

VOLUME 1: CHAPTER 3: THE PROPOSED DEVELOPMENT

3.	THE PROPOSED DEVELOPMENT	3-1			
3.1	Introduction	3-1			
3.2	Overview of the Proposed Development	3-1			
3.3	Development for which Section 37 Consent is sought	3-1			
3.4	Ancillary Development for which Deemed Planning Permission (as part of the				
	application for section 37 Consent) is sought	3-1			
3.5	Development which falls under the Town and Country Planning (General				
	Permitted Development) (Scotland) Order 1992	3-2			
3.6	Associated Works	3-2			
3.7	Limits of Deviation	3-2			
3.8	Description of Overhead Line Infrastructure	3-3			
3.9	Typical Construction Activities for Overhead Line Infrastructure	3-4			
3.10	132 kV Underground Cable Installation	3-8			
3.11	Land Take for Construction and Operation of the Proposed Development	3-9			
3.12	Construction Programme, Employment and Hours of Work	3-10			
3.13	Environmental Management During Construction	3-11			
3.14	Operation and Maintenance	3-13			
3.15	Decommissioning the Proposed Development	3-13			

Figures (Volume 2 of this EIA Report)

Figure 3.1a-e: Proposed Development

Appendices (Volume 4 of this EIA Report)

Appendix 3.1: Indicative Pole Schedule

Appendix 3.2: Access Track Schematic

Appendix 3.3: SSEN Transmission General Environmental Management Plans (GEMPs)

Appendix 3.4: SSEN Transmission Species Protection Plans (SPPs)

Appendix 3.5: Outline Construction Environmental Management Plan (CEMP)

3. THE PROPOSED DEVELOPMENT

3.1 Introduction

3.1.1 This Chapter describes the elements that constitute the Proposed Development, including information on the site, design, size and other relevant features. It provides a description of the key components and information regarding the construction, operation and maintenance of the Proposed Development.

3.2 Overview of the Proposed Development

- 3.2.1 The Proposed Development is driven by the need to connect the consented Glendye Wind Farm¹ to the electricity transmission network at Fetteresso substation.
- 3.2.2 The Proposed Development described within this Chapter and assessed within the technical chapters of Volume 1 of this EIA Report (see also Figures 3.1 a-e), would comprise of 19.2 km of new single circuit 132 kV overhead line (OHL), supported by steel trident poles. Two short sections of 132 kV underground cable (UGC) would also be required at either end of the OHL, to facilitate connection to the Glendye Wind Farm on-site substation and Fetteresso substation. A wood pole terminal structure would facilitate the transition between OHL and UGC. New permanent and temporary access tracks would also be required to facilitate the construction and operation of the Proposed Development.

3.3 Development for which Section 37 Consent is sought

- 3.3.1 The Proposed Development would include the following works, for which section 37 consent under the 1989 Act is sought:
 - The installation and operation of 19.2 km of new single circuit 132 kV OHL supported by steel trident poles, with the exception of the wood pole terminal structures.

3.4 Ancillary Development for which Deemed Planning Permission (as part of the application for section 37 Consent) is sought

- 3.4.1 Deemed planning permission under section 57(2) of the Town and Country Planning (Scotland) Act 1997 is sought (as part of the application for section 37 consent under the 1989 Act) for the following works that would be required as part of the Proposed Development, or to facilitate its construction and operation:
 - The construction of two hardstanding areas surrounded by a palisade fence measuring approximately 20 m x 20 m, to site the wood pole terminal structures at either end of the connection that are required to facilitate the transition between OHL and UGC. These are located at approximate Ordnance Survey (OS) grid references NO 61386 80381 and NO 78696 85842;
 - The formation of access tracks (permanent, temporary and upgrades to existing tracks) and the installation of culverts to facilitate access and ongoing maintenance where required;
 - Working areas around infrastructure (i.e. around individual poles) to facilitate construction;
 - Tree felling and vegetation clearance to facilitate construction and operation of the Proposed
 Development, ensuring compliance with the Electricity Safety, Quality and Continuity Regulations
 (ESQCR) 2002²; and
 - Temporary measures to protect water crossings (e.g. scaffolding and temporary bridges), during Proposed Development construction.

