ML6 9BG 9/01/2024 13:26:21								
IM 0/6								<u> </u>

Notes

Originator Checked & Approved

TP CD
19/01/2024

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

Water Content

18.6

LT520 BRACO WEST SUBSTATION

SHE Transmission plc

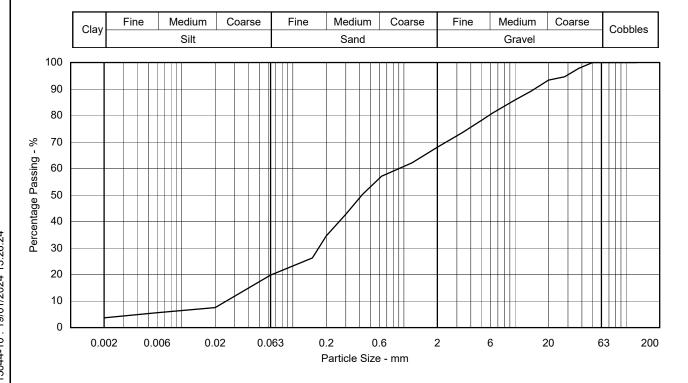
Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref BH08

Depth (m) Sample Type

	0.90
,	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm 20 µm 6 µm 20 µm	100 100 100 100 100 98 95 93 89 86 81 78 74 68 62 57 50 43 35 26 20 7 6


Non Engineering Description

Brown silty very gravelly SAND with pockets of clay and rootlets. Gravel is fine to coarse

Sample Proportions - %						
Cobbles	0.0					
Gravel	32.0					
Sand	49.1					
Silt	15.3					
Clay	3.6					
Particle Density - Assumed (Mg/m3)	2.65					
Particle Diameter - mm						
D100	50					
D60	0.90					
D10	0.025					
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	36.0					

Notes

Sedimentation sample not pre-treated

Originator	Checked & Approved
SM	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-11

Issue No 01

LABORATORY TEST REPORT

Project Nar		LT520 BRACO WEST SUBSTATION						
Project Nur	mber	A15044-11	Date samples received	13/12/2023				
Your Ref		26555	Date written instructions received	14/12/2023				
Purchase C	Order	26555	Date testing commenced	09/01/2024				
		Please find enclosed	the results as summarised below					
Figure / Table	Test Quantity		Description	ISO 17025 Accredited				
	2	Determination of Water Con	tent	Yes				
	2	Particle Size Distribution		Yes				
	2 Chemical Analysis							

Issued by: C Donnelly Date of Issue: 22/01/2024 Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories : 22/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

1212 - Moisture Content Table - A15044-11.xls	E
	- Moisture Content Table - A15044-11.xl

⇔ igne

Site LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer

SSE Perth Inveralmond HSE

rersion int Tabl			E	ngineer	SSE Perth In	veralmond HSE		
vers	Sample Identification							
version 1212 - Moisture Content Tabl	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description		Water Content %
	ВН09	1.00		D	2013021	Brown slightly gravelly sandy CLAY. Gravel is	fine to coarse	24.4
	BH09	2.00		D	2013023	Brown silty SAND and GRAVEL. Gravel is fine	e to coarse	9.9
14:37:55								
oz Rochsolioch Road, Allahe, MLO 955 Lab Project No A15044-11 : 22/01/2024 14:37:55								
oz Rochsolloch Road, Alfahe, MLO 95-9 Lab Project No A15044-11 : 22/01/2024	Notes							
A15(140162		. 1				<u> </u>	
Project No	Originator Checked & Approved De					tion of the Water Content S EN ISO 17892-1:2014		
uz r Lab	TP 22/01/2024				Sheet 1 of 1			

62 Rochsolloch Road, Airdrie, ML6 9BG

Contract No

26555

1263 - PSD - BS EN 17892 BH09 01.00 B - A15044-11-2013020.xls : Sample ID 2013020

ite	LT520 BRACO WEST SUBSTATION
-----	-----------------------------

Client SHE Transmission plc

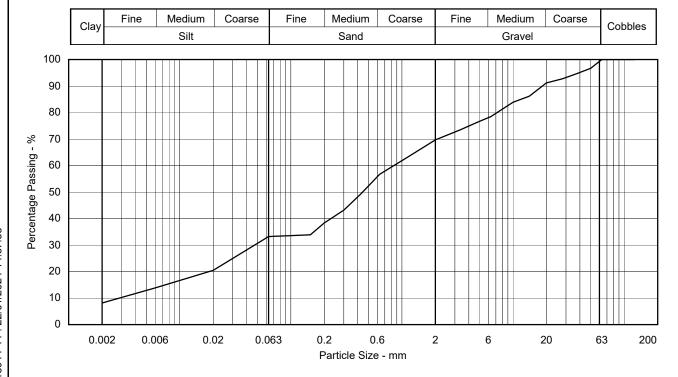
Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole B Sample Ref

BH09

Depth (m) 1.00 Sample Type B


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 97 95 93 91 86 84 78 77 73 70 64 57 49 43 38 34 33 20 14
·	

Non Engineering Description	

Brown slightly gravelly sandy CLAY. Gravel is fine to coarse

Sample Proportions - %					
Cobbles 0.0					
Gravel	30.3				
Sand	37.4				
Silt	24.2				
Clay	8.1				
Particle Density - Assumed (Mg/m3)	2.65				
Particle Diameter - mm					
D100 63					
D60	0.85				
D10	0.0029				
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	293.1				

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved	
RF	CD 22/01/2024	

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-11 : 22/01/2024 14:37:58

Sheet 1 of 1

ite	LT520 BRACO WEST SUBSTATION

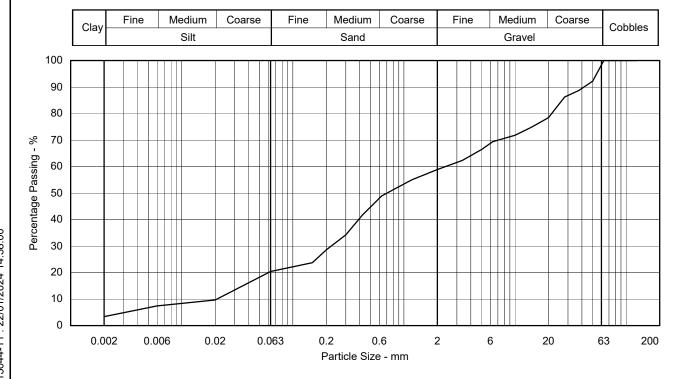
Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole Sample Ref

BH09


Depth (m) 2.00 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 92 89 86 78 75 72 69 66 62 59 55 49 42 34 29 24 20 10 7

Non Engineering Description
Brown silty SAND and GRAVEL. Gravel is fine to coarse

Sample Proportions - %				
Cobbles	0.0			
Gravel	41.1			
Sand	39.2			
Silt	16.3			
Clay	3.3			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100	63			
D60	2.4			
D10	0.021			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	114.3			

Notes				
Sedimentation sample not pre-treated				

Originator	Checked & Approved	
JM	CD 22/01/2024	

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Summary of Chemical Analysis Soil Samples

Our Ref 23-29979 Client Ref A15044-11 Contract Title

Lab No	2280107	2280108
.Sample ID	BH09	BH09
Depth	1.00	2.00
Other ID	2013021	2013023
Sample Type	SOIL	SOIL
Sampling Date	23/11/2023	23/01/2023
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Inorganics					
рН	DETSC 2008#		рН	7.0	7.8
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	210	92

Inappropriate

Information in Support of the Analytical Results

Our Ref 23-29979 Client Ref A15044-11 Contract

Containers Received & Deviating Samples

	Date				container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2280107	BH09 1.00 SOIL	23/11/23	PT 500ml x2	pH + Conductivity (7 days)	
2280108	BH09 2.00 SOIL	23/01/23	PT 500ml x2	Anions 2:1 (30 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-12

Issue No 01

LABORATORY TEST REPORT

Project Nar		LT520 BRACO WEST SUBSTAT		13/12/2023	
Project Number A15044-12		A15044-12	Date samples received		
Your Ref		26555	Date written instructions received	13/12/2023	
Purchase (Order	26555	Date testing commenced	08/01/2024	
		Please find enclosed th	ne results as summarised below		
Figure / Table	Test Quantity		Description	ISO 17025 Accredited	
	2	Determination of Water Content		Yes	
	2	Atterberg Limit		Yes	
	2	Particle Size Distribution		Yes	

Issued by: C Donnelly Date of Issue: 19/01/2024 Key to symbols used in this report

S/C: Testing was sub-contracted

Approved Signatories : 19/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

V 61 SIOTI 020 - 0 1/03/2023	44-12.xls	4 >	ign	6	Site	LT520 BRA	(
	. A150		1911		Client	SHE Transmi	S
-aple					Engineer	SSE Perth In	V
T toptu		Ş	Sample Identifi	cation			
	1212 - Moisture Content Table - A15044-12.xls	Exploratory Hole	Depth m	Sample Ref	e Sample Type	Lab Sample ID	
		BH13	2.00		D	2013027	
		BH13	2.70		D	2013025	
	2024 14:51:30						

Contract No 26555 CO WEST SUBSTATION ssion plc

			Eı	ngineer	SSE Perth In	veralmond HSE		
	(Sample Identifi	cation					
O SINGISIAI - ZI ZI	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description		Water Content %
	BH13	2.00		D	2013027	Brown clayey SAND and GRAVEL. Gravel is t	fine to coarse	22.5
	BH13	2.70		D	2013025	Brown clayey SAND and GRAVEL. Gravel is t	fine to coarse	13.9
2								
-1 +303/10								
. 7								
5	Notes	<u></u>						

62 Rochsolloch Road, Airdrie, ML6 9 Lab Project No A15044-12: 19/01/2 Notes

Checked & Originator Approved 19/01/2024 TP

Determination of the Water Content BS EN ISO 17892-1:2014

Sheet 1 of 1

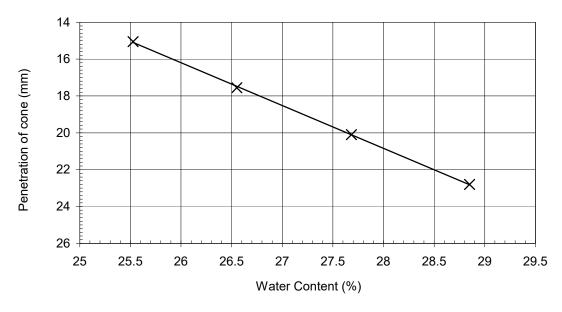
LT520 BRACO WEST SUBSTATION

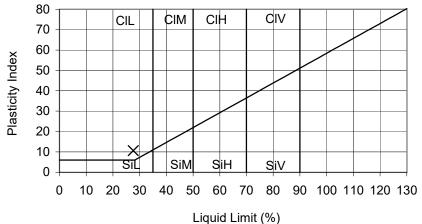
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No. 26555

D


Hole ID BH13 Sample Ref Depth (m) 2.00


Sample Type

Non Engineering Description: Brown clayey SAND and GRAVEL. Gravel is fine to coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve

measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

Equivalent water content of material passing 425µm sieve : 41.7 % Liquidity Index : 2.25

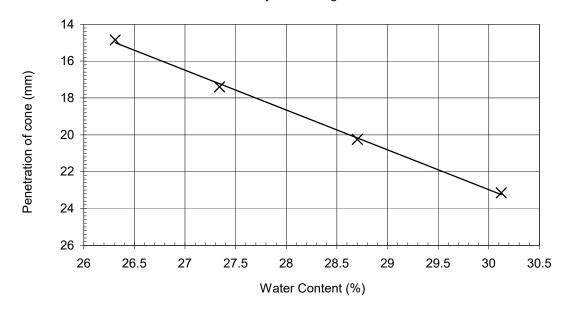
Originator	Checked & Approved
NW	CD

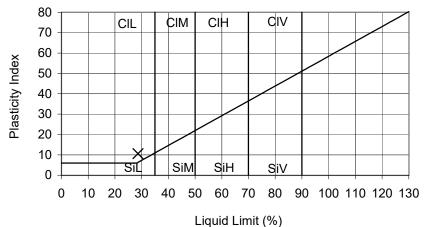
Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

LT520 BRACO WEST SUBSTATION

SHE Transmission plc


Engineer SSE Perth Inveralmond HSE


Contract No. 26555

Hole ID BH13
Sample Ref
Depth (m) 2.70
Sample Type D

Non Engineering Description: Brown clayey SAND and GRAVEL. Gravel is fine to coarse

Preparation : Sample oven dried, Percentage retained on 425µm sieve measured by wet sieving

Liquid Limit was determined by mixing using increasing water content and 30° cone **Results**:

As Received Water Content: (BS EN ISO 17892-1:2014)

Percentage retained on 425μm sieve:

Liquid Limit:

Plastic Limit:

18 %

Plasticity Index:

11

Equivalent water content of material passing 425µm sieve : 36.6 % Liquidity Index : 1.69

Originator	Checked & Approved
NW	CD

Liquid Limit (Four Point Cone Penetrometer Method) Plastic Limit, Plasticity Index & Liquidity Index

BS EN ISO 17892-12:2018 Clause 5.3 BS EN ISO 17892-12:2018 Clause 5.5

ite	LT520 BRACO WEST SUBSTATION
ito	LIDZO DIVACO WEGI GODGIATION

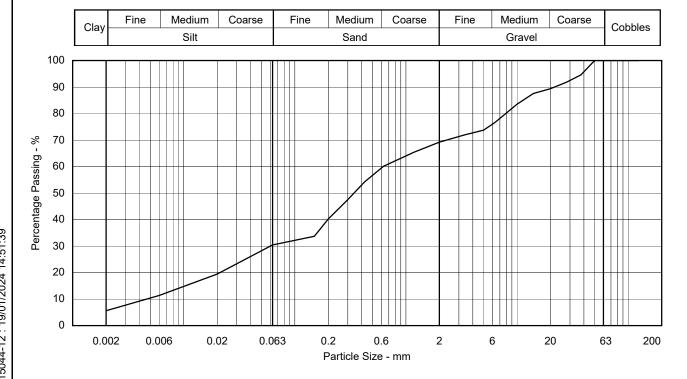
Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole Sample Ref

BH13


Depth (m) 2.00 Sample Type B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm 20 µm	100 100 100 100 100 95 92 89 88 84 77 74 72 69 65 60 54 48 40 34 30 19
2 µm	6

Non Engineering Description
Brown clayey SAND and GRAVEL. Gravel is fine to coarse

Sample Proportion	ons - %		
Cobbles	0.0		
Gravel	30.8		
Sand	39.5		
Silt	24.1		
Clay	5.5		
Particle Density - Assumed (Mg/m3)	2.65		
Particle Diameter - mm			
D100	50		
D60	0.62		
D10	0.0047		
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	131.9		

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

LT520 BRACO WEST SUBSTATION

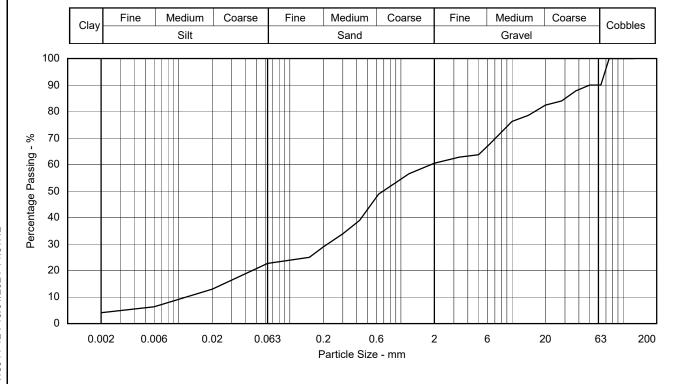
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole **BH13** Sample Ref

Jepui (III)	2.7
Sample Type	В

pın (m)	2.70
mple Type	В


Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 63 µm 63 µm	100 100 100 90 90 88 84 82 79 76 68 64 63 61 57 49 39 34 29 25 23 13 6
2 µm	7

Non Engineering Description					

Brown clayey SAND and GRAVEL with cobbles. Gravel is fine to coarse

Sample Proportions - %				
Cobbles	10.0			
Gravel	29.5			
Sand	38.5			
Silt	17.9			
Clay	4.0			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100	75			
D60	1.9			
D10	0.012			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	158.3			

Notes requirements Sedimentation sample not pre-treated

Originator	Checked & Approved	
RF	CD 19/01/2024	

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton Whistleberry Road

Hamilton ML6 OHP

For the attention of Richard Butler

> Report No: A15044-13

01 Issue No

LABORATORY TEST REPORT

Project Nar		LT520 BRACO WEST SUBSTATION					
Project Number Your Ref Purchase Order		A15044-13	Date samples received	13/12/2023			
		26555	Date written instructions received	15/12/2023			
		26555	Date testing commenced	09/01/2024			
	-	Please find enclosed the	results as summarised below				
Figure / Table	Test Quantity		Description	ISO 17025 Accredited			
1 Determination of Water Content							
	Yes						

Issued by: C Donnelly

Date of Issue: 19/01/2024

Key to symbols used in this report S/C : Testing was sub-contracted

Approved Signatories:

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory. The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849 airdrie@igne.com www.igne.com Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham and Aston Clinton

Version 026 - 01/09/2023 ent Table - A15044-13.xls	45	ian	S	ite	LT520 BRA	CO WEST SUBSTATION	Contract No
26 - 01/ A1504		⇔ igne			SHE Transmission plc SSE Perth Inveralmond HSE		_
sion 02 Fable -				ngineer			
Vers	(Sample Identification					
Version 026 - 01/09/2023 1212 - Moisture Content Table - A15044-13.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Descriptio	n
	BH19	0.50		D	2013170	Dark brown slightly silty sandy fine to mediu inclusions of fibrous peat	m gravel with
ie, ML6 9BG : 19/01/2024 15:59:10							

62 Rochsolloch Road, Airdri Lab Project No A15044-13:

Notes

Originator	Checked & Approved		
TP	<u>CD</u>		

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

26555

Water Content

568

1263 - PSD - BS EN 17892 BH19 00.50 B - A15044-13-2013169.xls : Sample ID 2013169

	15:59:13
, MLO 95G	15044-13:19/01/20241
, Alrarie	44-13:19
och Road	ect No A150
Rocusolloc	ab Project
70	La

⇔ igne

te	I T520	BRACO	WEST	SUBSTA	MOITA

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole Sample Ref

BH19 ef

Depth (m) 0.50 Sample Type B

	-
Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm	100 100 100 100 100 100 100 100 97 79 51 44 30 22 16 11 9 7

Non	Engine	ering	Descri	ption
-----	--------	-------	--------	-------

Dark brown slightly silty sandy fine to medium gravel with inclusions of fibrous peat

