Volume 5: Appendix 13.8 – Flood Modelling Study Report

CONTROL SHEET

CLIENT: MGroup

PROJECT TITLE: Kintore to Hurlie OHL
REPORT TITLE: Flood Modelling Study

PROJECT REFERENCE: 164433

DOCUMENT NUMBER: 164433/GL/W/R01

Issue 1 FINAL			Name			Sign	Date	
Issue	Prepared	d by				Or	20/08/2025	
Original	Prepared by Checked by Approved by				Or	20/08/2025		
			Or	On file				
	Issue	ssue Date Status Descripti		scription	Sig	nature		
	2 22/08/2025 FINAL Updated for design tear						Prepared By	
			following Checked					
ord							Approved	
Reco							Prepared By	
Update Record	3	22/0	08/2025	FINAL	Updated figures		Checked	
Орс							Approved	
							Prepared By	
	4						Checked	
							Approved	

This document has been prepared in accordance with the Fairhurst Quality and Environmental Management System and in accordance with the instructions of the client, MGroup for the client's sole and specific use. Any other persons who use any information contained herein do so at their own risk. Any information provided by third parties and referred to herein has not been checked or verified by Fairhurst unless otherwise expressly stated within this report.

Unless otherwise agreed in writing, all intellectual property rights in, or arising out of, or in connection with this report, are owned by Fairhurst. The client named above has a licence to copy and use this report only for the purposes for which it was provided. The licence to use and copy this report is subject to other terms and conditions agreed between Fairhurst and the client.

Fairhurst is the trading name of Fairhurst Group LLP, a limited liability partnership registered in Scotland with the registered number SO307306 and registered office at 43 George Street, Edinburgh EH2 2HT.

CONTENTS

1.	Introduction	1
2.	Hydrology	2
2.1	Catchment	2
	Peak Flow Estimation	
	Hydraulic Modelling	
3.1		
3.2	Model Roughness	7
	Boundary Conditions	
3.4		
3.5		
4.	Conclusion	

1. Introduction

Fairhurst was appointed to carry out a flood modelling study in support of the proposed development of an overhead line from Hurlie to Kintore. The proposed access track alignment for the development requires watercourse crossings as shown in **Figure 1**. The proposals are:

- Access tracks are to be set no higher than existing ground level.
- The existing permanent crossings are to be repaired with no change to the dimensions.
- The proposed temporary crossings are to be flat deck crossings spanning the existing banktops.

Hydraulic modelling has been undertaken to assess the flood risk from the Gormack Burn, Northern Tributary, Eastern Drain and North Eastern Drain.

This report forms an appendix to the EIA and presents information relevant to the Kintore to Tealing 400 kV Overhead Line (OHL) Connection (the Proposed Development). It should be read in conjunction with Volume 2, Chapter 13: Hydrology, Hydrogeology, Geology and Soils. Fairhurst are assisting MGroup with the Engineering Services relating to the new 400kV connection between Kintore and Hurlie section of the Proposed Development.

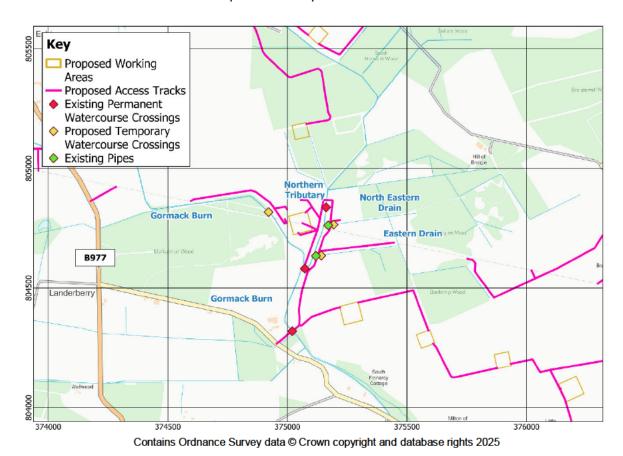
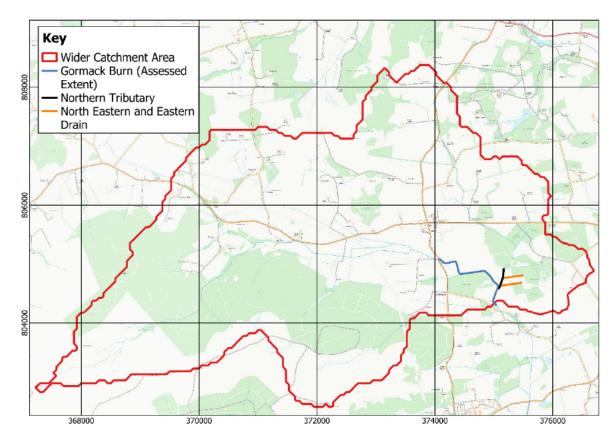