Glendye Wind Farm Overhead Line Grid Connection: EIA Report Chapter 3: The Proposed Development

¹ Received consent from the Scottish Government in October 2023 (ECU Reference: ECU00000676) Available at: https://www.energyconsents.scot/ApplicationDetails.aspx?cr=ECU00000676 (last accessed 08/10/2025)

² The Electricity Safety, Quality and Continuity Regulations (2002) Available at https://www.legislation.gov.uk/uksi/2002/2665/contents/made (last accessed 08/10/2025)

- 3.4.2 These different forms of ancillary development are described in further detail in this Chapter.
- 3.5 Development which falls under the Town and Country Planning (General Permitted Development) (Scotland) Order 1992
- 3.5.1 The following works would fall under the Applicant's permitted development rights:
 - The construction of two separate single-circuit 132 kV UGC connections at either end of the OHL to facilitate connection with Glendye Wind Farm on-site substation and Fetteresso substation.
- 3.5.2 Deemed Planning Permission (as part of the application for the section 37 consent) is not sought for the UGC, as the installation of the UGC falls under the Town and Country Planning (General Permitted Development) (Scotland) Order 1992.
- 3.5.3 The environmental effects of the installation of the permitted development UGC are considered within Appendix 1.1: Permitted Development Works Appraisal. The construction methods for installation of UGC are detailed within this Chapter for completeness (see Section 3.10).
- 3.5.4 All elements of the Proposed Development are described further in this Chapter and shown on **Figures 3.1a-e: Proposed Development**.

3.6 Associated Works

- 3.6.1 Other associated works are required to facilitate construction of the Proposed Development, or would occur as a consequence of its construction and operation. These works, listed below, do not form part of the description of the Proposed Development and are therefore not included in the application for statutory consents. On that basis they are therefore not assessed in detail in this EIA Report. The associated works are:
 - Borrow pits for the sourcing of stone for the construction of access tracks, if required. Should borrow
 pits be required as a source of on-site aggregate, separate planning applications for these works would
 be sought by the Principal Contractor; and
 - Temporary construction compounds and laydown areas would be required to facilitate construction of
 the Proposed Development. The final location and design of temporary site compounds and laydown
 areas would be confirmed by the Principal Contractor and separate planning permissions would be
 sought as required.

3.7 Limits of Deviation

- 3.7.1 In general terms, a Limit of Deviation (LoD) defines the maximum extent within which a development can be built. There is a good degree of certainty with respect to the location of infrastructure, as presented within this EIA, given the work that has been carried out by the Applicant during the routeing, alignment and EIA stages of the Proposed Development. Nevertheless, it is possible that further micro-siting may be required during the construction process to reflect localised land, engineering and environmental constraints, and therefore the LoD provides some flexibility in this regard.
- 3.7.2 In the case of the Proposed Development, a LoD is required for each of the key components to allow flexibility in the final siting of individual poles and access tracks. The horizontal LoD for which consent is sought would be as follows (see also **Figures 3.1a-e**):
 - OHL 100 m LoD (50 m either side of the centre line);
 - Access Tracks (new permanent and new temporary) 50 m LoD (25 m either side of the centre line of
 the proposed tracks) is sought for the construction of new permanent access tracks and new temporary
 access tracks, where they are located outwith the OHL LoD noted above. Where access tracks fall
 within the OHL LoD, the access track LoD would be merged with the OHL LoD. This is to account for

Glendye Wind Farm Overhead Line Grid Connection: EIA Report Chapter 3: The Proposed Development

the possible movement of the OHL within its respective LoD, that the accesses would still need to serve.

- 3.7.3 An operational corridor (OC) is required through areas of woodland and commercial forestry to ensure the safe operation of the OHL and access tracks. The width of the OC would be variable depending on the nature of the woodland or forestry and the design of the steel trident pole proposed. In areas of productive conifer, the OC would typically require a distance of 36 m either side of the OHL; therefore, an extension of 36 m to either side of the OHL LoD would be required for felling operations in areas of conifer plantation. Similarly, for new tracks (temporary and permanent) a 12.5 m wayleave corridor is required either side of the track. As such, a 12.5 m extension would be required to either side of the new access track LoD in areas of conifer plantation for felling operations.
- 3.7.4 A vertical LoD, i.e. the maximum height of a pole above ground level, is also sought to allow a height increase or decrease of 4 m on the proposed pole heights presented within **Appendix 3.1: Indicative Pole Schedule**.
- 3.7.5 It should be noted that the design of the Proposed Development described within this EIA Report has been established following the identification of detailed environmental and technical considerations. The design process has included the appointment by SSEN Transmission of an OHL Contractor to inform the design process and the constructability of the Proposed Development, covering overhead elements and access tracks. Therefore, there is a good degree of certainty with respect to the location of infrastructure, as presented within this EIA Report. Nevertheless, it is possible that further micro-siting may be required during the construction process to reflect localised land, engineering and environmental constraints, and therefore the LoD provides some flexibility in this regard.
- 3.7.6 Prior to any change being made to the Proposed Development within the LOD, a change control process would be undertaken to ensure that there is no unacceptable increase in adverse impacts as a result of the change. This process is managed via the Applicant's internal process 'Change Request Procedure for Project Design Parameters Controlled by Consent Limitations (PR-NET-ENV-503)'.
- 3.7.7 Where there is a requirement to vary the location (or height) of infrastructure within the LoDs, the relevant environmental information within the EIA Report would be reviewed to establish any potential constraints or adverse change in effect. Further advice on LoD changes would be sought from environmental specialists, and where relevant, consultation would be sought from Aberdeenshire Council (as local planning authority) and any relevant statutory consultees as required.