Sample Proportion	ons - %
Cobbles	0.0
Gravel	78.0
Sand	18.4
Silt & Clay	3.5
Particle Density - Assumed (Mg/m3)	2.65
Particle Diamete	r - mm
D100	20
D60	7.3
D10	0.52
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	14.0

Notes

		Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobbles
		Clay		Silt			Sand			Gravel		Copples
	100 _											
	90									 <i> </i> -		
	80											
% -	70									+ + N		
ing	60											
Percentage Passing										/		
Эе	50									/		
ntaç	40								$\perp \perp \prime$			
ice									/			
ď	30											
	20											
	10							1111				
	_o L											
	-	0.00	2 0.0	006 0	.02 0.0	063 0	0.2 0.	6	2	6 2	20 6	3 200
							Particle Size					

Originator	Checked & Approved
JM	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

> Report No: A15044-16

01 Issue No

LABORATORY TEST REPORT

Project Na		LT520 BRACO WEST SUBSTATION							
Project Nui	mber	A15044-16	Date samples received						
Your Ref		26555	Date written instructions received	14/12/2023					
Purchase (Order	26555	Date testing commenced	09/01/2024					
		Please find enclosed the r	results as summarised below						
Figure / Table	Test Quantity		Description	ISO 17025 Accredited					
	2	Determination of Water Content		Yes					
	2	Particle Size Distribution		Yes					
	1	Chemical Analysis		s/c - Yes					

Issued by: C Donnelly

Date of Issue: 19/01/2024

Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories:

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory. The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849 airdrie@igne.com www.igne.com Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham and Aston Clinton

LA CALLO CONTROL OF CALL					

⇔ igne		9
---------------	--	---

Client SHE Transmission plc

Engineer SSF Perth Inversalmond HSF

version u ent Table			E	ngineer	SSE Perth In	veralmond HSE	
ver: ntent ⁻	(Sample Identifi	cation				
version of 1212 - Moisture Content Table	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	BH06	0.60		D	2013093	Brown fibrous PEAT	489
	BH06	1.20		D	2013095	Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse	41.1
04:35							
oz Rochsolioch Road, Allahe, MLO 355 Lab Project No A15044-16 : 19/01/2024 15:04:35							
oz Rochsolloch Road, Alfahe, MLO 95-9 Lab Project No A15044-16 : 19/01/2024							
71504.	Notes						
roject No A	Originator	Checked Approve		D		tion of the Water Content S EN ISO 17892-1:2014	
Lab P	TP	19/01/202) 24				Sheet 1 of 1

62 Rochsolloch Road, Airdrie, ML6 9BG

Originator	Checked & Approved
TP	CD 19/01/2024

Contract No 26555

ite	LT520 BRACO WEST SUBSTATION

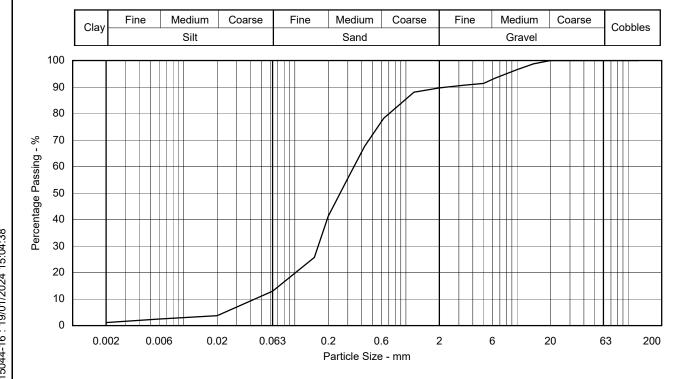
Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole BH06 Sample Ref

Depth (m) 0.60


Sample	Туре	В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 100 100 100 100 99 97 93 91 91 90 88 78 68 56 41 26 13 4 2

Non Engineering Description
Brown fibrous PEAT

Sample Proportions - %		
Cobbles	0.0	
Gravel	10.4	
Sand	77.4	
Silt	11.2	
Clay	1.1	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	20	
D60	0.34	
D10	0.044	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	7.7	

Notes	
Sedimentation sample not pre-treated	

Originator	Checked & Approved
JM	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

	ite	LT520 BRACO WEST SUBSTATION
--	-----	-----------------------------

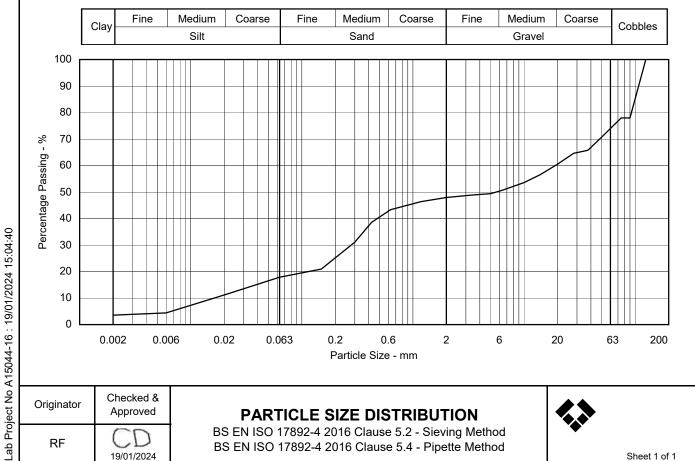
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

BH06 Hole Sample Ref

Depth (m) Sa

:pin (m)	1.20
mple Type	В


Particle Size	% Passing
125.0 mm	100
90.0 mm	78
75.0 mm	78
63.0 mm	75
50.0 mm	71
37.5 mm	66
28.0 mm	65
20.0 mm	60
14.0 mm	57
10.0 mm	54
6.30 mm	51
5.00 mm	49
3.35 mm	49
2.00 mm	48
1.18 mm	46
630 µm	43
425 µm	39
300 µm	31
200 μm	25
150 µm	21
63 µm	18
20 µm	11
6 μm	4
2 µm	3

Non Engineering Description

Brown silty SAND and GRAVEL with cobbles. Gravel is fine to coarse

Sample Proportions - %		
Cobbles	25.1	
Gravel	27.0	
Sand	30.6	
Silt	13.8	
Clay	3.5	
Particle Density - Assumed (Mg/m3)	2.65	
Particle Diameter - mm		
D100	125	
D60	19	
D10	0.016	
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	1187.5	

Notes Sedimentation sample not pre-treated

Originator	Checked & Approved
RF	CD 19/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Summary of Chemical Analysis Soil Samples

Our Ref 23-29977 Client Ref A15044-16 Contract Title

Lab No	2280105
.Sample ID	BH06
Depth	0.60
Other ID	2013093
Sample Type	SOIL
Sampling Date	n/s
Sampling Time	n/s

Test	Method	LOD	Units	
Inorganics	•			
рН	DETSC 2008#		рН	3.4
Sulphate Aqueous Extract as SO4 (2:1)	DFTSC 2076#	10	mg/l	150

Inappropriate

Information in Support of the Analytical Results

Our Ref 23-29977 Client Ref A15044-16 Contract

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2280105	BH06 0.60 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
70	Client:	SHE Transmission plc	
10	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX A File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:28:01 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-18

Issue No 01

LABORATORY TEST REPORT

Project Nar		LT520 BRACO WEST SUBSTAT		40/40/0000	
Project Nur	nber	A15044-18	Date samples received	13/12/2023	
Your Ref		26555	Date written instructions received	14/12/2023	
Purchase C	Order	26555	Date testing commenced	10/01/2024	
		Please find enclosed th	ne results as summarised below		
Figure / Table	Test Quantity		Description		
	1	Determination of Water Content		Yes	
	1	Bulk Density		Yes	
	1	Particle Size Distribution		Yes	

Issued by: C Donnelly Date of Issue: 22/01/2024 Key to symbols used in this report

S/C: Testing was sub-contracted

(,)

Approved Signatories : 22/01/202

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

1212 - Moisture Content Table - A15044-18.xls		ign	•
ontent Ta		Sample Identifi	cat
1212 - Moisture G	Exploratory Hole	Depth m	S
17:18:57	BH11 NEW	0.50	

ane	Site	LT520 BRACO WEST SUBSTATION	Contract No	26555
3	Client	SHE Transmission plc		
	Engineer	SSE Perth Inveralmond HSE		

Version 02 tent Table			Eı	ngineer	SSE Perth In	veralmond HSE	
Ver	S	Sample Identifi	cation				
Version 03 1212 - Moisture Content Table	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Water Content %
	BH11 NEW	0.50		D	2013108	Brown silty SAND and GRAVEL with organic material. Gravel is fine to coarse	36.4
G 4 17:18:57							
62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-18 : 22/01/2024 17:18:57	Notes						
62 Rochsolloch R. Lab Project No A1	Originator	Checked Approve	d)	D	etermina BS	Sheet 1 of 1	

Originator	Checked & Approved
TP	<u>CD</u> 22/01/2024

Ie - A I 5044- I 8.XIS		ig	ne
------------------------	--	----	----

Client			Client	SHE Transm	ission plc			
	Engineer		SSE Perth In	veralmond HSE				
	Sample Identifi	cation						
Hole ID	Depth	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Bulk Density	Dry Density	Water Content
	m					Mg/m³	Mg/m³	%
BH11 NEW	0.50		В	2013107	Brown silty SAND and GRAVEL with organic material. Gravel is fine to coarse	2.09	1.53	36.4
Notes		-	-	-				

Lab Project No A15044-18 : 22/01/2024 17:18:59

62 Rochsolloch Road, Airdrie, ML6 9BG

Originator	Checked & Approved
TP	<u>CD</u>

BULK DENSITY

BS EN ISO 17892-2 Determination of bulk density Linear measurement method

Contract No

26555

1263 - PSD - BS EN 17892 BH11 NEW 00.50 B - A15044-18-2013107.xls : Sample ID 201310

ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

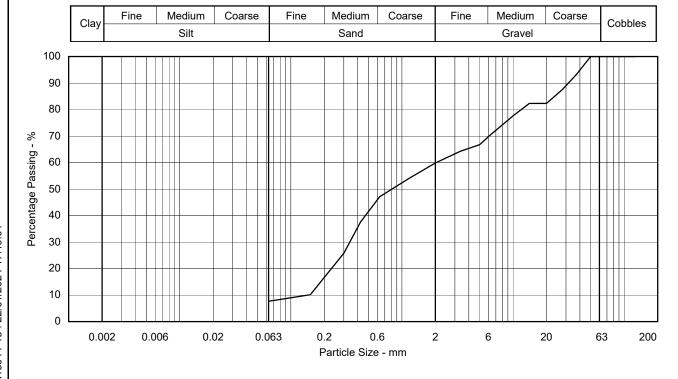
Contract No 26555

Hole Sample Ref BH11 NEW

Sample Ref Depth (m) Sample Type

0.50 B

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm	100 100 100 100 100 93 88 82 78 70 67 64 60 54 47 38 26 17 10 8
σο μπι	


Non Engineering Description

Brown silty SAND and GRAVEL with organic material.

Gravel is fine to coarse

Sample Proportions - %				
Cobbles	0.0			
Gravel	40.2			
Sand	52.2			
Silt & Clay	7.6			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diamete	r - mm			
D100	50			
D60	2.0			
D10	0.14			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	14.3			

Notes

Originator Checked & Approved

SM CD
22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method

62 Rochsolloch Road, Airdrie, ML6 9BG Lab Project No A15044-18 : 22/01/2024 17:19:01

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-19

Issue No 01

LABORATORY TEST REPORT

Project Name LT520 BRACO WEST SUBSTATION					
Project Nu	mber	A15044-19	Date samples received	13/12/2023	
Your Ref		26555	Date written instructions received	14/12/2023	
Purchase (Order	26555	Date testing commenced	10/01/2024	
		Please find enclosed	the results as summarised below		
Figure / Table	Test Quantity	Description ISO 17 Accred			
	1	Determination of Water Content Yes			
	1	Bulk Density Yes			
	1	Particle Size Distribution	Yes		

Issued by: C Donnelly Date of Issue: 22/01/2024 Key to symbols used in this report

S/C: Testing was sub-contracted

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

Approved Signatories:

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

14-19.xls	4 5	ian	Si	te	LT520 BRA	CO WEST SUBSTATION	Contract No
ent Table - A15044-19.xls	Site Client Engineer		SHE Transmission plc SSE Perth Inveralmond HSE				
1212 - Moisture Content Table - A15044-19.xls	Exploratory	Sample Identifi Depth	Sample	Sample	Lab Sample	Non Enginering Descriptio	n
121	Hole	m	Ref	Type	ID		
	BH12 NEW	1.00		D	2013110	Brown silty SAND and GRAVEL. Gravel is f	ine to coarse
: 22/01/2024 17:23:43							
: 22/01/2024							

Notes

Originator	Checked & Approved
TP	<u>CD</u> 22/01/2024

Determination of the Water ContentBS EN ISO 17892-1:2014

Sheet 1 of 1

26555

Water Content

10.1

	''		Client	SHE Transm	ission plc			
		E	Engineer	SSE Perth In	veralmond HSE			
	Sample Identifi	cation	_					
Hole ID	Depth	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Bulk Density	Dry Density	Water Content
	m					Mg/m³	Mg/m³	%
BH12 NEW	0.70		В	2013109	Brown silty SAND and GRAVEL. Gravel is fine to coarse	2.11	1.92	10.1
Notes	-	-	-	-	·			

Lab Project No A15044-19: 22/01/2024 17:23:46

62 Rochsolloch Road, Airdrie, ML6 9BG

Originator	Checked & Approved
TP	<u>CD</u>

BULK DENSITY

BS EN ISO 17892-2 Determination of bulk density Linear measurement method

Contract No

26555

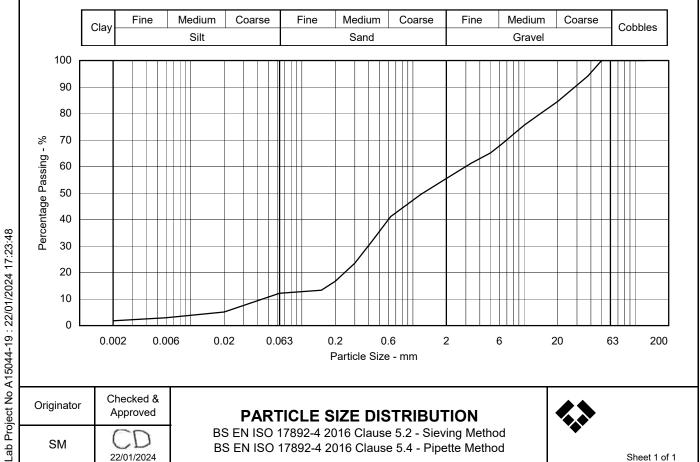
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

Hole Sample Ref

BH12 NEW

Depth (m) Sample Type


0.70 В

Particle Size	% Passing
125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 63 µm 20 µm 63 µm 20 µm	100 100 100 100 100 94 90 84 80 76 68 65 61 55 49 41 32 23 17 13 12 5
2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm 63 µm 20 µm 6 µm	55 49 41 32 23 17 13 12 5

Non Engineering Description		
Brown silty SAND and GRAVEL. Gravel is fine to coarse		

Sample Proportions - %				
Cobbles	0.0			
Gravel	44.5			
Sand	43.8			
Silt	9.9			
Clay	1.7			
Particle Density - Assumed (Mg/m3)	2.65			
Particle Diameter - mm				
D100	50			
D60	3.0			
D10	0.045			
Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	66.7			

Notes
Sedimentation sample not pre-treated

Originator	Checked & Approved
SM	CD 22/01/2024

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method BS EN ISO 17892-4 2016 Clause 5.4 - Pipette Method

Raeburn (Trading as igne) Hamilton

Whistleberry Road Hamilton ML6 OHP

For the attention of Richard Butler

Report No: A15044-R1

Issue No 01

LABORATORY TEST REPORT

Project Nar			LT520 BRACO WEST SUBSTATION						
Project Nur	mber	A15044-R1	Date samples received	09/01/2024					
Your Ref		26555	Date written instructions received	14/12/2023					
Purchase 0	Order	26555	Date testing commenced	10/01/2024					
		Please find enclose	ed the results as summarised below						
Figure / Table	Test Quantity		Description	ISO 17025 Accredited					
	7	Water Content of Rock	Yes						
	7	Bulk Density		Yes					
	7	Resistance to Fragmentation	on by Los Angeles Method	Yes					
	340	Point Load Index		Yes					
	37	Uniaxial Compressive Stre	ngth	Yes					
	37	Photographs of Post-UCS	Photographs of Post-UCS Test Specimens						

Remarks: Interim results. Chemistry to follow

Issued by : C Donnelly Date of Issue : 25/01/2024 Key to symbols used in this report

S/C : Testing was sub-contracted

Approved Signatories : 25/01/20

C Donnelly (Laboratory Coordinator), C Loudon (Quality Manager), I McMillan (Site Supervisor), S Gilchrist (Quality Supervisor), S McDonagh (Laboratory Supervisor)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date.

All results contained in this report are provisional unless signed by an approved signatory

This report should not be reproduced except in full without the written approval of the laboratory.

Under multisite accreditation, testing in this report may have been performed at another Terra Tek Ltd (Trading as igne) laboratory.

The enclosed results remain the property of Terra Tek Limited (Trading as igne) and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions

Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation.