3.8 Description of Overhead Line Infrastructure

- 3.8.1 The proposed steel pole is based on a trident design requiring a matched pair of steel poles erected 2.5 m apart, with supporting crossarm steelwork linking the poles at the top to form a H pole. A total of 183 poles would be required, and each pole would be constructed from fabricated galvanised steel and would be grey in colour. Poles would on average be approximately 14 m in height, but would vary in height between approximately 11.1 m and 18.5 m depending on ground conditions. An indicative pole schedule is included in **Appendix 3.1.**
- 3.8.2 The OHL would comprise a combination of suspension poles (for straight sections) and angle / tension poles (for changes in direction). The span length (distance between poles) would vary slightly depending on topography and altitude. Typically, the span length for the Proposed Development would be between approximately 80 m and 120 m.
- 3.8.3 The poles would carry one circuit, with three conductors in horizontal formation, supported by either glass, porcelain, or composite insulators which would be strung between each H pole forming a single circuit. The

poles would also carry Optical Ground Wire (OPGW) which would be underslung between the poles. Stays would be required at angle poles and in areas of soft ground to provide stability for the OHL.

3.8.4 Plate 3.1 shows photographs of typical steel trident H poles.

Plate 3.1: Example Steel Trident H Poles

3.8.5 To facilitate transition between the OHL and UGC, a wood pole terminal structure would be required at either end of the connection. These structures would be of a similar height to the steel trident poles, and would be located on a hard standing area, accessed by a permanent track.

3.9 Typical Construction Activities for Overhead Line Infrastructure

- 3.9.1 High voltage OHL construction typically follows a standard sequence of events as follows:
 - Phase 1 Enabling works;
 - Phase 2 OHL construction works;
 - Phase 3 Commissioning; and
 - Phase 4 Re-instatement.

Phase 1 - Enabling Works

Forestry / Vegetation Clearance

- 3.9.2 Whilst the design of the Proposed Development has sought to minimise impacts on woodland and forestry where possible, some felling would be required during construction to create an OC (as described under paragraph 3.7.3) to enable the safe operation and maintenance of the OHL and new access tracks.
- 3.9.3 Further detail on proposed felling requirements is set out within **Chapter 11 Forestry**. Overall, the Proposed Development require 49.63 hectares (ha) of woodland to be felled to create an OC. Furthermore, it is anticipated that there would be a requirement for 60.11 ha of management felling outside of the OC within areas of commercial conifer forest to mitigate the risk of windblow.
- 3.9.4 The Applicant is committed to making arrangements to plant off-site the equivalent area of woodland as Compensatory Planting, meeting the Scottish Government's Control of Woodland Removal Policy (CoWRP) objective of no net loss of woodland. On this basis, the Applicant will replant 49.63 ha of woodland within the Aberdeenshire Council Local Planning Authority (LPA) area, or as agreed with respective stakeholders (see Appendix 11.4: Compensatory Planting Strategy.

Site Compounds / Borrow Pits and Quarries

3.9.5 As stated in Section 3.6 temporary construction compounds, laydown areas and borrow pits would be required to facilitate construction of the Proposed Development. The final location and design of these would be confirmed by the Principal Contractor and separate planning permissions / applications would be sought as required.

Road Improvements and Access

- 3.9.6 Typically, construction access would be established through a combination of:
 - Existing tracks, to be upgraded where required;
 - · Installation of new temporary stone tracks;
 - Installation of new temporary tracks using trackway panel construction; and
 - Installation of new permanent stone tracks.
- 3.9.7 Delivery of all construction materials and components for use at the Proposed Development would be undertaken via the existing public road network (see Appendix 13.1: Transport Assessment for further details). Proposed construction access would make use of existing tracks as far as practicable, upgraded as required. This would include utilising the existing track network within Forestry and Land Scotland (FLS) ownership, as well as tracks proposed as part of the Glendye Wind Farm (see Figure 3.1a-e). Existing bellmouths would also be utilised where possible, subject to improvements.
- 3.9.8 Where practicable, lower impact access solutions would be utilised, including the use of low pressure tracked personnel vehicles and temporary track solutions in boggy / soft ground areas, to reduce any damage to, and compaction of, the ground.
- 3.9.9 The installation of new tracks, both temporary and permanent, would also be required to facilitate construction of the Proposed Development (see **Figure 3.1a-e**). Floating stone road or trackway panel construction (typically a short-term solution) would be installed in sensitive areas such as over deep peat. All proposed new tracks are shown on **Figure 3.1a-e** and an access track schematic is included in **Appendix 3.2: Access Track Schematic**. All proposed new tracks would be constructed in accordance with best practice construction methods, and with reference to NatureScot's good practice guide on constructing tracks in Scottish uplands³.
- 3.9.10 Vehicle access is required to each pole location during construction to enable excavation and creation of foundations and pole installation. Figure 3.1a-e shows the proposed indicative access arrangements, which comprise existing tracks, those proposed as part of the consented Glendye Wind Farm, and a combination of proposed new temporary and permanent access tracks required to enable the Proposed Development.
- 3.9.11 During construction, the proposed new temporary and permanent access tracks are typically expected to have a running width of 5 m, with an overall construction corridor of 6.5 m to allow for suitable drainage and pollution prevention measures. To minimise longer term impacts during operation of the Proposed Development, the running width of new permanent access tracks would be reduced to approximately 3.5 m, with an overall corridor of 5 m to allow for suitable drainage and pollution prevention measures.
- 3.9.12 The temporary tracks would be reinstated post construction, to recreate the original habitat as far as possible.
- 3.9.13 Table 3.1 below sets out the approximate length of access track requirements across the Proposed Development.

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

³ NatureScot (online) Available at: https://www.nature.scot/doc/planning-and-development-presentation-good-practice-track-construction (last accessed 08/10/2025)

Table 3.1: Access Track Requirements

Access Track Type	Approximate length required across the Proposed Development
Proposed ATV Routes	1.02 km
Proposed new permanent stone access tracks	2.60 km
Proposed new temporary stone access tracks	8.72 km
Existing field tracks	6.42 km
Existing field tracks to be upgraded	2.06 km
Existing forest track	6.60 km
Existing forest track to be upgraded	11.07 km

Delivery of Structures and Materials

3.9.14 All materials required for construction of the Proposed Development would be delivered to construction compounds. Concrete would be expected to be delivered to site pre-mixed; however, this would be confirmed by the Principal Contractor.

Abnormal Loads

3.9.15 No abnormal loads are anticipated for the transportation of components for the Proposed Development. All vehicles associated with construction would be below the criteria for abnormal loads, as defined by the UK Government⁴.

Watercourse Crossings

- 3.9.16 As detailed in Appendix 9.4: Watercourse Crossing Schedule, new watercourse crossings would be designed to accommodate the 200-yr flood event, plus an allowance for climate change. The design of crossings would be agreed with the Scottish Environment Protection Agency (SEPA) prior to construction, with regulation by the Water Environment (Controlled Activities) (Scotland) Regulations 2011⁵ (CAR).
- 3.9.17 Watercourse crossings are indicatively shown on **Figure 3.1a to e**. A watercourse crossing schedule for permanent watercourse crossings is provided in **Appendix 9.4: Water Course Crossing Schedule**.

Phase 2 - OHL Construction Works

Steel Trident H Pole Foundations

3.9.18 The foundations for steel trident H poles comprise an excavation of approximately 3 m long and 3 m wide for each pole. The total working area at each pole may extend to 20 m by 10 m to facilitate pole assembly / dressing and lifting into position. These excavations and working areas would also apply to the wood pole terminal structures at either end of the connection, required for facilitation of the transition between OHL and UGC. Excavated turf and sub soils would be stacked separately according to type so that they can be replaced

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

⁴ GOV.UK. (2019). Transporting abnormal loads. (online) Available at: https://www.gov.uk/esdal-and-abnormal-loads (last accessed 08,10/25).