Feedback on the this report may be left via our website www.igne.com/contact

62 Rochsolloch Road, Airdrie, ML6 9BG
Tel: +44 (0)1236 747 949 Fax: +44 (0)1236 747 849
airdrie@igne.com
www.igne.com
Terra Tek Ltd is registered in Scotland No. 121594
Offices in Airdrie, Birmingham and Aston Clinton

Sample Identification

Site	LT520 BRACO	WEST SUBSTATION	NC

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE Contract No 26555

		ĺ	
	N	D-4- OI-	

Location / Depth Sample Sample Origin m Ref Type								i
Location / Origin	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Engineering Sample Description	Date Sample Received	Moisture Content	Comments
							%	
BH02	3.90-4.00		С	2013883	Reddish Brown Rock Core	08.01.24	16.0	~
вноз	2.70-5.10		С	2013126	Reddish Brown Rock Core	08.01.24	6.7	~
BH04	4.20-5.70		С	2013131	Reddish Brown Rock Core	08.01.24	5.7	~
BH05	2.70-5.40		С	2013136	Reddish Brown Rock Core	08.01.24	6.3	~
BH09	3.73-3.84		С	2013708	Reddish Brown Rock Core	08.01.24	3.4	~
BH14	4.20-5.70		С	2013160	Reddish Brown Rock Core	08.01.24	7.1	~
BH15	5.50-7.00		С	2013163	Reddish Brown Rock Core	08.01.24	7.8	~
		I .		<u> </u>		UKAS accre	dited test Yes	
Notes O	pinions and inte	erpretatior	ns are out	side the so	cope of UKAS accreditation.	•		
	1	1					1	
Originator	Approve	d			STIMMADY OF MOISTURE O	ONTENT		
				•				,
DW	25/01/202	24						Sheet 1 of 1
	BH02 BH03 BH05 BH09 BH14 BH15	Location / Origin Depth on M BH02 3.90-4.00 BH03 2.70-5.10 BH04 4.20-5.70 BH09 3.73-3.84 BH14 4.20-5.70 BH15 5.50-7.00 Notes Opinions and interest Originator Approve DW C.D.	Location / Origin Depth m Sample Ref BH02 3.90-4.00 Image: Control of the Ref BH03 2.70-5.10 Image: Control of Ref BH04 4.20-5.70 Image: Control of Ref BH09 3.73-3.84 Image: Control of Ref BH15 5.50-7.00 Image: Control of Ref Notes Opinions and interpretation Originator Approved	Location / Origin Depth m Sample Ref Sample Type BH02 3.90-4.00 C BH03 2.70-5.10 C BH04 4.20-5.70 C BH09 3.73-3.84 C BH14 4.20-5.70 C BH15 5.50-7.00 C Notes Opinions and interpretations are outs Originator Approved DW CD	Location / Origin Depth m Sample Ref Sample Type Lab Sample ID BH02 3.90-4.00 C 2013883 BH03 2.70-5.10 C 2013126 BH04 4.20-5.70 C 2013131 BH09 3.73-3.84 C 2013708 BH14 4.20-5.70 C 2013160 BH15 5.50-7.00 C 2013163 Notes Opinions and interpretations are outside the score of the second of the score of t	Location / Origin Depth m Sample Ref Sample Type Lab Sample ID Non Engineering Sample Description BH02 3.90-4.00 C 2013883 Reddish Brown Rock Core BH03 2.70-5.10 C 2013126 Reddish Brown Rock Core BH04 4.20-5.70 C 2013131 Reddish Brown Rock Core BH09 3.73-3.84 C 2013708 Reddish Brown Rock Core BH14 4.20-5.70 C 2013160 Reddish Brown Rock Core BH15 5.50-7.00 C 2013163 Reddish Brown Rock Core Notes Opinions and interpretations are outside the scope of UKAS accreditation. Originator Approved SUMMARY OF MOISTURE C BS1377 : 1990 : Part :	Depth Sample Sample Color Depth Mere Sample Received Description D	Depth Chiginal Depth Chiginator Depth C

Originator	Approved
DW	CD 25/01/2024

62 Rochsolloch Road, Airdrie, ML6 9BG

SHE Transmission plc

	'''	С	lient	SHE Transmi	ission plc			
Engineer				SSE Perth In	veralmond HSE			
Hole ID	Sample Identifi Depth	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description	Bulk Density	Dry Density	Water Content
	m					Mg/m³	Mg/m³	%
BH03	2.70-5.10		С	2013126		2.52	2.48	1.5
BH04	4.67-4.75		С	2013707		2.46	2.42	1.6
BH05	2.70-5.40		С	2013136		2.42	2.37	1.9
BH09	3.73-3.84		С	2013708		2.4	2.38	0.9
BH14	4.20-5.70		С	2013160		2.17	2.08	4.1
BH15	5.50-7.00		С	2013163		2.29	2.25	1.7
Notes								

Originator	Checked & Approved		
DW	<u>CD</u>		

Lab Project No A15044-R1: 25/01/2024 16:37:12

62 Rochsolloch Road, Airdrie, ML6 9BG

BULK DENSITY

BS EN ISO 17892-2 Determination of bulk density Linear measurement method

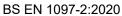
Contract No

26555

🥸 iane

LT520 BRACO WEST SUBSTATION

	'9''		lient	SHE Trai	nsmission plc				
Engineer			SSE Perf	th Inveralmond H	ISE				
Hole ID	Sample Identifi Depth m	Sample Ref	Sample Type	Lab Sample ID	10-14mm Size Fraction Passing 11.2mm Sieve	Particle Density (8-12.5 mm)	Los Angeles Coefficient	Impact Value	Test Date
					%	Mg/m³	LA	SZ	
BH02	3.30-4.80		С	2013123	35	~	30	~	~
ВН03	2.70-5.10		С	2013126	35	~	25	~	~
BH04	4.20-5.70		С	2013131	35	~	23	~	~
BH05	2.70-5.40		С	2013136	35	~	22	~	~
ВН09	2.90-5.04		С	2013149	35	~	28	~	~
BH14	4.20-5.70		С	2013160	35	~	23	~	~
BH15	5.50-7.00		С	2013163	35	~	24	~	~
					UKAS	accredited test	Yes	No	


Notes Opinions and interpretations are outside the scope of UKAS accreditation.

Originator	Approved
DW	<u>CD</u> 25/01/2024

Lab Project No A15044-R1 : 25/01/2024 16:37:14

62 Rochsolloch Road, Airdrie, ML6 9BG

RESISTANCE TO FRAGMENTATION BY LOS ANGELES AND IMPACT TEST METHODS

Contract No

26555

•		ig	ne
---	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

- A1504	Sample Identification								1
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH01	4.20-4.40	Axial	101.0	70.0	0.1	0.01	0.01	
	BH01	4.20-4.40	Axial	101.0	60.0	0.4	0.05	0.07	
	BH01	4.20-4.40	Axial	101.0	45.0	0.2	0.03	0.04	
	BH01	4.20-4.40	Axial	101.0	65.0	0.2	0.02	0.03	
	BH01	4.20-4.40	Axial	101.0	29.0	0.1	0.03	0.03	
	BH01	4.20-4.40	Diametral	175.0	101.0	0.4	0.04	0.05	
	BH01	4.20-4.40	Diametral	120.0	101.0	0.3	0.03	0.04	
_	BH01	4.20-4.40	Diametral	75.0	101.0	0.2	0.02	0.03	
_ab Prc	BH01 BH01	4.20-4.40	Diametral	65.0	101.0	0.3	0.03	0.04	
ject No	BH01	4.20-4.40	Diametral	40.0	101.0	0.4	0.04	0.05	
ΑO	Notes	1 Dimonsion	A= Minimum Width for Lump	Toete	2 Moisture Content o	of comple , coturated			_

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

⇔ igne

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

xploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH01	6.30-6.60	Axial	100.0	49.0	3.6	0.58	0.71	
BH01	6.30-6.60	Axial	101.0	65.0	11.1	1.33	1.74	
BH01	6.30-6.60	Axial	100.0	86.0	13.3	1.21	1.69	
BH01	6.30-6.60	Axial	100.0	64.0	11.7	1.44	1.87	
BH01	6.30-6.60	Axial	100.0	54.0	5.4	0.79	0.99	
BH01	6.30-6.60	Diametral	310.0	100.0	7.3	0.73	1.00	
BH01	6.30-6.60	Diametral	144.0	101.0	6.4	0.63	0.86	
BH01	6.30-6.60	Diametral	199.0	100.0	2.9	0.29	0.40	
BH01	6.30-6.60	Diametral	117.0	100.0	4.8	0.48	0.66	
BH01	6.30-6.60	Diametral	96.0	101.0	4.0	0.39	0.54	
	BH01 BH01 BH01 BH01 BH01 BH01 BH01 BH01	Hole m BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60 BH01 6.30-6.60	Hole m BH01 6.30-6.60 Axial BH01 6.30-6.60 Axial BH01 6.30-6.60 Axial BH01 6.30-6.60 Axial BH01 6.30-6.60 Diametral BH01 6.30-6.60 Diametral BH01 6.30-6.60 Diametral BH01 6.30-6.60 Diametral	March Depth Depth March Marc	Mark Mark	Depth Dept	Depth Depth Depth Drientation of Fest A B Drientation of Fest Drie	Popular Popu

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

⇔ igne)
---------------	---

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

Sample Id	entification	·						•
Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH02	3.20-3.60	Lump	91.0	46.0	0.9	0.17	0.20	
BH02	3.20-3.60	Lump	93.0	58.0	2.0	0.29	0.37	
BH02	3.20-3.60	Lump	71.0	50.0	2.2	0.49	0.56	
BH02	3.20-3.60	Lump	72.0	46.0	3.2	0.76	0.85	
BH02	3.20-3.60	Lump	63.0	39.0	1.2	0.38	0.40	
BH02	3.20-3.60	Lump	76.0	33.0	1.8	0.56	0.60	
BH02	3.20-3.60	Lump	69.0	25.0	1.9	0.87	0.84	
BH02	3.20-3.60	Lump	47.0	30.0	0.4	0.22	0.21	
BH02	3.20-3.60	Lump	59.0	29.0	0.7	0.32	0.31	
BH02	3.20-3.60	Lump	52.0	32.0	1.1	0.52	0.50	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

		ig	ne
--	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Sample Id	lentification							
Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH02	5.40-5.60	Lump	94.0	52.0	4.4	0.71	0.87	
BH02	5.40-5.60	Lump	73.0	35.0	1.1	0.34	0.36	
BH02	5.40-5.60	Lump	92.0	45.0	1.0	0.19	0.22	
BH02	5.40-5.60	Lump	88.0	20.0	0.7	0.31	0.30	
BH02	5.40-5.60	Lump	80.0	34.0	1.1	0.32	0.34	
BH02	5.40-5.60	Lump	79.0	48.0	1.8	0.37	0.43	
BH02	5.40-5.60	Lump	97.0	31.0	0.9	0.24	0.26	
BH02	5.40-5.60	Lump	85.0	54.0	1.5	0.26	0.31	
BH02	5.40-5.60	Lump	47.0	25.0	1.8	1.20	1.07	
BH02	5.40-5.60	Lump	56.0	29.0	1.4	0.68	0.65	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification							_
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH02	6.00-6.50	Lump	86.0	65.0	5.1	0.72	0.91	
	BH02	6.00-6.50	Lump	90.0	52.0	2.1	0.35	0.43	
	BH02	6.00-6.50	Lump	89.0	48.0	3.9	0.72	0.85	
	BH02	6.00-6.50	Lump	68.0	35.0	0.9	0.30	0.31	
	BH02	6.00-6.50	Lump	69.0	38.0	4.1	1.23	1.31	
	BH02	6.00-6.50	Lump	58.0	41.0	2.1	0.69	0.72	
	BH02	6.00-6.50	Lump	74.0	62.0	2.9	0.50	0.60	
_	BH02	6.00-6.50	Lump	88.0	32.0	0.7	0.20	0.21	
_ab Pro	BH02	6.00-6.50	Lump	56.0	21.0	1.5	1.00	0.89	
ject No	BH02 BH02	6.00-6.50	Lump	78.0	39.0	2.3	0.59	0.66	
7 0	NI 1	4 Dimension	Λ = Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

	iane	Site
•	13.16	Client

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE ~ Indicates test not carried out

Contract No 26555

A1504	Sample Identification								1
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH03	3.10-3.20	Axial	100.0	32.0	1.9	0.47	0.52	
	BH03	3.10-3.20	Axial	99.0	16.0	0.9	0.45	0.43	
	BH03	3.10-3.20	Axial	99.0	36.0	2.4	0.53	0.60	
	BH03	3.10-3.20	Axial	100.0	21.0	2.1	0.79	0.80	
	BH03	3.10-3.20	Axial	100.0	29.0	1.5	0.41	0.44	
	BH03	3.10-3.20	Diametral	70.0	100.0	0.4	0.04	0.05	
	BH03	3.10-3.20	Diametral	120.0	100.0	1.2	0.12	0.16	
	BH03	3.10-3.20	Diametral	136.0	100.0	0.7	0.07	0.10	
_ab Prc	BH03 BH03	3.10-3.20	Diametral	89.0	99.0	1.5	0.15	0.21	
ject No	BH03	3.10-3.20	Diametral	98.0	100.0	0.6	0.06	0.08	
δ	Notos	1 Dimonsion	A= Minimum Width for Lump	Tests	2 Moisture Content (of cample , caturated			

1. Dimension A= Minimum Width for Lump Tests Notes

Dimension A=Length for Diametral Tests Dimension A=Diameter for Axial Tests Dimension B=Platen Separation

2. Moisture Content of sample: saturated

- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

20 001		iane	Site
Ĭ	•	13.16	Client

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

1504	Sample Identification								
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH03	5.42-5.92	Axial	101.0	79.0	14.8	1.46	2.00	
	BH03	5.42-5.92	Axial	101.0	56.0	12.5	1.74	2.20	
	вноз	5.42-5.92	Axial	101.0	66.0	11.6	1.37	1.80	
	ВН03	5.42-5.92	Axial	100.0	45.0	12.7	2.22	2.67	
	ВН03	5.42-5.92	Axial	101.0	33.0	13.0	3.06	3.45	
	ВН03	5.42-5.92	Diametral	157.0	101.0	13.8	1.35	1.86	
	ВН03	5.42-5.92	Diametral	73.0	101.0	9.8	0.96	1.32	
	ВН03	5.42-5.92	Diametral	83.0	101.0	8.5	0.83	1.14	
Lab Project No	ВН03	5.42-5.92	Diametral	112.0	101.0	10.1	0.99	1.36	
ect No	BH03	5.42-5.92	Diametral	109.0	101.0	10.9	1.07	1.47	
D	Natas	1 Dimonoion	A - Minimum Width for Lump	T4-	2 Maisture Centent				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample : saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

	iane	Site
	13.16	Client

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

Sample	Identification							
Explorato Hole	ry Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH04	4.80-5.00	Axial	100.0	68.0	5.9	0.68	0.90	
BH04	4.80-5.00	Axial	100.0	35.0	17.4	3.90	4.45	
BH04	4.80-5.00	Axial	100.0	39.0	10.1	2.03	2.37	
BH04	4.80-5.00	Axial	100.0	45.0	16.3	2.84	3.43	
BH04	4.80-5.00	Axial	100.0	40.0	14.5	2.85	3.34	
BH04	4.80-5.00	Diametral	79.0	100.0	14.1	1.41	1.93	
BH04	4.80-5.00	Diametral	88.0	101.0	13.5	1.32	1.82	
BH04	4.80-5.00	Diametral	70.0	100.0	14.2	1.42	1.94	
BH04	4.80-5.00	Diametral	102.0	100.0	12.1	1.21	1.65	
BH04	4.80-5.00	Diametral	123.0	100.0	13.6	1.36	1.86	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

igne	
------	--

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Identification								•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH05	2.83-3.10	Axial	100.0	53.0	2.8	0.41	0.52	
	BH05	2.83-3.10	Axial	100.0	55.0	7.3	1.04	1.31	
	BH05	2.83-3.10	Axial	100.0	64.0	18.1	2.22	2.90	
	BH05	2.83-3.10	Axial	100.0	50.0	19.7	3.09	3.82	
	BH05	2.83-3.10	Axial	100.0	42.0	15.9	2.97	3.53	
	BH05	2.83-3.10	Diametral	133.0	100.0	15.8	1.58	2.16	
	BH05	2.83-3.10	Diametral	109.0	100.0	1.1	0.11	0.15	
_	BH05	2.83-3.10	Diametral	99.0	100.0	10.2	1.02	1.39	
_ab Pro	BH05	2.83-3.10	Diametral	56.0	100.0	5.6	0.56	0.76	
ject No	BH05 BH05	2.83-3.10	Diametral	89.0	100.0	3.6	0.36	0.49	
7 6	NI 1	1 Dimensian	A = Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

	iane	Site
•	13.16	Client

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

Comments

Notes

1. Dimension A= Minimum Width for Lump Tests
Dimension A=Length for Diametral Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

ॐ igne			ig	ne
---------------	--	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

			_						
A1504	Sample Ide	entification							
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH06	3.05-3.30	Axial	102.0	46.0	0.7	0.12	0.14	
	вно6	3.05-3.30	Axial	101.0	36.0	0.3	0.06	0.07	
	вно6	3.05-3.30	Axial	102.0	40.0	0.1	0.02	0.02	
	ВН06	3.05-3.30	Axial	102.0	56.0	0.1	0.01	0.02	
	ВН06	3.05-3.30	Axial	102.0	32.0	0.4	0.10	0.11	
	вно6	3.05-3.30	Diametral	101.0	102.0	0.6	0.06	0.08	
	ВН06	3.05-3.30	Diametral	126.0	102.0	0.5	0.05	0.07	
_	ВН06	3.05-3.30	Diametral	89.0	102.0	0.2	0.02	0.03	
ab Proj	ВН06	3.05-3.30	Diametral	81.0	102.0	0.2	0.02	0.03	
Lab Project No	ВН06	3.05-3.30	Diametral	56.0	102.0	0.6	0.06	0.08	
\rightarrow	Notos	1 Dimonoion	A - Minimum Width for Lump	T4-	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

02.00	± _		
2		пе	Ì
	 13		
)			Ì

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504.	Sample Ide	entification							1
	oloratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH06	6.05-6.30	Axial	102.0	61.0	12.7	1.60	2.08	
	BH06	6.05-6.30	Axial	102.0	54.0	5.6	0.80	1.01	
	ВН06	6.05-6.30	Axial	102.0	55.0	11.8	1.65	2.09	
	ВН06	6.05-6.30	Axial	102.0	35.0	10.5	2.31	2.64	
	ВН06	6.05-6.30	Axial	102.0	46.0	9.6	1.61	1.95	
	ВН06	6.05-6.30	Diametral	212.0	102.0	4.3	0.41	0.57	
	ВН06	6.05-6.30	Diametral	130.0	103.0	4.0	0.38	0.52	
_	ВН06	6.05-6.30	Diametral	95.0	102.0	12.2	1.17	1.62	
ab Pro	ВН06	6.05-6.30	Diametral	56.0	103.0	5.9	0.56	0.77	
ab Project No A	ВН06	6.05-6.30	Diametral	66.0	102.0	8.6	0.83	1.14	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample : saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

	ign	2
)		

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification							•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH07	3.70-4.00	Axial	99.0	36.0	3.4	0.75	0.86	
	BH07	3.70-4.00	Axial	99.0	41.0	1.3	0.25	0.30	
	BH07	3.70-4.00	Axial	99.0	45.0	5.7	1.00	1.21	
	BH07	3.70-4.00	Axial	99.0	61.0	8.6	1.12	1.44	
	BH07	3.70-4.00	Axial	99.0	54.0	6.2	0.91	1.14	
	BH07	3.70-4.00	Diametral	111.0	99.0	7.7	0.79	1.07	
	BH07	3.70-4.00	Diametral	114.0	99.0	10.9	1.11	1.51	
_	BH07	3.70-4.00	Diametral	107.0	100.0	9.2	0.92	1.26	
_ab Pro	BH07	3.70-4.00	Diametral	85.0	100.0	8.4	0.84	1.15	
ject No	BH07 BH07	3.70-4.00	Diametral	124.0	99.0	8.0	0.82	1.11	
7	NI 1	1 Dimensian	A - Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

ent SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504.	Sample Ide	entification							
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH07	5.10-5.50	Axial	102.0	82.0	15.7	1.47	2.04	
	BH07	5.10-5.50	Axial	102.0	74.0	17.0	1.77	2.39	
	BH07	5.10-5.50	Axial	102.0	60.0	9.4	1.21	1.56	
	BH07	5.10-5.50	Axial	102.0	45.0	5.8	0.99	1.20	
	BH07	5.10-5.50	Axial	102.0	50.0	8.9	1.37	1.70	
	BH07	5.10-5.50	Diametral	117.0	102.0	8.2	0.79	1.09	
	BH07	5.10-5.50	Diametral	120.0	102.0	11.7	1.12	1.55	
_	BH07	5.10-5.50	Diametral	107.0	103.0	10.5	0.99	1.37	
ab Pro	BH07	5.10-5.50	Diametral	85.0	103.0	11.0	1.04	1.44	
iect No	BH07 BH07	5.10-5.50	Diametral	98.0	103.0	13.5	1.27	1.76	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved	
DW	<u>CD</u> 25/01/2024	