 $^{5 \ \}text{Water Environment (Controlled Activities) (Scotland) Regulations 2011.} \ \text{Available at} \\$

https://www.legislation.gov.uk/ssi/2011/209/contents/made (last accessed 08/10/2025)

in reverse order, with the turf being replaced on top. Some backfilling may require the addition of hardcore to excavated material, providing additional stability in areas where the natural sub soils have poor compaction qualities.

- 3.9.19 Where shallow rock is encountered along the route, this would require a hydraulic breaker to break into the rock to a sufficient depth of around 2.0 - 2.5 m.
- 3.9.20 Stays, where required, would be installed at the same time as a pole is erected, involving the placement of a wooden sleeper block beneath the surface at a depth of approximately 1 m.
- 3.9.21 Foundation types and designs for each pole would be confirmed by the Principal Contractor following analysis of detailed geotechnical investigation at each pole position.

Steel Trident H Pole Construction

- 3.9.22 Pole structures would be assembled completely, adjacent to the pole position. Assembled H poles would be erected utilising either one or two excavators, or a tracked all -terrain vehicle (ATV), depending on the complete H pole assembled weight. Stays would be installed at angle and terminal poles, and potentially on cross slopes for stability.
- 3.9.23 Pole erection teams would likely consist of five to six operatives per team, each equipped with two tracked excavators, specialist tracked ATVs, rock breaking equipment and excavation formwork.

OHL Conductor Stringing

- 3.9.24 Prior to stringing the conductors, temporary protection measures (normally netted scaffolds) would be required across existing access tracks where necessary.
- 3.9.25 Conductor stringing equipment (i.e. winches, tensioners and ancillary equipment) are set out at either end of pre-selected sections of the OHL.
- 3.9.26 Prior to wiring operations, Equi-Potential Zone (EPZ)⁶ pulling positions would be required at locations along the length of the OHL. The typical size of a working area required for an EPZ or non EPZ pulling location is approximately 17 m x 36 m. This would likely be set up on trackway panels within the vicinity of pole positions (to be determined by the Principal Contractor) for a short duration immediately prior to and during wiring operations. The winch and tensioner positions are switched as each pulling section progresses.
- 3.9.27 Pilot wires would be pulled through the section to be strung. These would be hung on running blocks (wheels) at each suspension pole and connected to a winch and tensioner at the respective end of the section. The winch, in conjunction with the tensioner, is used to pull the pilot wires between the structures. The conductor is pulled via the pilot wires through the section under tension, to avoid contact with the ground and any underrunning obstacles. Once the conductor has been strung between the ends of the section it is then tensioned and permanently clamped at each pole.
- 3.9.28 If deemed appropriate by the Principal Contractor, there may be situations where a helicopter is utilised to assist with stringing conductors or delivering poles.

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

⁶ EPZs are areas where the electrical potential (voltage) is unform, meaning there is no difference in voltage between any two points within that zone. In such zones, there is no risk of electric shock because current cannot flow between points of the same potential. EPZs are critical in electrical safety, particularly in environmental where high voltage equipment is present.

Phase 3 - Commissioning

3.9.29 Following completion of the OHL conductor stringing, the OHL and support poles would be subject to an inspection and snagging process. This allows the Principal Contractor and SSEN Transmission to check that the works have been built to specification and are fit to energise.

Phase 4 - Reinstatement

3.9.30 Following commissioning of the Proposed Development, it is anticipated that all areas disturbed during construction would be reinstated to an original condition. Reinstatement works would form part of the contract obligations for the Principal Contractor and would include the removal of all temporary access tracks, reduced running width of retained access tracks, all work sites around the pole locations and UGCs and the revegetation of laydown areas, to recreate the original habitat as far as possible. Reinstatement is described further in Section 3.13 of this Chapter.

3.10 132 kV Underground Cable Installation

- 3.10.1 As referenced in **Section 3.5**, the installation of two separate single circuits of 132 kV UGC would be undertaken utilising the Applicant's permitted development rights, but are considered within this EIA for completeness (see **Appendix 1.1: Permitted Development Works Appraisal**).
- 3.10.2 As illustrated on Figure 3.1a-e, these works would include:
 - Approximately 660 m of single circuit installation 132 kV UGC between the consented Glendye Wind Farm on-site substation and the proposed OHL; and
 - Approximately 519 m of single circuit installation 132 kV UGC between the OHL and Fetteresso substation.
- 3.10.3 The overall cable construction corridor would typically be 40 m wide to accommodate excavation and cable installation equipment and store excavated materials during construction for reinstatement once the installation process is complete. A photograph showing an UGC being laid as part of a single circuit installation is included below in Plate 3.2.

Plate 3.2: Photograph of Underground Cable Installation

3.10.4 To enable a more efficient installation process, cables would be installed via ducts in open-cut trenches, each approximately 3 m deep and 8.7 m wide. These trenches would be backfilled to reduce the need for open-cut trenching over long distances. The plastic ducts would be installed before the cable pulling begins to minimise

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

- open ground works and excavations. Typically, joint bays are placed at the ends of cable spans, but with the current design, no joint bays are anticipated.
- 3.10.5 Once all trenching has been complete, the ducting installed and backfilled, the cable installation process can begin. The cable is coiled onto a cable drum to allow for transportation from the manufacturing plant to the site location. This drum is then loaded onto a cable installation trailer which allows the drum to rotate and the cable to be pulled from the drum. The drum is placed at one end, while a winch is set up at the opposite end. A steel wire would be connected to the winch and pulled through the duct until it reaches the far end, where the drum is positioned. After completing pre-installation checks, the cable can then be pulled through the duct.
- 3.10.6 Excavations would be kept free from water by use of mobile pumps, with water pumped to a suitable location as agreed on site by the Environmental Clerk of Works (ECoW) and in accordance with the Applicant's General Environmental Management Plans (GEMPs) (see Section 3.13 of this Chapter and Appendix 3.3). Drainage design measures to ensure the discharge would not result in pollution to surface water will be set out in the Construction Environmental Management Plan (CEMP) (see Appendix 3.5: Outline CEMP).
- 3.10.7 All excavated material would be carefully stored at a minimum of 10 m from, and downslope of, any adjacent watercourse, with particular care taken to prevent any risk of runoff or windborne dry sediment being discharged into the watercourses.
- 3.10.8 Engineered backfill would be placed around the cable ducts in appropriate layers to protect the cable from accidental damage, and to ensure the desired cable rating is achieved. A 75 mm minimum bedding layer of stabilised backfill would be laid in the trench to provide bedding for the ducts. Marker boards would then be placed on top of the engineered fill. Excavated material would then be placed on top of the marker board and compacted in place.
- 3.10.9 Reinstatement of the surface layers would be completed by returning the remaining excavated material to the trench in layers, in reverse order with the existing vegetation/turves placed on top of the trench where possible. The reinstatement process is discussed in paragraphs 3.13.11 to 3.13.12.
- 3.11 Land Take for Construction and Operation of the Proposed Development
- 3.11.1 Table 3.2 summarises the indicative land take associated with the Proposed Development.

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

October 2025 Chapter 3: The Proposed Development

Table 3.2: Indicative Land Take for Construction and Operation of the Proposed Development

Activity	Quantum	Construction (ha)	Operation (ha)
New Temporary Stone Access Tracks	8.72km	5.67 ha	None – all temporary land take would be reinstated post construction
New Permanent Stone Access Tracks	2.60 km	1.69 ha	1.3 ha
Temporary Construction Working Area at Poles	183 poles	3.66 ha	None – all temporary land take would be reinstated post construction
Underground Cables ⁷	1.179 km	4.72 ha	None – all temporary land take would be reinstated post construction
Permanent Land Take for 132 kV Poles	183 poles	0.165 ha (relates to poles and foundations)	0.165 (relates t o poles and foundations)
Wood Pole Terminal Hardstanding Area	2 hardstanding areas with an area of 0.04 ha	0.08 ha	0.08 ha

3.11.2 Land use impacts associated with the Proposed Development are anticipated to be minimal. The construction works may result in some temporary loss of land or access restriction; however, it is considered that this can be adequately managed through wayleave agreements with the relevant landowners. Dialogue would be maintained by the Applicant and the Principal Contractor with landowners throughout the construction period, to ensure any potential disruption to land use as a result of construction is kept to a minimum. The permanent loss of land to pole locations and permanent access tracks would be negligible and it would remain possible for grazing to continue around and under poles during their operational lifetime.

3.12 Construction Programme, Employment and Hours of Work

- 3.12.1 It is anticipated that construction of the project would take place over a 30-month period, following the granting of consents, although detailed programming of the works would be the responsibility of the Principal Contractor in agreement with SSEN Transmission.
- 3.12.2 Construction activities would in general be undertaken during daytime periods. Weekend working would also be proposed with timings to be confirmed by the Principal Contractor in due course. Construction working is likely to be during daytime periods only. Working hours are anticipated 7 days a week between approximately 07.00 to 19.00 March to September and 07.30 to 17.00 (or within daylight hours) October to February. Working hours would be confirmed by the Principal Contractor and agreed with Aberdeenshire Council as planning authority. As working hours would be during daytime periods only, any lighting requirements in hours of darkness during construction are anticipated to be minimal.