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification	•						
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH08	4.32-4.57	Lump	103.0	60.0	1.0	0.13	0.16	
	BH08	4.32-4.57	Lump	100.0	30.0	2.4	0.63	0.69	
	BH08	4.32-4.57	Lump	96.0	45.0	1.4	0.25	0.30	
	BH08	4.32-4.57	Lump	92.0	47.0	1.5	0.27	0.33	
	BH08	4.32-4.57	Lump	100.0	43.0	1.9	0.35	0.41	
	BH08	4.32-4.57	Lump	85.0	40.0	0.3	0.07	0.08	
	BH08	4.32-4.57	Lump	95.0	42.0	1.1	0.22	0.25	
٦	BH08	4.32-4.57	Lump	88.0	56.0	1.7	0.27	0.33	
.ab Pro	BH08	4.32-4.57	Lump	98.0	42.0	1.4	0.27	0.32	
Lab Project No	BH08	4.32-4.57	Lump	70.0	36.0	1.3	0.41	0.43	
7	Motos	1 Dimensian	A - Minimum Width for Lump	T4-	2 Maiatura Contant	• • • • •			

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Identification		-						1
A15044-R1 01.xls	kploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH08	4.72-4.90	Axial	100.0	48.0	17.7	2.90	3.54	
	BH08	4.72-4.90	Axial	100.0	34.0	14.3	3.30	3.74	
	BH08	4.72-4.90	Axial	100.0	46.0	20.7	3.53	4.28	
	BH08	4.72-4.90	Axial	100.0	35.0	16.3	3.66	4.17	
	BH08	4.72-4.90	Axial	100.0	46.0	17.4	2.97	3.60	
	BH08	4.72-4.90	Diametral	143.0	100.0	18.3	1.83	2.50	
	BH08	4.72-4.90	Diametral	78.0	100.0	20.7	2.07	2.83	
_	BH08	4.72-4.90	Diametral	68.0	100.0	10.6	1.06	1.45	
ah Pro	BH08	4.72-4.90	Diametral	103.0	100.0	15.5	1.55	2.12	
Lab Project No A	BH08	4.72-4.90	Diametral	87.0	100.0	16.9	1.69	2.31	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u>

		igi	ne
--	--	-----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH09	3.84-4.05	Axial	100.0	62.0	10.5	1.33	1.72	
	BH09	3.84-4.05	Axial	100.0	44.0	13.2	2.36	2.83	
	BH09	3.84-4.05	Axial	100.0	24.0	6.2	2.03	2.12	
	BH09	3.84-4.05	Axial	100.0	40.0	13.6	2.67	3.13	
	BH09	3.84-4.05	Axial	100.0	48.0	18.1	2.96	3.62	
	BH09	3.84-4.05	Diametral	188.0	100.0	15.2	1.52	2.08	
	BH09	3.84-4.05	Diametral	91.0	101.0	11.6	1.14	1.56	
	BH09	3.84-4.05	Diametral	92.0	100.0	6.4	0.64	0.87	
ab Pro	BH09 BH09	3.84-4.05	Diametral	125.0	100.0	11.2	1.12	1.53	
piect No	ВН09	3.84-4.05	Diametral	82.0	101.0	9.5	0.93	1.28	
ا A کا	Notos		A= Minimum Width for Lumn		2 Moisture Content (

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

⇔ ign	2	
--------------	---	--

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification							•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH10	1.85-2.10	Lump	64.0	21.0	0.7	0.41	0.38	
	BH10	1.85-2.10	Lump	67.0	23.0	0.6	0.31	0.29	
	BH10	1.85-2.10	Lump	99.0	20.0	0.9	0.36	0.36	
	BH10	1.85-2.10	Lump	71.0	44.0	0.2	0.05	0.06	
	BH10	1.85-2.10	Lump	62.0	39.0	0.7	0.23	0.24	
	BH10	1.85-2.10	Lump	66.0	35.0	1.0	0.34	0.35	
	BH10	1.85-2.10	Lump	82.0	19.0	0.4	0.20	0.19	
_	BH10	1.85-2.10	Lump	84.0	33.0	0.8	0.23	0.24	
_ab Pro	BH10	1.85-2.10	Lump	55.0	29.0	0.5	0.25	0.23	
ject No	BH10 BH10	1.85-2.10	Lump	96.0	36.0	0.8	0.18	0.21	
7 0	NI 1	1 Dimension	A - Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	25/01/2024

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH10	2.80-3.10	Axial	101.0	25.0	0.8	0.25	0.26	
	BH10	2.80-3.10	Axial	101.0	40.0	0.2	0.04	0.05	
	BH10	2.80-3.10	Axial	101.0	21.0	0.4	0.15	0.15	
	BH10	2.80-3.10	Axial	101.0	26.0	0.2	0.06	0.06	
	BH10	2.80-3.10	Axial	101.0	35.0	0.3	0.07	0.08	
	BH10	2.80-3.10	Diametral	136.0	101.0	0.4	0.04	0.05	
	BH10	2.80-3.10	Diametral	89.0	102.0	0.2	0.02	0.03	
_	BH10	2.80-3.10	Diametral	95.0	102.0	0.3	0.03	0.04	
.ab Pro	BH10	2.80-3.10	Diametral	56.0	101.0	0.2	0.02	0.03	
Lab Project No /	BH10	2.80-3.10	Diametral	42.0	101.0	0.1	0.01	0.01	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification							•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH10	3.10-3.50	Axial	99.0	27.0	6.7	1.97	2.11	
	BH10	3.10-3.50	Axial	99.0	29.0	6.4	1.75	1.91	
	BH10	3.10-3.50	Axial	99.0	24.0	5.8	1.92	2.00	
	BH10	3.10-3.50	Axial	99.0	32.0	10.1	2.50	2.79	
	BH10	3.10-3.50	Axial	99.0	25.0	4.6	1.46	1.54	
	BH10	3.10-3.50	Diametral	77.0	99.0	8.4	0.86	1.17	
	BH10	3.10-3.50	Diametral	87.0	99.0	1.4	0.14	0.19	
_	BH10	3.10-3.50	Diametral	71.0	99.0	7.0	0.71	0.97	
_ab Prc	BH10	3.10-3.50	Diametral	71.0	99.0	7.5	0.77	1.04	
ject No	BH10 BH10	3.10-3.50	Diametral	85.0	99.0	7.9	0.81	1.10	
7 6	NI 1	1 Dimensian	A - Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

Sample Ide	entification							•
Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH11	2.45-2.68	Axial	102.0	62.0	14.0	1.74	2.26	
BH11	2.45-2.68	Axial	102.0	44.0	4.2	0.73	0.89	
BH11	2.45-2.68	Axial	102.0	23.0	4.2	1.41	1.46	
BH11	2.45-2.68	Axial	102.0	49.0	7.5	1.18	1.45	
BH11	2.45-2.68	Axial	102.0	47.0	13.7	2.24	2.74	
BH11	2.45-2.68	Diametral	193.0	102.0	5.8	0.56	0.77	
BH11	2.45-2.68	Diametral	137.0	102.0	2.3	0.22	0.30	
BH11	2.45-2.68	Diametral	120.0	103.0	4.5	0.42	0.59	
BH11	2.45-2.68	Diametral	95.0	103.0	2.9	0.27	0.38	
BH11	2.45-2.68	Diametral	91.0	103.0	6.5	0.61	0.85	
	Exploratory Hole BH11 BH11 BH11 BH11 BH11 BH11 BH11 BH	Hole m BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68 BH11 2.45-2.68	Exploratory Hole Depth m Orientation of Test m Axial BH11 2.45-2.68 Axial BH11 2.45-2.68 Axial BH11 2.45-2.68 Axial BH11 2.45-2.68 Axial BH11 2.45-2.68 Diametral BH11 2.45-2.68 Diametral	Exploratory Hole	Depth Hole	Dimension Dimension Dimension B	Depth Hole	Depth Hole

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

20-20		іаг)P	0)
1	•	131		(

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Identification		•						•
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH12	2.70-2.85	Axial	100.0	59.0	14.7	1.96	2.51	
	BH12	2.70-2.85	Axial	100.0	65.0	15.3	1.85	2.42	
	BH12	2.70-2.85	Axial	100.0	49.0	9.4	1.51	1.85	
	BH12	2.70-2.85	Axial	100.0	57.0	13.1	1.81	2.29	
	BH12	2.70-2.85	Axial	100.0	24.0	3.4	1.11	1.16	
	BH12	2.70-2.85	Diametral	164.0	100.0	13.6	1.36	1.86	
	BH12	2.70-2.85	Diametral	134.0	100.0	14.4	1.44	1.97	
_	BH12	2.70-2.85	Diametral	98.0	100.0	10.8	1.08	1.48	
ah Pro	BH12	2.70-2.85	Diametral	76.0	100.0	6.8	0.68	0.93	
iect No	BH12	2.70-2.85	Diametral	90.0	100.0	11.2	1.12	1.53	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample : saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

		ig	ne
--	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Sample Identification								
Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH12	5.15-5.50	Axial	100.0	56.0	23.3	3.27	4.14	
BH12	5.15-5.50	Axial	100.0	59.0	20.6	2.74	3.51	
BH12	5.15-5.50	Axial	100.0	45.0	21.5	3.75	4.52	
BH12	5.15-5.50	Axial	100.0	61.0	19.2	2.47	3.19	
BH12	5.15-5.50	Axial	100.0	40.0	19.0	3.73	4.38	
BH12	5.15-5.50	Diametral	186.0	101.0	18.0	1.76	2.42	
BH12	5.15-5.50	Diametral	145.0	101.0	17.8	1.74	2.39	
BH12	5.15-5.50	Diametral	193.0	100.0	19.0	1.90	2.60	
BH12	5.15-5.50	Diametral	112.0	100.0	16.3	1.63	2.23	
BH12	5.15-5.50	Diametral	94.0	100.0	16.8	1.68	2.29	
	xploratory Hole BH12 BH12 BH12 BH12 BH12 BH12 BH12 BH1	xploratory Hole Depth m BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50 BH12 5.15-5.50	xploratory Hole Depth m Orientation of Test BH12 5.15-5.50 Axial BH12 5.15-5.50 Diametral BH12 5.15-5.50 Diametral BH12 5.15-5.50 Diametral	Depth Hole	Name	Name	Note	Depth Hole Depth Hole Dimension A Dimension B Load Is Corrected Is(50)

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

⇔ ign	2	
--------------	---	--

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification	•						
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH13	4.20-5.20	Lump	132.0	70.0	2.6	0.22	0.31	
	BH13	4.20-5.20	Lump	119.0	71.0	5.0	0.46	0.65	
	BH13	4.20-5.20	Lump	111.0	59.0	2.5	0.30	0.39	
	BH13	4.20-5.20	Lump	104.0	46.0	1.4	0.23	0.28	
	BH13	4.20-5.20	Lump	85.0	35.0	0.8	0.21	0.23	
	BH13	4.20-5.20	Lump	81.0	40.0	3.5	0.85	0.95	
	BH13	4.20-5.20	Lump	88.0	25.0	0.6	0.21	0.22	
_	BH13	4.20-5.20	Lump	69.0	32.0	0.6	0.21	0.22	
_ab Prc	BH13	4.20-5.20	Lump	79.0	42.0	2.9	0.69	0.77	
Lab Project No	BH13	4.20-5.20	Lump	62.0	30.0	1.1	0.46	0.46	
7	Notes	4 Di	A - Minimum Width for Lump	Tasta	0.14 : 1 . 0 . 1 . 1	of comple , coturated			

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u>

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH13	6.80-7.00	Axial	99.0	92.0	8.5	0.73	1.04	
	BH13	6.80-7.00	Axial	99.0	48.0	5.1	0.84	1.03	
	BH13	6.80-7.00	Axial	99.0	46.0	13.2	2.28	2.75	
	BH13	6.80-7.00	Axial	99.0	41.0	13.6	2.63	3.10	
	BH13	6.80-7.00	Axial	99.0	32.0	15.8	3.92	4.36	
	BH13	6.80-7.00	Diametral	179.0	100.0	21.2	2.12	2.90	
	BH13	6.80-7.00	Diametral	106.0	100.0	7.3	0.73	1.00	
_	BH13	6.80-7.00	Diametral	107.0	100.0	18.8	1.88	2.57	
_ab Prc	BH13	6.80-7.00	Diametral	124.0	100.0	16.5	1.65	2.25	
Lab Project No	BH13	6.80-7.00	Diametral	100.0	100.0	20.0	2.00	2.73	
7	Notos	1 Dimensian	A = Minimum Width for Lump	T4-	2 Maiatura Contant	• • • • •			

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

0200	* _	
	DI	NP.
1	'9	
)		

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							
- A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH14	3.10-3.35	Lump	120.0	50.0	0.9	0.12	0.15	
	BH14	3.10-3.35	Lump	134.0	46.0	2.8	0.36	0.46	
	BH14	3.10-3.35	Lump	110.0	59.0	0.5	0.06	0.08	
	BH14	3.10-3.35	Lump	101.0	40.0	2.0	0.39	0.46	
	BH14	3.10-3.35	Lump	114.0	32.0	0.6	0.13	0.15	
	BH14	3.10-3.35	Lump	119.0	42.0	0.4	0.06	0.08	
	BH14	3.10-3.35	Lump	91.0	36.0	1.3	0.31	0.35	
	BH14	3.10-3.35	Lump	75.0	42.0	0.9	0.22	0.25	
_ab Pro	BH14	3.10-3.35	Lump	63.0	52.0	1.3	0.31	0.35	
ject No	BH14	3.10-3.35	Lump	54.0	31.0	0.5	0.23	0.23	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample : saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

 4 >	іаг	10
 •••	191	

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

1504	Sample Ide	entification							1
1-P1 01 vis	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH14	4.20-5.70	Axial	100.0	54.0	0.6	0.09	0.11	
	BH14	4.20-5.70	Axial	100.0	62.0	1.6	0.20	0.26	
	BH14	4.20-5.70	Axial	100.0	32.0	1.2	0.29	0.33	
	BH14	4.20-5.70	Axial	100.0	41.0	2.0	0.38	0.45	
	BH14	4.20-5.70	Axial	100.0	50.0	1.0	0.16	0.19	
	BH14	4.20-5.70	Diametral	185.0	100.0	0.9	0.09	0.12	
	BH14	4.20-5.70	Diametral	142.0	100.0	1.5	0.15	0.20	
	BH14	4.20-5.70	Diametral	156.0	100.0	2.0	0.20	0.27	
25.7	BH14	4.20-5.70	Diametral	124.0	100.0	1.4	0.14	0.19	
1004	BH14	4.20-5.70	Diametral	100.0	100.0	0.3	0.03	0.04	
	lotes	1 Dimonoion	A= Minimum Width for Lump	Toete	2 Moisture Content	.f			

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Ide	entification	•						
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH15	2.00-3.00	Lump	107.0	86.0	1.4	0.12	0.17	
	BH15	2.00-3.00	Lump	94.0	44.0	5.7	1.08	1.28	
	BH15	2.00-3.00	Lump	56.0	31.0	1.3	0.59	0.57	
	BH15	2.00-3.00	Lump	92.0	45.0	2.0	0.38	0.45	
	BH15	2.00-3.00	Lump	99.0	60.0	5.7	0.75	0.97	
	BH15	2.00-3.00	Lump	87.0	51.0	1.2	0.21	0.26	
	BH15	2.00-3.00	Lump	43.0	46.0	1.5	0.60	0.60	
L	BH15	2.00-3.00	Lump	82.0	57.0	3.0	0.50	0.61	
ab Pro	BH15	2.00-3.00	Lump	95.0	45.0	1.6	0.29	0.35	
ject No	BH15 BH15	2.00-3.00	Lump	66.0	32.0	2.0	0.74	0.76	
➤	Notos	1 Dimension	A= Minimum Width for Lump	Toete	2 Moisture Content	of comple : coturated			

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

•		ig	ne
---	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

1504	Sample Ide	entification							
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	Is	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH15	3.00-4.00	Axial	101.0	56.0	1.6	0.22	0.28	
	BH15	3.00-4.00	Axial	101.0	59.0	1.5	0.20	0.25	
	BH15	3.00-4.00	Axial	101.0	23.0	2.0	0.68	0.70	
	BH15	3.00-4.00	Axial	101.0	34.0	0.9	0.21	0.23	
	BH15	3.00-4.00	Axial	101.0	44.0	1.2	0.21	0.25	
	BH15	3.00-4.00	Diametral	156.0	101.0	2.1	0.21	0.28	
	BH15	3.00-4.00	Diametral	124.0	101.0	1.2	0.12	0.16	
_	BH15	3.00-4.00	Diametral	136.0	101.0	1.0	0.10	0.13	
ab Pro	BH15	3.00-4.00	Diametral	95.0	101.0	2.5	0.25	0.34	
Lab Project No	BH15	3.00-4.00	Diametral	102.0	101.0	0.9	0.09	0.12	
D	Natas	1 Dimonoion	A - Minimum Width for Lump	T4-	2 Maisture Centent		·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

		ig	ne
--	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Sample Id	lentification							•
Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH15	4.60-4.85	Axial	99.0	47.0	16.5	2.79	3.38	
BH15	4.60-4.85	Axial	99.0	44.0	9.7	1.75	2.09	
BH15	4.60-4.85	Axial	99.0	42.0	16.9	3.19	3.78	
BH15	4.60-4.85	Axial	99.0	50.0	19.9	3.16	3.89	
BH15	4.60-4.85	Axial	99.0	55.0	13.8	1.99	2.50	
BH15	4.60-4.85	Diametral	118.0	99.0	18.9	1.93	2.62	
BH15	4.60-4.85	Diametral	76.0	100.0	9.0	0.90	1.23	
BH15	4.60-4.85	Diametral	88.0	100.0	11.0	1.10	1.50	
BH15	4.60-4.85	Diametral	56.0	100.0	15.4	1.54	2.10	
BH15	4.60-4.85	Diametral	111.0	99.0	11.9	1.21	1.65	_