Glendye Wind Farm Overhead Line Grid Connection: EIA Report Chapter 3: The Proposed Development

⁷ Undertaken utilising the Applicant's permitted development rights (see Appendix 1.1: Permitted Development Works Appraisal).

3.12.3 SSEN Transmission considers it important to act as a responsible developer with regards to the communities which host the construction works. The delivery of a major programme of capital investment provides the opportunity to maximise support of local communities. Employment of construction staff would be the responsibility of the Contractor; however, the Applicant would encourage the Contractor to make use of suitable labour and resources from areas local to the Proposed Development where possible.

3.13 Environmental Management During Construction

3.13.1 Best practice construction measures would be implemented during the construction work. All works would be carried out in accordance with the following:

GEMPs

3.13.2 General Environmental Management Plans (GEMPs) have been developed by the Applicant. The GEMPs considered relevant for the Proposed Development are identified in Appendix 3.3.

SPPs

3.13.3 Species Protection Plans (SPPs) have been developed by the Applicant and agreed with NatureScot. These can be found in **Appendix 3.4**.

CEMP

- 3.13.4 A contractual requirement of the Contractor would be the development and implementation of a Construction Environmental Management Plan (CEMP). It is anticipated that the implementation of a CEMP would be a condition to any grant of consent. The CEMP would be developed for the Proposed Development and adopted by the successful Principal Contractor during the construction phase. The principal objective of this document is to provide information on the proposed infrastructure and to aid in avoiding, minimising and controlling adverse environmental impacts associated with construction of the Proposed Development. An Outline CEMP is included as Appendix 3.5 Outline CEMP.
- 3.13.5 Furthermore, this document would aim to define good practice, as well as specific actions required to implement mitigation identified in the EIA, the planning process and / or other licencing or consenting processes.
 Appendix 14.1 Schedule of Mitigation of this EIA Report provides a summary of all mitigation measures identified within this EIA, and this will be updated as required following further consultation and consent conditions. The CEMP would be updated during the pre-construction phase and would form part of the contractor documents between the Applicant and the appointed Principal Contractor.
- 3.13.6 The CEMP would also reference the aforementioned GEMPs and SPPs. The implementation of the CEMP would be managed on site by a suitably qualified and experienced ECoW, with support from other environmental professionals as required. SSEN Transmission would undertake monthly inspections and quarterly audits to ensure compliance with the CEMP.

Reinstatement

- 3.13.7 Reinstatement works are generally undertaken during construction (and immediate post-construction phase) and aim to address any areas of ground disturbance and changes to the landscape as part of the construction works. Such works would involve the reinstatement of areas disturbed during the construction phase.
- 3.13.8 The following paragraphs provide a summary of the working areas that would be reinstated, and typically how this would be achieved.

Reinstatement of Access Tracks

- 3.13.9 As shown in Figure 3.1a-e, new permanent and new temporary stone access tracks are required to facilitate construction and operation of the Proposed Development. Tracks to be retained would be partially reinstated on commissioning of the Proposed Development, to reduce their running width to approximately 3.5 m for use by SSEN Transmission for maintenance access. Other tracks noted as temporary would be removed and the land reinstated.
- 3.13.10 Reinstatement would involve replacement of subsoil then topsoil, with grading and installation of drainage as required, with turves replaced on top, vegetation side up. Where there are insufficient turves, the ground would be allowed to re-vegetate naturally, although some seeding may be required to stabilise sites and prevent erosion, or where landowner requirements dictate otherwise. Methods for the reinstatement of peat would be set out in the Peat Management Plan (see Appendix 9.2: Peat Management Plan).