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests
Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

w Idne	"[
W IYIIC	•

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

xploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
			mm	mm	kN	MN/m²	MN/m²	
BH18	4.90-5.50	Lump	87.0	41.0	4.2	0.92	1.06	
BH18	4.90-5.50	Lump	66.0	32.0	3.1	1.15	1.17	
BH18	4.90-5.50	Lump	153.0	46.0	4.5	0.50	0.67	
BH18	4.90-5.50	Lump	88.0	42.0	1.8	0.38	0.44	
BH18	4.90-5.50	Lump	78.0	48.0	1.3	0.27	0.32	
BH18	4.90-5.50	Lump	89.0	42.0	2.1	0.44	0.51	
BH18	4.90-5.50	Lump	91.0	73.0	5.5	0.65	0.86	
BH18	4.90-5.50	Lump	189.0	69.0	6.9	0.42	0.64	
BH18	4.90-5.50	Lump	98.0	60.0	1.3	0.17	0.22	
BH18	4.90-5.50	Lump	96.0	70.0	2.2	0.26	0.34	
	Hole BH18 Hole m BH18	Hole m BH18	Depth Depth Orientation of Test Hole m	Depth Orientation of Test A B	Depth Hole	Depth Dept	Depth Hole Depth Orientation of Fest A B Load Is Is(50)	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>CD</u> 25/01/2024

OZO - DOINITIO	ig	ne
)		

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH18	6.80-7.00	Axial	102.0	56.0	13.4	1.84	2.34	
	BH18	6.80-7.00	Axial	102.0	46.0	8.4	1.41	1.71	
	BH18	6.80-7.00	Axial	102.0	38.0	12.4	2.51	2.93	
	BH18	6.80-7.00	Axial	102.0	32.0	9.6	2.31	2.59	
	BH18	6.80-7.00	Axial	102.0	45.0	8.8	1.51	1.82	
	BH18	6.80-7.00	Diametral	204.0	102.0	3.7	0.36	0.49	
	BH18	6.80-7.00	Diametral	108.0	102.0	9.8	0.94	1.30	
_	BH18	6.80-7.00	Diametral	101.0	103.0	5.6	0.53	0.73	
_ab Prc	BH18	6.80-7.00	Diametral	156.0	103.0	6.5	0.61	0.85	
Lab Project No	BH18	6.80-7.00	Diametral	98.0	103.0	3.9	0.37	0.51	
~	Mataa	1 Dimensian	A = Minimum Width for Lump	T4-	2 Maiatura Contant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

		ig	ne
--	--	----	----

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

A1504	Sample Ide	entification							
- A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH19	2.70-4.20	Axial	99.0	56.0	3.2	0.45	0.57	
	BH19	2.70-4.20	Axial	99.0	42.0	3.0	0.57	0.67	
	BH19	2.70-4.20	Axial	99.0	41.0	1.5	0.29	0.34	
	BH19	2.70-4.20	Axial	99.0	35.0	2.6	0.59	0.67	
	BH19	2.70-4.20	Axial	99.0	63.0	1.9	0.24	0.31	
	BH19	2.70-4.20	Diametral	213.0	99.0	3.1	0.32	0.43	
	BH19	2.70-4.20	Diametral	156.0	99.0	2.4	0.24	0.33	
_	BH19	2.70-4.20	Diametral	95.0	99.0	2.0	0.20	0.28	
.ab Pro	BH19	2.70-4.20	Diametral	119.0	99.0	1.5	0.15	0.21	
ject No	BH19 BH19	2.70-4.20	Diametral	85.0	99.0	4.2	0.43	0.58	

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample : saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

	ig	ne
)		

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

~ Indicates test not carried out

Contract No 26555

A1504	Sample Identification								
A15044-R1 01.xls	Exploratory Hole	Depth m	Orientation of Test	Dimension A	Dimension B	Load	ls	Corrected Is(50)	Comments
				mm	mm	kN	MN/m²	MN/m²	
	BH19	4.20-5.20	Axial	99.0	64.0	2.8	0.35	0.45	
	BH19	4.20-5.20	Axial	99.0	46.0	3.1	0.53	0.65	
	BH19	4.20-5.20	Axial	99.0	32.0	3.0	0.74	0.83	
	BH19	4.20-5.20	Axial	99.0	45.0	1.5	0.26	0.32	
	BH19	4.20-5.20	Axial	99.0	68.0	2.6	0.30	0.40	
	BH19	4.20-5.20	Diametral	117.0	99.0	2.1	0.21	0.29	
	BH19	4.20-5.20	Diametral	78.0	100.0	3.3	0.33	0.45	
_	BH19	4.20-5.20	Diametral	98.0	100.0	2.3	0.23	0.31	
_ab Prc	BH19	4.20-5.20	Diametral	113.0	99.0	2.1	0.21	0.29	
ject No	BH19 BH19	4.20-5.20	Diametral	87.0	99.0	1.9	0.19	0.26	
ž	N	4 Dimension	A = Minimum Width for Lump	Tasta	2 Maiatura Cantant				

Notes 1. Dimension A= Minimum Width for Lump Tests

Dimension A=Length for Diametral Tests
Dimension A=Diameter for Axial Tests

Dimension B=Platen Separation

- 2. Moisture Content of sample: saturated
- 3. All preparation and testing carried out in accordance with ISRM Commission on Testing Methods 1985
- 4. Opinions and interpretations are outside the scope of UKAS accreditation
- 5. Carried out parallel/perpendicular to bedding planes where obvious otherwise core shape used to determine orientation

Originator	Approved
DW	<u>C</u> D 25/01/2024

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point	1	BH01	BH03	BH03	BH03
Depth	m	7.60-7.75	4.30-5.10	7.20-7.60	9.12-9.60
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		12/01/2024	12/01/2024	12/01/2024	12/01/2024
Length	mm	111.8	203.5	128.9	212.6
Mean Diameter	mm	99.7	100.4	99.4	100.3
Length / Diameter Ratio		1.12	2.03	1.30	2.12
Straightness Compliance (see notes)	Y/N	Y	Y	Y	Y
Flatness Compliance (see notes)	Y/N	Y	Y	Y	Y
Perpendicularity	mm	0.0027	0.001	0.0019	0.0012
Bulk Density	Mg/m³	2.09	2.48	2.58	2.53
Moisture Content	%	3.1	3.1	2.1	2.8
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		2mins 27secs	2mins 3secs	2mins 42secs	5mins 35secs
Failure Load	kN	248.8	198.9	284.4	614
Uniaxial Compressive Strength	MPa	31.9	25.1	36.6	77.7
Type of Failure		Normal	Normal	Normal	Explosive
Strength Classification		Med strong	Med strong	Med strong	Strong
Associated Comment Numbers (see	notes)	3		3	
Failure Diagram	′				
j		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4	B

Notes:

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved		
DW	CD 25/01/2024		

UNIAXIAL COMPRESSIVE STRENGTH **ASTM Methods**

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point	Ī	BH03	BH04	BH04	BH04
Depth	m	10.65-10.93	5.93-6.10	7.50-7.80	9.95-10.10
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		12/01/2024	12/01/2024	12/01/2024	12/01/2024
Length	mm	203.4	135.4	211	143.6
Mean Diameter	mm	100.4	100.5	100.3	100
Length / Diameter Ratio		2.03	1.35	2.10	1.44
Straightness Compliance (see notes)	Y/N	2:03 Y	Y	Y	Υ
Flatness Compliance (see notes)	Y/N	Y	Y	Y	Y
Perpendicularity	·	0.0014	0.003	0.0014	0.0017
l ' '	mm Mar/an3				
Bulk Density	Mg/m³	2.53	2.43	2.55	2.57
Moisture Content	%	3	3.1	3.1	2.1
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		3mins 41secs	2mins 42secs	4mins 4secs	4mins 0secs
Failure Load	kN	383.7	288.7	432	440
Uniaxial Compressive Strength	MPa	48.5	36.4	54.7	56.0
Type of Failure		Explosive	Normal	Explosive	Normal
Strength Classification		Medium strong	Medium strong	Strong	Strong
Associated Comment Numbers (see i	notes)		3		3
Failure Diagram					

Notes:

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved		
DW	CD 25/01/2024		

UNIAXIAL COMPRESSIVE STRENGTH **ASTM Methods**

Rochsolloch Road, Airdrie, ML6 9BG

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point		BH04	BH05	BH05	BH05
Depth	m	10.62-10.81	6.72-6.90	7.30-7.80	9.40-9.82
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		12/01/2024	12/01/2024	12/01/2024	12/01/2024
Length	mm	184.7	140.8	218.3	204.7
Mean Diameter	mm	100.1	100.6	100.5	100.2
Length / Diameter Ratio		1.85	1.40	2.17	2.04
Straightness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Perpendicularity	mm	0.0016	0.0018	0.0009	0.0015
Bulk Density	Mg/m³	2.53	2.48	2.51	2.56
Moisture Content	%	2.8	2.5	2.4	2.4
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		1min 7secs	3mins 20secs	4mins 19secs	4mins 24secs
Failure Load	kN	101.4	340.2	477	514
Uniaxial Compressive Strength	MPa	12.9	42.8	60.1	65.2
Type of Failure		Normal	Normal	Normal	Explosive
Strength Classification		Weak	Med strong	Strong	Strong
Associated Comment Numbers (see	notes)	3,7	3		
Failure Diagram					
			36		The state of the s
			I		I

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

UNIAXIAL C	OMPRESSIV	E STRENGTH
	ASTM Methods	•

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point		BH05	BH06	BH06	BH07
Depth	m	10.05-10.32	5.40-5.60	7.05-7.50	5.10-5.30
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		12/01/2024	12/01/2024	12/01/2024	12/01/2024
Length	mm	235.6	165.1	183.2	129.6
Mean Diameter	mm	100	102.9	102.8	100.4
Length / Diameter Ratio		2.36	1.60	1.78	1.29
Straightness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Perpendicularity	mm	0.0013	0.0015	0.0016	0.0031
Bulk Density	Mg/m³	2.53	2.55	2.51	2.51
Moisture Content	%	3	2.3	3.4	2.3
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		3mins 44secs	3mins 28secs	2mins 9secs	3mins 58secs
Failure Load	kN	376.6	352.6	166	429
Uniaxial Compressive Strength	MPa	48.0	42.4	20.0	54.2
Type of Failure		Normal	Normal	Normal	Normal
Strength Classification		Med strong	Med strong	Weak	Strong
Associated Comment Numbers (see	notes)		3	3	3
Failure Diagram					
		/~ {S			

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point		BH07	BH08	BH08	BH08
Depth	m	5.80-6.37	5.65-6.00	7.36-7.68	7.68-8.00
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		14/01/2024	14/01/2024	14/01/2024	14/01/2024
Length	mm	209	196.8	204.8	210.9
Mean Diameter	mm	100.1	99.6	100.4	100.6
Length / Diameter Ratio		2.09	1.98	2.04	2.10
Straightness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Y	Y
Perpendicularity	mm	0.0014	0.0013	0.0012	0.0019
Bulk Density	Mg/m³	2.51	2.52	2.54	2.52
Moisture Content	%	1.7	2.5	1.7	1.4
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		5mins 13secs	3mins 7secs	6mins 4secs	6mins 23secs
Failure Load	kN	529	374	638	779
Uniaxial Compressive Strength	MPa	67.2	48.0	80.6	98.0
Type of Failure		Normal	Normal	Normal	Normal
Strength Classification		Strong	Medium Strong	Strong	Strong
Associated Comment Numbers (see i	notes)		3		
Failure Diagram					

Notes:

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

Lab Project No A15044-R1:01/25/2024 16:41:52

Rochsolloch Road, Airdrie, ML6 9BG

UNIAXIAL COMPRESSIVE STRENGTH **ASTM Methods**

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point		BH09	BH09	BH09	BH10
Depth	m	3.38-3.59	4.38-4.70	6.20-6.90	5.30-5.50
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		14/01/2024	14/01/2024	14/01/2024	14/01/2024
Length	mm	165.5	181.6	201.2	195.3
Mean Diameter	mm	100.2	100.1	100.2	99.4
Length / Diameter Ratio		1.65	1.81	2.01	1.96
Straightness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Perpendicularity	mm	0.0018	0.0017	0.0012	0.002
Bulk Density	Mg/m³	2.52	2.5	2.49	2.54
Moisture Content	%	2	2.2	1.9	1.4
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		3mins 7secs	2mins 8secs	5mins 24secs	5ins 45secs
Failure Load	kN	296	210	558	643
Uniaxial Compressive Strength	MPa	37.5	26.7	70.8	82.9
Type of Failure		Normal	Normal	Normal	Normal
Strength Classification		Medium Strong	Medium Strong	Strong	Strong
Associated Comment Numbers (see	notes)	3	3		3
Failure Diagram					

Notes:

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

UNIAXIAL COMPRESSIVE STRENGTH **ASTM Methods**

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555 LT520 BRACO WEST SUBSTATION

Exploration Point		BH10	BH11	BH12	BH12
Depth	m	8.00-8.50	5.00-5.40	3.35-3.50	6.10-6.35
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		14/01/2024	14/01/2024	14/01/2024	14/01/2024
Length	mm	221	143	165.8	174.8
Mean Diameter	mm	99.4	103	100.6	100
Length / Diameter Ratio		2.22	1.39	1.65	1.75
Straightness Compliance (see notes)	Y/N	Υ	Υ	Y	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Y	Υ
Perpendicularity	mm	0.0018	0.0021	0.0018	0.0011
Bulk Density	Mg/m³	2.49	2.54	2.43	2.53
Moisture Content	%	1.1	1.8	1.5	2.5
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		6mins 43secs	4mins 41secs	5mins 13secs	2mins 48secs
Failure Load	kN	836	543	579	266
Uniaxial Compressive Strength	MPa	107.7	65.2	72.8	33.9
Type of Failure		Normal	Normal	Normal	Normal
Strength Classification		Very Strong	Strong	Strong	Medium Strong
Associated Comment Numbers (see	notes)		3	3	3
Failure Diagram					

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

	BH13	BH14	BH14	BH15
m	7.50-7.65	6.48-6.76	7.20-7.90	6.50-6.78
	08/01/2024	08/01/2024	08/01/2024	08/01/2024
	14/01/2024	14/01/2024	14/01/2024	14/01/2024
mm	131.5	111.1	208.7	194.3
mm	99.2	100.1	100.2	99.6
	1.33	1.11	2.08	1.95
Y/N	Υ	Υ	Υ	Υ
Y/N	Υ	Υ	Υ	Υ
mm	0.0023	0.0036	0.0014	0.0013
Mg/m³	2.42	2.55	2.55	2.52
%	2.4	1.8	1.7	1.6
%	Saturated	Saturated	Saturated	Saturated
MPa/sec	0.60	0.60	0.60	0.60
	2mins 57secs	4mins 23secs	4mins 29secs	5mins 17secs
kN	318	501	485	587
MPa	41.1	63.7	61.5	75.3
	Normal	Normal	Normal	Explosive
	Medium Strong	Strong	Strong	Strong
notes)	3	3		3
	S			
	mm Y/N Y/N Mg/m³ % MPa/sec kN MPa	m 7.50-7.65 08/01/2024 14/01/2024 131.5 mm 99.2 1.33 Y/N Y Y/N Y Mm 0.0023 Mg/m³ 2.42 % 2.4 % Saturated MPa/sec 0.60 2mins 57secs kN 318 MPa 41.1 Normal Medium Strong	m 7.50-7.65 6.48-6.76 08/01/2024 08/01/2024 14/01/2024 14/01/2024 mm 131.5 111.1 mm 99.2 100.1 1.33 1.11 Y/N Y Y Y/N Y Y y Y Y Mg/m³ 2.42 2.55 % 2.4 1.8 % Saturated Saturated MPa/sec 0.60 4mins 23secs kN 318 501 MPa 41.1 63.7 Normal Normal Normal Medium Strong Strong	m 7.50-7.65 6.48-6.76 7.20-7.90 08/01/2024 08/01/2024 08/01/2024 14/01/2024 14/01/2024 14/01/2024 14/01/2024 14/01/2024 mm 131.5 111.1 208.7 mm 99.2 100.1 100.2 1.33 1.11 2.08 Y/N Y Y Y Y/N Y Y Y Mg/m³ 2.42 2.55 2.55 % 2.4 1.8 1.7 % Saturated Saturated Saturated MPa/sec 0.60 0.60 0.60 4mins 23secs 4mins 29secs kN 318 501 485 MPa 41.1 63.7 61.5 Normal Normal Normal Normal Medium Strong Strong Strong

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

SHE Transmission plc

SSE Perth Inveralmond HSE Engineer

Contract No 26555

Exploration Point		BH15	BH18	BH18	BH19
Depth	m	8.50-10.00	5.60-5.90	9.18-9.45	4.98-5.20
Date Received		08/01/2024	08/01/2024	08/01/2024	08/01/2024
Date Tested		15/01/2024	15/01/2024	15/01/2024	15/01/2024
Length	mm	220.1	199.7	150.2	170.9
Mean Diameter	mm	99.6	102.9	102.8	99.7
Length / Diameter Ratio		2.21	1.94	1.46	1.71
Straightness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Flatness Compliance (see notes)	Y/N	Υ	Υ	Υ	Υ
Perpendicularity	mm	0.0014	0.0013	0.0027	0.0018
Bulk Density	Mg/m³	2.49	2.51	2.54	2.36
Moisture Content	%	1.5	1.5	1.8	2.1
Degree of Saturation	%	Saturated	Saturated	Saturated	Saturated
Stress Rate	MPa/sec	0.60	0.60	0.60	0.60
Test Duration		5mins 20secs	3mins 12secs	3mins 37secs	1min 37secs
Failure Load	kN	595	332.8	415	175.7
Uniaxial Compressive Strength	MPa	76.4	40.0	50.0	22.5
Type of Failure		Explosive	Normal	Normal	Normal
Strength Classification		Strong	Med strong	Strong	Weak
Associated Comment Numbers (see	notes)		3	3	3,7
Failure Diagram					

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD 25/01/2024

	b Project No A15044-R1 : 01/25/2024 16:42
9BG	024
ML6	/25/2
Rochsolloch Road, Airdrie, ML6 9BG	. 0
, Airc	4-R
Road	1504
och F	No A
lsolk	ject
Roc	b Pro

.02

Contract No 26555 LT520 BRACO WEST SUBSTATION SHE Transmission plc SSE Perth Inveralmond HSE Engineer

Exploration Point		BH19
Depth	m	5.50-5.70
Date Received		08/01/2024
Date Tested		15/01/2024
Length	mm	164
Mean Diameter	mm	99.5
Length / Diameter Ratio		1.65
Straightness Compliance (see notes)	Y/N	Υ
Flatness Compliance (see notes)	Y/N	Υ
Perpendicularity	mm	0.0018
Bulk Density	Mg/m³	2.45
Moisture Content	%	2.5
Degree of Saturation	%	Saturated
Stress Rate	MPa/sec	0.60
Test Duration		3mins 9secs
Failure Load	kN	334.3
Uniaxial Compressive Strength	MPa	43.0
Type of Failure		Normal
Strength Classification		Strong
Associated Comment Numbers (see	e notes)	3
Failure Diagram		

- 1. Prepared in accordance with ASTM D4543-08.
- 2. Tested in accordance with ASTM D7012-14: Method C
- 3. Height/diameter ratio outwith limits of 2.0 to 2.5. Best effort conformance accepted tested as is.
- 4. Straightness of core more than 0.50mm over length. Best effort conformance accepted tested as is.
- 5. Flatness of core ends more than 0.025mm. Best effort conformance accepted tested as is.
- 6. Perpendicularity of core more than 0.0043mm. Best effort conformance accepted tested as is.
- 7. Test duration not falling between 2 and 15 minutes. Best effort conformance accepted.
- 8. There are some rock types with physical characteristics which preclude preparing specimens to the desired tolerances. Where this is the case the specimen is evaluated to determine whether a best effort was achieved for the rock type involved. Based upon the evaluation and professional judgement a determination is made whether the specimen should be discarded, tested as is, use of capping compound or start over.
- 9. Preparation and conformance measuring equipment: surface plate, V-block, displacement gauge assembly, feeler gauge set, vernier calipers, surface grinder and masonry saw.

Originator	Checked & Approved
DW	CD

Revision 1.21 22/11/2016

9392 - PhotoFrame Rock BH01 07.60 C - A15044-R1-2013785.xls

⇔ igne

ite LT520 BRACO WEST SUBSTATION

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH01 Sample Ref

Depth (m) 7.60 Sample Type C

Originator

Checked & Approved

DW

CD
25/01/2024

Lab Project No A15044-R1

Revision 1.21 22/11/2016 9392 - PhotoFrame Rock BH03 04.30 C - A15044-R1-2013786.xls

⇔ igne

ite LT520 BRACO WEST SUBSTATION

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH03 Sample Ref

Depth (m) 4.30 Sample Type C

Lab Project No A15044-R1

Originator Checked & Approved

DW CD
25/01/2024

Revision 1.21 22/11/2016 9392 - PhotoFrame Rock BH03 07.20 C - A15044-R1-2013787.xls

⇔ igne

ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH03 Sample Ref

Depth (m) 7.20 Sample Type C

Lab Project No A15044-R1

Originator Checked & Approved

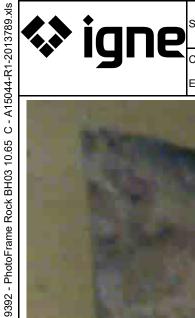
DW CD
25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH03 Sample Ref


Depth (m) 9.12 Sample Type С

Lab Project No A15044-R1

Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

BH03 Hole ID Sample Ref


Depth (m) 10.65 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024


SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 Contract No

Hole ID BH04 Sample Ref

Depth (m) 5.93 Sample Type С

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH04 Sample Ref

Depth (m) 7.50 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

Revision 1.21 22/11/2016 9392 - PhotoFrame Rock BH04 09.95 C - A15044-R1-2013792.xls

⇔ igne

ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

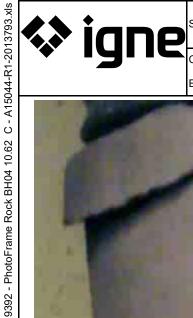
Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH04 Sample Ref

Depth (m) 9.95 Sample Type C

Checked &


Lab Project No A15044-R1

Originator Approved

DW CD

25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH04 Sample Ref

Depth (m) 10.62 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

BH05 Hole ID Sample Ref

Depth (m) 6.72 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH05 Sample Ref

Depth (m) 7.30 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

9392 - PhotoFrame Rock BH05 09.40 C - A15044-R1-2013796.xls

Site	LT520 BRACO WEST SUBSTATION
oile .	LIBZU BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH05 Sample Ref

Depth (m) 9.40 Sample Type C

Originator	Checked & Approved
DW	CD 25/01/2024

Lab Project No A15044-R1

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 Contract No

Hole ID BH05 Sample Ref

Depth (m) 10.05 Sample Type С

Lab Project No A15044-R1

DW

Originator Approved

25/01/2024

Revision 1.21 22/11/2016

9392 - PhotoFrame Rock BH06 05.40 C - A15044-R1-2013798.xls

⇔ igne

ite LT520 BRACO WEST SUBSTATION

lient SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH06 Sample Ref

Depth (m) 5.40 Sample Type C

DW Originator

Approved

CD
25/01/2024

Revision 1.21 22/11/2016

9392 - PhotoFrame Rock BH06 07.05 C - A15044-R1-2013799.xls

igne

ite LT520 BRACO WEST SUBSTATION

Client SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

Contract No 26555

Hole ID BH06 Sample Ref

Depth (m) 7.05 Sample Type C

Lab Project No A15044-R1

Originator Checked & Approved

DW CD
25/01/2024

Revision 1.21 22/11/2016

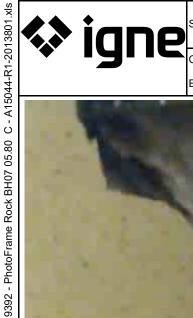
LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 Contract No

Hole ID BH07 Sample Ref


Depth (m) 5.10 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH07 Hole ID Sample Ref

Depth (m) 5.80 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

26555 **Contract No**

BH08 Hole ID Sample Ref

Depth (m)

5.65 Sample Type С

Engineer SSE Perth Inveralmond HSE

Checked & Originator Approved DW 25/01/2024

Lab Project No A15044-R1

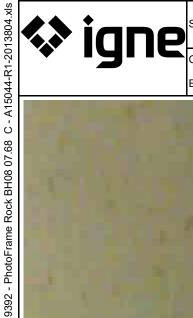
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

BH08 Hole ID Sample Ref

Depth (m) 7.36 Sample Type С



Lab Project No A15044-R1

Originator Approved DW

25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID **BH08** Sample Ref

Depth (m) 7.68 Sample Type С

Lab Project No A15044-R1 Originator DW

Checked & Approved 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH09 Sample Ref

Depth (m) 3.38 Sample Type С

Lab Project No A15044-R1 Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH09 Hole ID Sample Ref

Depth (m) 4.38 Sample Type С

Checked & Originator Approved DW

25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH09 Sample Ref

Depth (m) 6.20 Sample Type С

Lab Project No A15044-R1

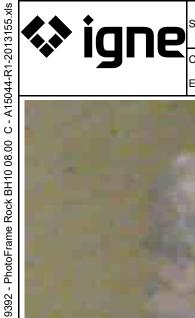
Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH10 Sample Ref


Depth (m) 5.30 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

BH10 Hole ID Sample Ref

Depth (m) 8.00 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH11 Hole ID Sample Ref

Depth (m) 5.00 Sample Type С

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH12 Hole ID Sample Ref

Depth (m) 3.35 Sample Type С

Checked & Originator Approved DW 25/01/2024

Lab Project No A15044-R1

PHOTOGRAPHS OF SPECIMEN FAILURE

Sheet 1 of 1

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

BH12 Hole ID Sample Ref

Depth (m) 6.10 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID **BH13** Sample Ref

Depth (m) 7.50 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH14 Hole ID Sample Ref

Depth (m) 6.48 Sample Type С

The second secon	Street, Square, or other party of the last
	1000
THE RESERVE TO SHARE THE PARTY OF THE PARTY	
the state of the s	40.00
THE RESERVE AND ADDRESS OF THE PARTY OF THE	But But and
THE RESERVE OF THE PERSON NAMED IN COLUMN 1 IS NOT THE OWNER. THE PERSON NAMED IN COLUMN 1 IS NOT THE OWNER.	
	The second second
AND DESCRIPTION OF THE PARTY OF	Contract of the Contract of th
THE RESERVE TO SECURE AND ADDRESS OF THE PARTY OF THE PAR	100
THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IN COLUMN	Marie Contract
THE RESIDENCE OF THE PARTY OF T	100
THE RESERVE OF THE PARTY OF THE	
THE RESERVE THE PARTY OF THE PA	100
	756
	THE RESERVE
The state of the s	
The second secon	F 7 7 7 7
THE RESIDENCE OF THE PARTY OF T	The second second
	Section 1999
The second secon	100
THE RESERVE TO SHARE THE PARTY OF THE PARTY	ALC: NO.
	N. T. K.
	100
A STATE OF THE PARTY OF THE PAR	100
	1000
A CONTRACTOR OF THE PARTY OF TH	ALC: NO SEC.
The same of the sa	2.1
THE RESERVE AND ADDRESS OF THE PARTY OF THE	A Town of the Con-
199	A COLUMN TWO
The second secon	
THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN	No. of Lot
A STATE OF THE STA	
The same of the sa	A STATE OF THE STA
THE RESERVE OF THE PARTY OF THE	
PROPERTY AND ADDRESS OF THE PARTY OF THE PAR	3

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

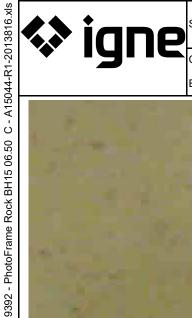
SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID **BH14** Sample Ref

Depth (m) 7.20 Sample Type С


Checked & Originator Approved DW 25/01/2024

Lab Project No A15044-R1

PHOTOGRAPHS OF SPECIMEN FAILURE

Sheet 1 of 1

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH15 Hole ID Sample Ref

Depth (m) 6.50 Sample Type С

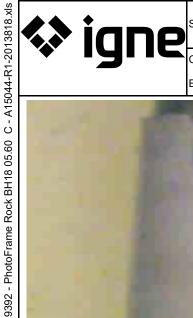
Checked & Originator Approved DW

25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

BH15 Hole ID Sample Ref


Depth (m) 8.50 Sample Type С

Checked & Originator Approved DW 25/01/2024

Lab Project No A15044-R1

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 Contract No

Hole ID **BH18** Sample Ref

Depth (m) 5.60 Sample Type С

Lab Project No A15044-R1

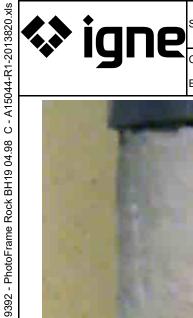
Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 Contract No

Hole ID **BH18** Sample Ref


Depth (m) 9.18 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE **Contract No** 26555

Hole ID BH19 Sample Ref

Depth (m) 4.98 Sample Type С

Lab Project No A15044-R1

Checked & Originator Approved DW 25/01/2024

SHE Transmission plc

Engineer SSE Perth Inveralmond HSE

26555 **Contract No**

Hole ID BH19 Sample Ref

Depth (m) 5.50 Sample Type С

Originator	Checked & Approved
DW	CD

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
TD	Client:	SHE Transmission plc	
1,0	Engine	er: SSE Perth Inveralmond HSE	

Style: APPENDIX A File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:28:47 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

Certificate of Analysis

Issued:

12-Dec-23

Certificate Number 23-28085

Client Raeburn Drilling

East Avenue Blantyre Glasgow G72 0JB

Our Reference 23-28085

Client Reference 26555

Order No (not supplied)

Contract Title LT520 BRACO WEST SUBSTATION

Description 13 Soil samples.

Date Received 29-Nov-23

Date Started 29-Nov-23

Date Completed 12-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Our Ref 23-28085 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Part Part	Contract Title LT520 BRACC	O WEST SUBSTA	ATION							
Part Part				Lab No	2269461	2269462	2269463	2269464	2269465	2269466
Test Method Me			.Sa	ample ID	TP03	TP03	TP06	TP06	TP08	TP21
Test Method Method Sampling Tate Solut So				Depth	0.50	1.00	0.60	1.10	1.00	0.50
Test				Other ID						
Test Method LOD Units Units Method LOD Units Units Method Units West Method Units		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
Metals Method LOD Units Method Metals			Sampl	ing Date	21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023
Arsenic			Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Arsenic	Test	Method	LOD	Units						
Boron, Water Soluble (2.5:1) DETSC 2311# 0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.3 < 0.2 0.3 < 0.2 Cadmium	Metals									
Cadmium		DETSC 2301#						2.6		4.8
Chromium	Boron, Water Soluble (2.5:1)	DETSC 2311#						0.3	< 0.2	0.3
Copper		DETSC 2301#								< 0.1
Lead	Chromium	DETSC 2301#								25
Mercury		DETSC 2301#							7.1	
Nickel		DETSC 2301#								
Zinc	-		0.05							
DETSC 2008#		DETSC 2301#	1							
Detect D		DETSC 2301#	1	mg/kg	37	40	38	36	30	39
Cyanide, Total DETSC 2130# 0.1 mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01										
Organic matter DETSC 2002# 0.1 % 0.5 0.4 0.2 0.1 0.5 1.1 Sulphate Aqueous Extract as SO4 (2:1) DETSC 2076# 10 mg/l 51 24 12 10 16 11 Petroleum Hydrocarbons Aliphatic C5-C6 DETSC 3321* 0.01 mg/kg < 0.01	-									
Sulphate Aqueous Extract as SO4 (2:1) DETSC 2076# 10 mg/l 51 24 12 10 16 11	•				_					
Petroleum Hydrocarbons	_									
Aliphatic C5-C6		DETSC 2076#	10	mg/l	51	24	12	10	16	11
Aliphatic C6-C8	_			, 1						
Aliphatic C8-C10										
Aliphatic C10-C12	-									
Aliphatic C12-C16										
Aliphatic C16-C21	1 .									
Aliphatic C21-C35										
Aliphatic C5-C35 DETSC 3072* 10 mg/kg < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1										
Aromatic C5-C7 DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <										
Aromatic C7-C8 DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <										
Aromatic C8-C10 DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.09 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99 < 0.99										
Aromatic C10-C12 DETSC 3072# 0.9 mg/kg < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Aromatic C12-C16 DETSC 3072# 0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Aromatic C16-C21 DETSC 3072# 0.6 mg/kg < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Aromatic C21-C35 DETSC 3072# 1.4 mg/kg < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10										
Aromatic C5-C35 DETSC 3072* 10 mg/kg < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10										
TPH Ali/Aro Total C5-C35 DETSC 3072* 10 mg/kg < 10 < 10 < 10 < 10 < 10 PAHs Naphthalene DETSC 3301 0.1 mg/kg < 0.1										
PAHs Naphthalene DETSC 3301 0.1 mg/kg < 0.1										
Naphthalene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		DE13C 3U/2*	10	ilig/kg	< 10	< 10	< 10	< 10	< 10	< 10
Acenaphthylene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		DETCC 2204	0.4	m ~ /1	-04	-01	201	201	201	-01
Acenaphthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1										
Fluorene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1										
Phenanthrene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1										
Anthracene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1										
Fluoranthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Pyrene DETSC 3301 0.1 mg/kg < 0.1										< 0.1
Pyrene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		DETSC 3301	0.1						< 0.1	< 0.1
	Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
, , , , , , , , , , , , , , , , , , ,	Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Our Ref 23-28085 Client Ref 26555

Client Ref 26555									
Contract Title LT520 BR	ACO WEST SUBSTA	ATION							
			Lab No	2269461	2269462	2269463	2269464	2269465	2269466
		.Sa	ample ID	TP03	TP03	TP06	TP06	TP08	TP21
			Depth	0.50	1.00	0.60	1.10	1.00	0.50
		(Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		-	_		21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Our Ref 23-28085 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Contract Title LT520 BRACO WEST SUBSTATION										
			Lab No	2269467	2269468	2269469	2269470	2269471	2269472	
		.Sample ID		TP21	TP21	TP23	TP23	TP23	TP22	
			Depth	1.00	1.50	0.30	0.90	1.25	0.50	
			Other ID							
			ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		_	_	21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023	
		_	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	
Test	Method	LOD	Units							
Metals										
Arsenic	DETSC 2301#	0.2	mg/kg	2.0	3.6		5.7	6.7	3.1	
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	0.3		< 0.2	< 0.2	0.3	
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Chromium	DETSC 2301#	0.15	mg/kg	19	24		25	34	33	
Copper	DETSC 2301#	0.2	mg/kg	6.9	12	33	10	16	15	
Lead	DETSC 2301#	0.3	mg/kg	6.1	7.3	18	7.6	11	12	
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	
Nickel	DETSC 2301#	1	mg/kg	15	21	28	20	30	26	
Zinc	DETSC 2301#	1	mg/kg	26	36	51	38	55	43	
Inorganics										
pH	DETSC 2008#	0.4	pН	5.9	6.3		6.0	6.0	6.3	
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	0.2	0.1	< 0.1	< 0.1	
Organic matter	DETSC 2002#	0.1	%	1.5	0.3		1.2	0.8	0.6	
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	< 10	< 10	< 10	22	15	< 10	
Petroleum Hydrocarbons		0.04	/1	. 0.01	. 0. 04	.0.01	. 0.01	.0.01	. 0. 04	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5 < 3.4	< 1.5 < 3.4	< 1.5 < 3.4	< 1.5 < 3.4	< 1.5 < 3.4	< 1.5 < 3.4	
Aliphatic C21-C35 Aliphatic C5-C35	DETSC 3072#	3.4	mg/kg	< 10	< 10			< 10		
Aromatic C5-C35	DETSC 3072* DETSC 3321*	10 0.01	mg/kg mg/kg	< 0.01	< 0.01	< 10 < 0.01	< 10 < 0.01	< 0.01	< 10 < 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Aromatic C10-C12	DETSC 3072#	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5			< 0.5		< 0.5	
Aromatic C16-C21	DETSC 3072#	0.5	mg/kg	< 0.6	< 0.6		< 0.5		< 0.6	
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4		< 1.4	< 1.4	< 1.4	
Aromatic C5-C35				< 10	< 10		< 10		< 10	
	DETSC 3072*	10	mg/kg							
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	
PAHs Nanhthalana	DETCC 2204	0.1	m = /I. =	404	404	404	101	101	404	
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
(-/		0	010							

Our Ref 23-28085 Client Ref 26555

Client Ref 2655	5								
Contract Title LT520	BRACO WEST SUBSTA	ATION							
			Lab No	2269467	2269468	2269469	2269470	2269471	2269472
		.Sample ID				TP23	TP23	TP23	TP22
			Depth	1.00	1.50	0.30	0.90	1.25	0.50
		(Other ID						
			ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					21/11/2023	21/11/2023	21/11/2023	21/11/2023	21/11/2023
			ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyren	ne DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracen	e DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	0.7	0.4	0.6	0.7

Our Ref 23-28085 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	2269473
.Sample ID	TP22
Depth	1.00
Other ID	
Sample Type	
Sampling Date	21/11/2023
Sampling Time	n/s