Reinstatement of Work Areas (Poles and Underground Cables)

- 3.13.11 Soil would be stored within the working area for each element of the work during construction. Subsoils and topsoil removed to enable the construction of the foundations, or for excavation of trenches, would be temporarily stockpiled in separate bunds within the working area or corridor, with stripped turves stored vegetation side up on top of the bunds.
- 3.13.12 Reinstatement would involve replacement of subsoil, then topsoil with turves replaced vegetation side up. Where there are insufficient turves, the ground would be allowed to vegetate naturally, although some seeding may be required to stabilise sites and prevent erosion, or where landowner requirements dictate otherwise. SSEN Transmission's Biodiversity Ambition
- 3.13.13 Biodiversity Net Gain (BNG) is a process which leaves nature in a better state than before development work started. SSEN Transmission has developed a BNG toolkit based upon Natural England Biodiversity Metric^{8, 9} (in the absence of an agreed Scottish metric) which aims to quantify biodiversity based upon the value of habitats for nature. It is an efficient and effective method for demonstrating whether development projects have been able to maintain or increase the biodiversity value of a development site, following completion of construction.
- 3.13.14 The scope of the BNG assessment is to quantify the overall potential biodiversity impacts for the Proposed Development. This includes a biodiversity baseline assessment, quantification of habitat losses due to temporary works and permanent structures, and analysis of biodiversity gains following reinstatement of habitats in areas of temporary construction work and additional habitat enhancement and creation (whether onsite and/or offsite).
- 3.13.15 SSEN Transmission is committed to protecting and enhancing the environment by minimising the potential impacts from their construction and operational activities. As part of this approach, SSEN Transmission has made commitments to ultimately ensure a 10% net gain for biodiversity, in line with the Applicants biodiversity

Chapter 3: The Proposed Development

⁸ Natural England (2019) The Biodiversity Metric 2.0: auditing and accounting for biodiversity value. User Guide (Beta Version, July 2019). http://publications.naturalengland.org.uk/file/5366205450027008 (last accessed 08/10/2025)

⁹ Further versions of the Natural England Biodiversity Metric have since been published. SSEN Transmission are in the process of incorporating this into their guidance and toolkit.

ambition and environmental legacy commitments¹⁰, Sustainability Strategy¹¹ and Sustainability Plan¹². New SSEN Transmission infrastructure projects must:

- Ensure natural environment considerations are included in decision making at each stage of a project's development;
- Utilise the mitigation hierarchy to avoid impacts by consideration of biodiversity in project design;
- Positively contribute to the UN and Scottish Government Biodiversity strategies by achieving an overall Net Gain; and
- Work with their supply chain to gain the maximum biodiversity benefit during asset replacement and upgrades.
- 3.13.16 A BNG appraisal has been carried out for the Proposed Development to inform an Outline Biodiversity Enhancement Management Plan (see **Appendix 7.6** of this EIA Report). The Applicant is committed to delivering a 10% net gain for biodiversity in line with their own corporate targets. This could be achieved through a combination of on and off site BNG measures.

3.14 Operation and Maintenance

- 3.14.1 In general, OHLs require very little maintenance. Regular inspections are undertaken to identify any unacceptable deterioration of components, so that they can be replaced. From time to time, inclement weather, storms or lightning can cause damage to either the insulators or the conductors on OHLs. If conductors are damaged, short sections may have to be replaced.
- 3.14.2 During the operation of the Proposed Development, it may be necessary to manage vegetation within the OC, to maintain required safety clearance distances from infrastructure.

3.15 Decommissioning the Proposed Development

- 3.15.1 Efforts would be made to repurpose the Proposed Development for future connections prior to any decommissioning. If the Proposed Development were to be decommissioned, all components of the OHL (inclusive of steel from the poles, conductors and fittings) would be removed from site and either recycled or disposed of appropriately. A method statement would be agreed with Aberdeenshire Council setting out the detail of the decommissioning process. However, as consent is to be applied for in perpetuity, decommissioning is not presently anticipated.
- 3.15.2 The environmental effects associated with the construction phase can be considered to be representative of worst-case decommissioning effects, and therefore no separate assessment on decommissioning has been undertaken as part of this EIA Report.

transmission. co.uk/global assets/documents/sustainability-and-environment/environmental-legacy-booklet and the contraction of the contraction o

Glendye Wind Farm Overhead Line Grid Connection: EIA Report

 $^{10 \;} SSEN \; Transmission \; (2023). \; Delivering \; a \; positive \; environmental \; legacy. \; https://www.ssen-positive.environmental \; legacy. \; https://www.ssen-positive.env$

¹¹The Scottish Hydro Electric Transmission Sustainability Strategy: Delivering a smart, sustainable energy future (2018) Available at:

https://www.ssen-transmission.co.uk/media/2701/sustainability-strategy.pdf (last accessed 08/10/2025)

¹² SHE Transmission: Our Sustainability Plan: Turning Ambition into Action. (2019) Available at: https://www.ssen-

transmission.co.uk/media/3215/our-sustainability-plan-consultation-report.pdf (last accessed 08/10/2025)