Test	Method	LOD	Units	.,,5
Metals				
Arsenic	DETSC 2301#	0.2	mg/kg	6.4
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.3
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	37
Copper	DETSC 2301#	0.2	mg/kg	23
Lead	DETSC 2301#	0.3	mg/kg	12
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05
Nickel	DETSC 2301#	1	mg/kg	35
Zinc	DETSC 2301#	1	mg/kg	60
Inorganics				
рН	DETSC 2008#		рН	6.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.8
Organic matter	DETSC 2002#	0.1	%	< 0.1
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	< 10
Petroleum Hydrocarbons			•	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10
PAHs		•	•	
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Fluoranthene				
	DETSC 3301	0.1	mg/kg	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1

Summary of Chemical Analysis Soil Samples

Our Ref 23-28085 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	2269473
.Sample ID	TP22
Depth	1.00
Other ID	
Sample Type	SOIL
Sampling Date	21/11/2023
Sampling Time	n/s

Test	Method	LOD	Units	
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6
Phenols				
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.3

Summary of Asbestos Analysis Soil Samples

Our Ref 23-28085 *Client Ref* 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2269461	TP03 0.50	SOIL	NAD	none	Robertas Ciparis
2269462	TP03 1.00	SOIL	NAD	none	Robertas Ciparis
2269463	TP06 0.60	SOIL	NAD	none	Robertas Ciparis
2269464	TP06 1.10	SOIL	NAD	none	Robertas Ciparis
2269465	TP08 1.00	SOIL	NAD	none	Robertas Ciparis
2269466	TP21 0.50	SOIL	NAD	none	Robertas Ciparis
2269467	TP21 1.00	SOIL	NAD	none	Robertas Ciparis
2269468	TP21 1.50	SOIL	NAD	none	Robertas Ciparis
2269469	TP23 0.30	SOIL	NAD	none	Robertas Ciparis
2269470	TP23 0.90	SOIL	NAD	none	Robertas Ciparis
2269471	TP23 1.25	SOIL	NAD	none	Robertas Ciparis
2269472	TP22 0.50	SOIL	NAD	none	Robertas Ciparis
2269473	TP22 1.00	SOIL	NAD	none	Robertas Ciparis

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-28085 Client Ref 26555

Contract LT520 BRACO WEST SUBSTATION

Containers Received & Deviating Samples

	Date			inappropriate container for
Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
TP03 0.50 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP03 1.00 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP06 0.60 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP06 1.10 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP08 1.00 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP21 0.50 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP21 1.00 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP21 1.50 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP23 0.30 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP23 0.90 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP23 1.25 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP22 0.50 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
TP22 1.00 SOIL	21/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
	TP03 0.50 SOIL TP03 1.00 SOIL TP06 0.60 SOIL TP06 1.10 SOIL TP08 1.00 SOIL TP01 0.50 SOIL TP21 0.50 SOIL TP21 1.50 SOIL TP23 0.30 SOIL TP23 0.90 SOIL TP23 1.25 SOIL TP22 0.50 SOIL	Date Sample ID Sampled TP03 0.50 SOIL 21/11/23 TP03 1.00 SOIL 21/11/23 TP06 0.60 SOIL 21/11/23 TP06 1.10 SOIL 21/11/23 TP08 1.00 SOIL 21/11/23 TP08 1.00 SOIL 21/11/23 TP21 0.50 SOIL 21/11/23 TP21 1.50 SOIL 21/11/23 TP21 1.50 SOIL 21/11/23 TP23 0.30 SOIL 21/11/23 TP23 0.90 SOIL 21/11/23 TP23 1.25 SOIL 21/11/23 TP23 1.25 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP22 0.50 SOIL 21/11/23 TP23 0.50 SOIL 21/11/23	Sample ID Sampled Containers Received TP03 0.50 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP03 1.00 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP06 0.60 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP06 1.10 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP08 1.00 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP21 0.50 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP21 1.00 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP21 1.50 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP23 0.30 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP23 0.90 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP23 1.25 SOIL 21/11/23 GJ 60ml x2, PT 1L x2 TP23 0.50 SOIL 21/11/23 GJ 60ml x2, PT 1L x2	Date Sample ID Sampled Containers Received Holding time exceeded for tests

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :- Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate of Analysis

Issued:

19-Dec-23

Certificate Number 23-28676

Client Raeburn Drilling

East Avenue Blantyre Glasgow G72 0JB

Our Reference 23-28676

Client Reference 26555

Order No (not supplied)

Contract Title LT520 BRACO WEST SUBSTATION

Description 3 Soil samples.

Date Received 06-Dec-23

Date Started 06-Dec-23

Date Completed 19-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-28676 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	2272643	2272644	2272645
.Sample ID	TP10	TP10	TP20
Depth	1.40	2.10	1.40
Other ID			
Sample Type	SOIL	SOIL	SOIL
Sampling Date	28/11/2023	28/11/2023	28/11/2023
Sampling Time	n/s	n/s	n/s

			ing mine	11/3	11/5	11/5
Test	Method	LOD	Units			
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	8.0	7.9	2.7
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	33	31	31
Copper	DETSC 2301#	0.2	mg/kg	19	23	17
Lead	DETSC 2301#	0.3	mg/kg	10	9.6	10
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	28	28	25
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	60	58	49
Inorganics	-T					
рН	DETSC 2008#		рН	5.3	5.6	5.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	0.5	1.4	0.5
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	18	< 10	< 10
Petroleum Hydrocarbons						
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	3.3	2.4	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	5.3	2.3	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	8.1	3.1	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	4.3	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	21	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	21	< 10	< 10
PAHs			•	<u>'</u>	•	
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluoranthene				< 0.1	< 0.1	< 0.1
	DETSC 3301	0.1	mg/kg			
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1

Summary of Chemical Analysis Soil Samples

Our Ref 23-28676

Our Rej 23-28076						
Client Ref 26555						
Contract Title LT520 BRACO WEST	SUBSTATION					
			Lab No	2272643	2272644	2272645
		.Sa	ample ID	TP10	TP10	TP20
			Depth	1.40	2.10	1.40
		(Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		-	_	28/11/2023	28/11/2023	28/11/2023
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3

Summary of Asbestos Analysis Soil Samples

Our Ref 23-28676 *Client Ref* 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2272643	TP10 1.40	SOIL	NAD	none	Barry Kelly
2272644	TP10 2.10	SOIL	NAD	none	Barry Kelly
2272645	TP20 1.40	SOIL	NAD	none	Barry Kelly

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

inappropriate

Information in Support of the Analytical Results

Our Ref 23-28676 Client Ref 26555

Contract LT520 BRACO WEST SUBSTATION

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2272643	TP10 1.40 SOIL	28/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
2272644	TP10 2.10 SOIL	28/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
2272645	TP20 1.40 SOIL	28/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :- Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 23-28678

Issued:

19-Dec-23

Client Raeburn Drilling

East Avenue Blantyre Glasgow G72 0JB

Our Reference 23-28678

Client Reference 26555

Order No (not supplied)

Contract Title LT520 BRACO WEST SUBSTATION

Description 3 Soil samples, 2 Leachate prepared by DETS samples.

Date Received 06-Dec-23

Date Started 06-Dec-23

Date Completed 19-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-28678 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	2272651	2272652	2272653
.Sample ID	TP05	TP09	TP09
Depth	2.00	0.50	1.00
Other ID			
Sample Type	ES	ES	ES
Sampling Date	27/11/2023	27/11/2023	27/11/2023
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units	·		
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	3.1	2.2	2.7
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	25	28	35
Copper	DETSC 2301#	0.2	mg/kg	17	14	26
Lead	DETSC 2301#	0.3	mg/kg	9.0	8.2	8.2
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	22	26	31
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	42	51	48
Inorganics						
рН	DETSC 2008#		рН	5.5	5.3	5.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.1	0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	1.0	0.7	< 0.1
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	< 10	< 10	< 10
Petroleum Hydrocarbons				·		
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10
PAHs				·		
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1

Summary of Chemical Analysis Soil Samples

Our Ref 23-28678 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	2272651	2272652	2272653
.Sample ID	TP05	TP09	TP09
Depth	2.00	0.50	1.00
Other ID			
Sample Type	ES	ES	ES
Sampling Date	27/11/2023	27/11/2023	27/11/2023
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-28678 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Sample Id TP09 1.00

Sample Numbers 2272653 2272967 2272968

Date Analysed 15/12/2023

Determinand and Method Reference		Units	Res	sult
DETSC 2084# Total Organic Carbon		%	< (0.5
DETSC2003# Loss On Ignition		%		
DETSC 3321# BTEX		mg/kg	< 0	.04
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0	.01
DETSC 3311# TPH (C10 - C40)		mg/kg	<	10
DETSC 3301 PAHs		mg/kg	< :	1.6
DETSC2008# pH		pH Units		
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg		
DETS073* Acid Neutralisation Capacity (pH7	mol/kg			
Test Results On Leachate				
Determinand and Method Reference	Conc in E	luate ug/l	Amount Lea	ched* mg/k
Determinant and wiethou Reference	2:1	8:1	LS2	LS10

WAC Limit Values				
Inert	SNRHW	Hazardous		
Waste	SINITION	Waste		
3	5	6		
n/a	n/a	10		
6	n/a	n/a		
1	n/a	n/a		
500	n/a	n/a		
100	n/a	n/a		
n/a	>6	n/a		
n/a	TBE	TBE		
n/a	TBE	TBE		

WAC Limit Values

Test Results On Leachate						
Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg		
Determinant and Wethou Reference	2:1	8:1	LS2	LS10		
DETSC 2306 Arsenic as As	3	0.56	0.006	< 0.01		
DETSC 2306 Barium as Ba	1.1	1.1	< 0.02	< 0.1		
DETSC 2306 Cadmium as Cd	< 0.030	< 0.030	< 0.004	< 0.02		
DETSC 2306 Chromium as Cr	< 0.25	< 0.25	< 0.02	< 0.1		
DETSC 2306 Copper as Cu	0.87	0.5	< 0.004	< 0.02		
DETSC 2306 Mercury as Hg	< 0.010	< 0.010	< 0.0004	< 0.002		
DETSC 2306 Molybdenum as Mo	< 1.1	< 1.1	< 0.02	< 0.1		
DETSC 2306 Nickel as Ni	< 0.50	< 0.50	< 0.02	< 0.1		
DETSC 2306 Lead as Pb	< 0.090	< 0.090	< 0.01	< 0.05		
DETSC 2306 Antimony as Sb	< 0.17	< 0.17	< 0.01	< 0.05		
DETSC 2306 Selenium as Se	< 0.25	< 0.25	< 0.006	< 0.03		
DETSC 2306 Zinc as Zn	< 1.3	< 1.3	< 0.002	< 0.01		
DETSC 2055 Chloride as Cl	830	490	< 20	< 100		
DETSC 2055* Fluoride as F	< 100	< 100	< 0.02	< 0.1		
DETSC 2055 Sulphate as SO4	1100	1500	< 20	< 100		
DETSC 2009* Total Dissolved Solids	8300	10000	16.6	97.2		
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1		
DETSC 2085 Dissolved Organic Carbon	3100	< 2000	< 10	< 50		
Additional Information						

WAC LITTIL Values					
Limit values for LS10 Leachate					
Inert	SNRHW	Hazardous			
Waste	SINULIAN	Waste			
0.5	2	25			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n/a	n/a			
500	800	1000			

Additional information		
DETSC 2008 pH	8.1	
DETSC 2009 Conductivity uS/cm	11.9	
* Temperature*	16.0	
Mass of Sample Kg*	0.140	ĺ
Mass of dry Sample Kg*	0.122	
Stage 1		
Volume of Leachant L2*	0.225	ĺ
Volume of Eluate VE1*	0.2	
Stage 2		
Volume of Leachant L8*	0.973	

Volume of Eluate VE2*

V.2.06

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions.

Values are correct at time of issue.

0.92

7.6

14.7

16.0

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-28678 Client Ref 26555

Contract Title LT520 BRACO WEST SUBSTATION

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2272651	TP05 2.00	SOIL	NAD	none	Barry Kelly
2272652	TP09 0.50	SOIL	NAD	none	Barry Kelly
2272653	TP09 1.00	SOIL	NAD	none	Barry Kelly

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-28678 Client Ref 26555

Contract LT520 BRACO WEST SUBSTATION

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2272651	TP05 2.00 SOIL	27/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
2272652	TP09 0.50 SOIL	27/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
2272653	TP09 1.00 SOIL	27/11/23	GJ 60ml x2, PT 1L x2	pH + Conductivity (7 days)	
2272967	TP09 1.00 LEACHATE	27/11/23	GJ 60ml x2, PT 1L x2		
2272968	TP09 1.00 LEACHATE	27/11/23	GJ 60ml x2, PT 1L x2		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
J			
TO	Client	SHE Transmission plc	
LID	Engin	eer: SSE Perth Inveralmond HSE	

Style: APPENDIX A File: P.\GINTWAPROJECTS\28555.GFJ Printed: 25/01/2024 18:29.25 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

Site: LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

in accordance with BSEN ISO 22476-3:2005

Raeburn Drilling & Geotechnical Whistleberry road Hamilton ML3 0HP

DRILLING & GEOTECHNICAL LTD

 SPT Hammer Ref:
 RD48 2023

 Test Date:
 31/03/2023

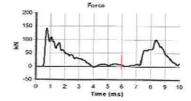
 Report Date:
 31/03/2023

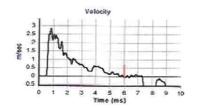
 File Name:
 RD48 2023.spt

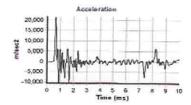
Test Operator: KS

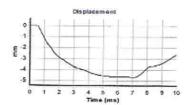
Instrumented Rod Data

Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.9 Assumed Modulus E_a (GPa): 208 Accelerometer No.1: 69559


Accelerometer No.2:


69560


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 14.0

Comments / Location

Calculations

 Area of Rod A (mm2):
 1021

 Theoretical Energy E_{thicor} (J):
 473

 Measured Energy E_{meas} (J):
 308

Energy Ratio E_r (%):

65

Signed: Kevin Steele Title: Head Storeman

The recommended calibration interval is 12 months

SPTMAN ver.1.92 All rights reserved, Testconsult @2010

Originator Title

RB

Chk & App Status

FINAL

FMR

SPT HAMMER ENERGY REPORT

RAEBURZ

Fig No:

H1

File: P./GINTW/PROJECTS/2655.GPJ Printed: 26/01/2024 13:15:43 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com NAMEBOX

Site: LT520 BRACO WEST SUBSTATION

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

Contract No: 26555

SPT Hammer Energy Test Report in accordance with BSEN ISO 22476-3:2005

Raeburn Drilling & Geotechnical Whistleberry road Hamilton ML3 0HP

DRILLING & GEOTECHNICAL LTD

 SPT Hammer Ref:
 RD54
 23

 Test Date:
 05/05/2023

 Report Date:
 05/05/2023

 File Name:
 RD54
 23.spt

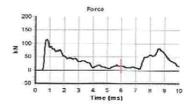
 Test Operator:
 K STEELE

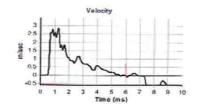
Instrumented Rod Data

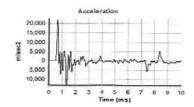
 Diameter d_r (mm):
 54

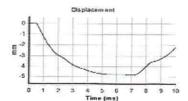
 Wall Thickness t_r (mm):
 6.9

 Assumed Modulus E_a (GPa):
 208


 Accelerometer No.1:
 69559


 Accelerometer No.2:
 69560


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 14.5

Comments / Location

Calculations

 Area of Rod A (mm2):
 1021

 Theoretical Energy E_{thcor} (J):
 473

 Measured Energy E_{mcos} (J):
 304

Energy Ratio E_r (%):

64

Signed: Kevin Steele Title: Head Storeman

The recommended calibration interval is 12 months

SPTMAN vor. 1.92 All rights reserved, Testconsult @2010

	Originator	Title
	RB	
Chk & App	Status	

FINAL

FMR

Style: A4 NAMEBOX File: P./GINTW/PROJECTS/2655.6PJ Printed; 26/01/2024 13:16:48 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raebumdrilling.com

LT520 BRACO WEST SUBSTATION Site:

SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

DRILLING & GEOTECHNICAL LTD

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Contract No: 26555

Raeburn Drilling & Geotechnical Whistleberry road

Hamilton ML3 0HP

SPT Hammer Ref: RD70 2023

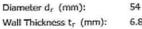
Test Date:

15/02/2023

Report Date:

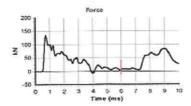
15/02/2023

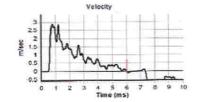
File Name:

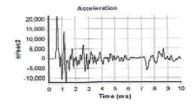

RD70 2023.spt

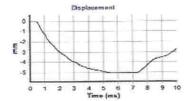
Test Operator:

SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 14.5


Comments / Location




Instrumented Rod Data

6.8 Assumed Modulus Ea (GPa): 208 69559 Accelerometer No.1: 69560 Accelerometer No.2:

Calculations

Area of Rod A (mm2): 1008 473 Theoretical Energy Etheor (J): 331 Measured Energy E_{meas} (J):

Energy Ratio Er (%):

70

Signed: Kevin Steele Head Storeman

Title:

The recommended calibration interval is 12 months

SPTMAN ver.1.97 All rights reserved, Testconsult @2010

Originator RB Chk & App Status

FINAL

SPT HAMMER ENERGY REPORT

Fig No:

H3

File: P./GINTW/PROJECTS/2655.GPJ Printed: 26/01/2024 13:17:59 Raeburn Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tel: 01698-711177 E-mail: enquiries@raeburndrilling.com NAMEBOX

FMR

Contract No: 26555 LT520 BRACO WEST SUBSTATION Site:

Client: SHE Transmission plc

Engineer: SSE Perth Inveralmond HSE

O Thermtest Inc. 25 Millennium Dr., Unit 2 Hanwell, NB, E3C 2N9 Canada

QC Certificate - TLS 100mm ASTM D5334-22a

UNIT	TLS 100mm
SENSOR SERIAL #	27103-454
CONTROLLER SERIAL #	30101-378
HARDWARE REV.	5
FIRMWARE VERSION*	1.7.9.54

^{*}For accurate results, firmware version must be equal to or newer than the listed firmware

Verification measurements:

After calibration, agar, a polymer and a Macor sample were used for verification. Three measurements were taken at room temperature, with thermal paste to ensure proper contact between the sensor and the sample. The TLS 100mm sensor is specified to record thermal conductivity with 5% accuracy and 2% repeatability. The results can be seen below:

Polymer Verification Sample #1631, Batch #53:

Mean ambient temperature (°C)	23.7
Average measured thermal conductivity (W/m-K)	0.326
Known value at room temperature (W/m K)	0.320
Accuracy	1.74 %
Relative standard deviation	1.37 %

Macor Verification Sample:

Mean ambient temperature (°C)	22.9
Average measured thermal conductivity (W/m-K)	1,600
Known value at room temperature (W/m·K)	1.640
Accuracy	2.44 %
Relative standard deviation	0.09 %

Certification:

This instrument is certified to have performed according to specifications.

Date: July 11th, 2023

Signed by:

Quality Control Technician

Thermtest Inc. Copyright © 2022

Originator

RB

Status

FINAL

Chk & App

FMR

TLS 100mm-QC

INSITU THERMAL RESISTIVITY NEEDLE PROBE CALIBRATION

Fig No:

H4

	Site:	LT520 BRACO WEST SUBSTATION	Contract No: 26555
TD.			
	Client:	SHE Transmission plc	
	Engineer: SSE Perth Inveralmond HSE		

Style: APPENDIX A File: P.\GINTWAPROJECTS\26555.GFJ Printed: 25/01/2024 18:30:16 Raebum Drilling and Geotechnical, Whistleberry Rd, Hamilton ML3 0HP Tet: 01698-711177 E-mail: enquiries@raeburndrilling.com

Achille Igne Ltd. Whistleberry Road Blantyre Hamilton ML3 0HP Our ref 179147/JG/001 Telephone 0141 378 6248 E-mail Adarling@envirocentre.co.uk

6 November 2023

Dear Achille

Braco West Substation Pre-Works Site Walkover Survey

A pre-works site walkover survey was undertaken at the site known as Braco West Substation in Dunblane. The survey was carried out to inform upcoming ground investigation works for a proposed new substation in regards to any potential impacts the works will have on protected species or habitats within the site.

The results of the survey found no diagnostic evidence of protected species on site; however, observations of red fox, red deer, and roe deer were noted via scat and tracks throughout the site. The report provided within this letter provides recommendations for any impact avoidance and mitigation for the proposed works.

Yours sincerely for EnviroCentre Limited

(issued electronically)

Alexandra Darling Bsc(Hons) MRes Graduate Ecologist Gemma Nixon MSc CEcol MCIEEM Lead-Principal Ecologist

Enc: Braco West SubstationPre-Works Site Walkover Survey Appendix: Summary of Protected Species Legislation

VAT no. GB 348 6770 57.

BRACO WEST SUBSTATION PRE-WORKS SITE WALKOVER SURVEY

Introduction

EnviroCentre Ltd. were commissioned by Igne Ltd., on 30th October 2023 to conduct a pre-works site walkover survey on 2nd November 2023 at a site known as Braco West Substation, to inform upcoming works on the site.

The proposed works are to include ground investigation works including sonic rig boreholes, boreholes, and trial pits, for a new 400kV substation which is to be built next to the current Braco West Substation, approximately (c.) 3.8km west of the village of Braco, Dunblane.

Site Description

The site is located around Feddal Hill and Cambushinnie Hill, c. 3.8km west of the village of Braco, which is c. 8.3km north of Dunblane.

The current site plan includes two option areas – Site 2 centred at c. NN 791089 and Site 3 centred at c. NN 787091. A main access track runs between the two site options, and along the western site boundary. The existing Braco West Substation is located 300m northeast of the proposed site.

The proposed site comprises of forestry land with mature conifer plantation to the west (included in Site 3) and semi-mature and young conifer plantation covering the east (included in Site 2). Areas of felled trees are also present in both site options.

Report Usage

The information and recommendations contained within this report have been prepared in the specific context stated above and should not be utilised in any other context without prior written permission from EnviroCentre Limited.

If this report is to be submitted for regulatory approval more than 12 months following the report date, it is recommended that it is referred to EnviroCentre Limited for review to ensure that any relevant changes in data, best practice, guidance, or legislation in the intervening period are integrated into an updated version of the report.

Whilst the Client has a right to use the information as appropriate, EnviroCentre Limited retains ownership of the copyright and intellectual content of this report. Any distribution of this report should be managed to avoid compromising the validity of the information or legal responsibilities held by both the Client and EnviroCentre Limited (including those of third-party copyright). EnviroCentre Limited does not accept liability to any third party for the contents of this report unless written agreement is secured in advance, stating the intended use of the information.

EnviroCentre Limited accepts no liability for use of the report for purposes other than those for which it was originally provided, or where EnviroCentre Limited has confirmed it is appropriate for the new context.

Field Survey

Field work was undertaken by EnviroCentre Ecologist Alexandra Darling on 2nd November 2023. Weather conditions during the survey were cloudy with an average temperature of 7°C.

The walkover survey was designed using the guidelines endorsed by NatureScot and CIEEM¹ and focussed on protected species which would most likely utilise the habitats which comprise the landscape in and around the site. Notable plants, including Invasive Non-Native Species, and habitats were also considered during the survey.

Assessment of the site for a range of protected species was undertaken and noted that red squirrel (*Sciurus vulgaris*), pine marten (*Martes martes*), birds, amphibians, and invertebrates have potential to utilise the site and surrounding habitat. Legislation pertaining to these species is present in Appendix A.

Red Squirrel

A survey was undertaken based on best practice guidance² which involves a search of suitable habitat (primarily coniferous woodland) for two distinct signs of squirrel activity. It should be noted that neither of these methods accurately distinguishes between red or grey squirrels (*Sciurus carolinensis*).

- Drey count dreys are the nests made by both species of squirrel in trees. Dreys are
 distinguishable from birds' nests as they are normally 50cm in diameter and 30cm deep,
 comprise a ball shape and are usually densely constructed. The dreys are normally located
 close to the main stem of the tree at a height of 3m or more; and
- Feeding evidence where cone producing trees (conifers) are evident evidence of squirrel feeding is searched for. Although the two species of squirrel cannot be distinguished from feeding remains, the manner in which squirrels break open seeds and nuts, which are then left on the forest floor, is diagnostic.

Pine Marten

A passive sign survey was conducted for pine marten according to standard guidance³. The survey included a search for scats (e.g. on prominent features such as tree stumps, dead logs or stones), footprints and identification of any potential den sites (elevated tree cavities and between rocks or crags) as well as the presence of scats on paths, rides and track ways through woodland or rock habitats.

An assessment of the habitat was also undertaken to identify likely prey resources, which include small mammals, birds and invertebrates, and potential resting sites and commuting opportunities.

It should be noted that in areas where pine marten populations are sparse and territorial defence is relatively unimportant, searches for signs (incl. scats) may fail to detect presence simply because the animals are less likely to deposit scats as territory markers; in such situation most scats are deposited at den sites and in foraging areas.

Birds

Habitats within the survey area were assessed for their suitability to support breeding and over wintering birds. Observations of birds were noted during the survey.

Observations of birds were also noted during the survey including incidental records of the following:

- Birds present nesting or foraging on-site, flying over site, or corpses.
- Pellets/droppings.
- Nests within trees or in ground vegetation.
- Eggs intact/broken or within nest/below nest.
- Feathers adult or natal down.

¹ CIEEM (2017) *Guidelines for Preliminary Ecological Appraisal*. 2nd edition. Available at: https://cieem.net/resource/guidance-on-preliminary-ecological-appraisal-gpea/

² Gurnell, J., Lurz, P., McDonald, R. & Pepper, H. (2009) *Practical Techniques for surveying and monitoring squirrels. Forestry Commission Practice Note 11.*

³ Birks, J. (2012) Pine marten. In: Cresswell, W.J., Birks, J.D.S., Dean, M., Pacheco, M., Trewhella, W.J., Wells, D. and Wray, S. (2012). *UK BAP Mammals: Interim Guidance for Survey Methodologies, Impact Assessment and Mitigation*. The Mammal Society, Southampton

Amphibians

Guidance^{4,5} was used to identify direct evidence of amphibians and to assess the suitability of the habitats for common toad as follows:

- Direct sightings (including spawn, tadpoles, young and adult amphibians).
- Suitable aquatic habitat: medium (10 100m²) or large (> 100m²) ponds, on or within 500m of the site.
- Suitable terrestrial habitat: lightly grazed pasture, scrub, open woodland, gardens, and moors.
- Connectivity to additional suitable aquatic and terrestrial habitat.
- Foraging resources, for example, invertebrates.
- Hibernation sites usually below ground systems that are protected against weather and predators.

Invertebrates

A general habitat suitability survey was made of the site its suitability to host invertebrate species.

UK Habitat Classification Survey

A UK Habitat Classification (UKHab) Survey was carried out in accordance with the user manual⁶. UKHab is a hierarchical system for rapidly recording and classifying habitat via satellite imagery and field survey. The system comprises 5 levels of Primary Habitats which include ecosystems, broad habitats, priority habitats and Annex I habitats, along with non-hierarchical secondary codes which provide information on the environment, management, and origin of Primary Habitats. The secondary codes are also used to identify notable species features. The information collected is used to identify ecologically sensitive features and recommend mitigation and enhancement measures in connection with a proposed development.

The surveyor utilised the UKHab Professional edition and aimed to categorise habitats up to level 5. Where the level 5 habitat could not be determined or is not reflective of the habitat type due to a lack of indicative species, habitats were categorised to level 4 or the broader level 3 habitat.

The information is used to identify ecologically sensitive features/habitats, inform relevant species surveys and, aid in the recommendation of mitigation and enhancement measures in connection with a proposed development.

Invasive Non-Native Species (INNS)

The survey included a check for the presence of any invasive non-native species (INNS) including but not limited to the following:

- Japanese knotweed (Reynoutria japonica).
- Giant hogweed (Heracleum mantegazzianum).
- Himalayan balsam (Impatiens glandulifera).

Constraints

Due to the nature of conifer plantations, the dense structure of the canopy made it difficult to assess the area for signs of protected species due to reduced visibility. However, the constraint is not considered to be of significant impact to have resulted in the misidentification of protected species within the site boundary.

⁴ McInerny, C. & Minting, P. (2016) The Amphibians and Reptiles of Scotland.

⁵ Beebee TJC, Griffiths RA (2000) *Amphibians and reptiles*. HarperCollins, vol 270. New Naturalist, London

⁶ UKHAB Ltd (2023). UK Habitat Classification Version 2.0 (Available at https://www.ukhab.org)

Due to the time of survey, many flowering plant species had likely died back, not allowing for full identification for some species resulting in plants being identified at genus or family level as opposed to species level. Although, the constraint is not considered to be of significant impact to have resulted in misclassification of broad habitats.

Results

Protected Species

No diagnostic evidence of any protected species was noted during the site visit. However, evidence of red fox (*Vulpes vulpes*), red deer (*Cervus elaphus*), and roe deer (*Capreolus capreolus*) were observed via tracks and scat present across the site.

Various bird species were also observed during the survey and are detailed in Table 1-1 below.

Table 1-1: Bird Species Observed on Site, November 2023

Common Name	Latin Name	Designation	
Wood Pigeon	Columba paumbus	BOCC – Amber List	
Wren	Troglodytes troglodytes		
Blackbird	Turdus merula		
Buzzard	Buteo buteo		
Chaffinch	Fringilla coelebs		
Great Tit	Parus major	BOCC – Green List	
Raven	Corvus corax		
Red Kite	Milvus milvus		
Ring-Necked Pheasant	Phasianus colchicus		
Robin	Erithacus rubecula		

Although site observations were not recorded during the survey, suitable habitat also exists on site for red squirrel, pine marten, amphibians, and invertebrates. The coniferous trees offer nesting opportunities for squirrels, pine marten and birds, whilst the open areas where the plantation has been previously clear-felled, and vegetation has re-established, offers foraging opportunities for a range of wildlife.

The waterlogged bogs and artificially created drains across the site also provide suitable aquatic environments for amphibians and invertebrates, which in turn provides prey resources for species such as pine marten and foxes.

Habitats

The site comprised of primarily conifer plantation (UKHAB primary code w2c – other coniferous woodland; secondary code 29 - plantation). A range of mature to semi-mature and young trees were found predominantly to the west of the site whilst areas of clear-fell were found primarily to the east.

The British Geological survey (BGS) map⁷ indicates that peat lies beneath the majority of the site and Scotland's Environment Map⁸ shows that the site has underlying blanket bog. During the site visit it was confirmed that there are areas of waterlogged bog and underlying peat across the site, primarily in the open areas bordering the mature plantation to the west. *Sphagnum* mosses dominate the wet and waterlogged bogs with abundant heather (*Erica* spp.) and rushes (*Juncus* spp.) also present alongside grasses such as purple moor grass (*Molinia caerulea*).

The bogs on site have been disrupted by human activity through plantation and changes to the structure of the bog have occurred in some areas. However, the abundance of *Sphagnum* mosses still

⁷ British Geological Survey (2023). BGS Geology Viewer Map. Available at: https://www.bgs.ac.uk/map-viewers/bgs-geology-viewer/

⁸ Scotland's Environment Map (No date). Carbon and Peatland 2016. Available at: Map | Scotland's environment web

present highlight that the bog has not yet become degraded as a result of such activities. Therefore, the bog on site has been classified as blanket bog (UKHAB primary code f1a; secondary code 57 - peat).

Blanket bogs are listed on Annex I of the Habitats Directive which have been designated as Special Areas of Conservation. Blanket bogs are also listed on the Scottish Biodiversity List as a habitat of principal importance for biodiversity conservation in Scotland.

INNS

No INNS were noted within the site boundary.

Assessment and Recommendations

The results of the survey indicate that the site is utilised by red fox, red deer, roe deer, and a variety of bird species. Whilst no diagnostic evidence was observed on site, suitable habitat also exists for red squirrel, pine marten, amphibians, and invertebrates.

The works are scheduled for winter months which are outwith the breeding season for red squirrel, pine marten, birds, deer, fox, and other protected species which may be utilising the site. Should work be delayed or extend to March when breeding, nesting, and birthing begins for wildlife⁹, this assessment will require review. If the survey is delayed or extended, further surveys may be required at additional costs, as per the proposal provided 31st October 2023.

In summary, the proposed locations of the ground investigation works within the Braco West Substation site are considered to be suitable with no ecological constraints currently present within these locations, providing that the mitigation recommendations are followed.

Mitigation

The presence of machinery, vehicles, site worker amenities, and increased human presence as a result of the works will cause disturbance to wildlife within the site, and the locale. Therefore, it is essential that the following mitigation recommendations are followed to prevent and/or minimise any potential impacts of the proposed works on protected species and wildlife within the locale:

- A toolbox talk to be provided to all personnel providing information of protected species and appropriate mitigation to be implemented prior to commencement.
- Care must be taken during planned clearance/felling of trees required for access to ensure wildlife is not harmed.
- In the event any protected species are found when the ecologist is not in attendance, works must stop, the animal must not be handled, and the project ecologist contacted immediately.
- Any temporary lighting used during the works should be designed to be 'wildlife friendly' and should not illuminate commuting, foraging or sheltering habitats such as woodland, both onsite and in the surrounding area. Low- or high-pressure sodium lamps instead of mercury and metal halide lamps are preferred for their UV filtering properties, reducing light spillage and pollution.
- Any excavations created during works should not be left open for animals to fall into.
 Appropriate covers should be fitted at the end of every working day, at the very least, a shallow sloping edge or some form of ramp should be placed in the excavations to allow any animals to climb out.

-

⁹ Timing of breeding/nesting/birthing varies dependent on species.

Bog mats should be used to avoid damaging the habitats and surrounding environment. The
mats will also provide easier access for machinery/vehicles within the waterlogged and soft
ground areas.

Future Recommended Works

Ecological data is typically considered valid for 12 months; however, due to the nature of , then updated surveys would be required if the proposed works, specifically associated with the water abstraction point, are not completed by late March 2024.

If any changes are made to the site boundary plan, or additional areas are to be included as part of the proposed works, further checks for protected species within newly proposed areas should be undertaken by an ecologist.

APPENDIX A

Summary of Protected Species Legislation

Red Squirrel and Pine Marten

Red squirrel and pine marten are protected under Schedule 5 of the Wildlife and Countryside Act 1981 (as amended). Subject to certain exceptions, it is an offence to intentionally or recklessly:

- kill, injure, or take (capture) an individual.
- damage, destroy or obstruct access to any structure or place which they use for shelter or protection.
- disturb an individual while it is occupying a structure or place which it uses for that purpose.
- possess or control, sell, offer for sale, or possess or transport for the purpose of sale any live or dead animal or any derivative of such an animal.

Knowingly causing or permitting any of the above acts to be carried out is also an offence.

In some cases, licenses may be issued by NatureScot to enable certain otherwise illegal activities to take place for social, economic, or environmental reasons (including development) as long as:

- the licensed activity will contribute to significant social, economic, or environmental benefit.
- there is no satisfactory alternative.
- there will be no significant negative impact on the conservation status of the species.

Birds

All wild bird species in the UK are protected under the Wildlife and Countryside Act 1981 (as amended), with species listed on Schedules A1, 1 and 1A afforded additional protection.

For any wild bird species, it is an offence to intentionally or recklessly:

- kill, injure, or take a bird.
- take, damage, destroy or interfere with a nest of any bird while it is in use or being built.
- obstruct or prevent any bird from using its nest.
- take or destroy an egg of any bird.
- possess or control a living or dead wild bird.
- possess or control an egg of a wild bird (or any such derivatives).

For any wild bird species listed on Schedule 1, it's an offence to disturb:

- any bird while it is building a nest.
- any bird while it is in, on, or near a nest containing eggs or young.
- any bird while lekking.
- the dependent young of any bird.

For any wild bird species listed on Schedule 1A, it's an offence to intentionally or recklessly harass any bird.

For any wild bird species listed on Schedule A1, it's an offence to intentionally or recklessly take, damage, destroy or interfere at any time with a nest habitually used by any bird.

Licences cannot be issued for the purpose of development in relation to any of the above offences.

Deer and Red Fox

All deer species and red fox have basic protection from cruelty under the Wild Mammals Protection Act 1996 and Animal Welfare Act 2006. This makes it an offence to harm a wild mammal with intent to inflict unnecessary suffering.

Invasive Non-Native Species (Plants)

Under the Wildlife and Countryside Act 1981 (as amended) it is an offence to plant, or otherwise cause to grow, any plant in the wild at a location outside its native range.

'Native range' is defined in the 1981 Act as, "the locality to which the animal or plant of that type is indigenous and does not refer to any locality to which that type of animal or plant has been imported (whether intentionally or otherwise) by any person."

The Scottish Governments Non-natives Code of Practice¹⁰ defines 'in the wild'. Just about everywhere is wild except for:

- arable and horticultural land
- improved pasture
- · settlements; and
- private and public gardens.

In exceptional circumstances it may be possible to obtain a licence from NatureScot to permit the above offence

¹⁰ https://www.gov.scot/publications/non-native-species-code-practice/