Figure 1: Proposed Site Layout



2. Hydrology

Hydraulic modelling has been undertaken to quantify existing flooding conditions from the Gormack Burn, the Northern Tributary and the Eastern and North Eastern drainage ditches.

2.1 Catchment

The Gormack Burn drains a total catchment area of 28.30 km² at the downstream end of the model extent, based on data from the Flood Estimation Handbook (FEH) Web Service website¹ (**Figure 2**).

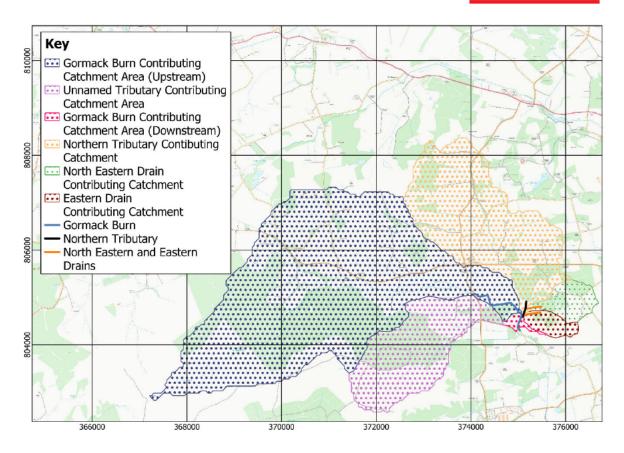

Contains Ordnance Survey data © Crown copyright and database rights 2025

Figure 2: Full Contributing Catchment Area at the Downstream Extent of the Gormack Burn

For this assessment, the hydrology of the Gormack Burn, Northern Tributary and the Eastern and North Eastern drainage ditches has been considered separately. The contributing catchment areas for each channel has been derived based on Nextmap data and these are illustrated in **Figure 3**. There is no gauge available along the channel, therefore, catchment descriptors have been obtained for the channels and used to estimate runoff. The adopted descriptors are detailed in **Table 1**.

¹ FEH Web Service: https://fehweb.ceh.ac.uk/

Contains Ordnance Survey data © Crown copyright and database rights 2025

Figure 3: Assessed Contributing Sub-Catchment Areas

Table 1: FEH Catchment Descriptors

Descriptor Name	Descriptor Value (Gormack Burn - Total)	Descriptor Value (Northern Tributary)	Descriptor Value (Eastern Drain)	Descriptor Value (North Eastern Drain)
AREA (km²)	20.42	6.34	0.43	0.76
SAAR	843	804	812	812
PROPWET (mm)	0.53	0.53	0.53	0.53
SPRHOST (%)	35.75	29.38	29.8	29.8
DPLBAR (km)	4.88	2.71	0.59	0.59
DPSBAR (m/km)	116	58	39.5	39.5
URBEXT1990	0.0014	0.0014	0	0
URBEXT2000	0.0011	0.0014	0	0
BFIHOST	0.524	0.576	0.598	0.598
BFIHOST19	0.442	0.551	0.548	0.548

2.2 Peak Flow Estimation

NPF4 requires that new developments be assessed against a 1 in 200 year flood with allowances for climate change. This section details the methods utilised to derive flows for the aforementioned subcatchments.

Catchment descriptors were utilised to derive runoff using the FEH Rainfall Runoff (FEH RR) method and the Revitalised Flood Hydrograph (ReFH2) method. The catchment areas are considered too small for the FEH statistical method to be appropriate, therefore this method has been discounted.

Results are detailed in **Table 2**. The FEH RR method results were higher than those derived in the ReFH2 method, therefore, these values were generally adopted for the assessment at all subcatchments to provide a conservative approach. Peak flows for each sub-catchment have been derived for a critical storm duration of 5.1 hours based on the critical storm duration of the full contributing catchment area.

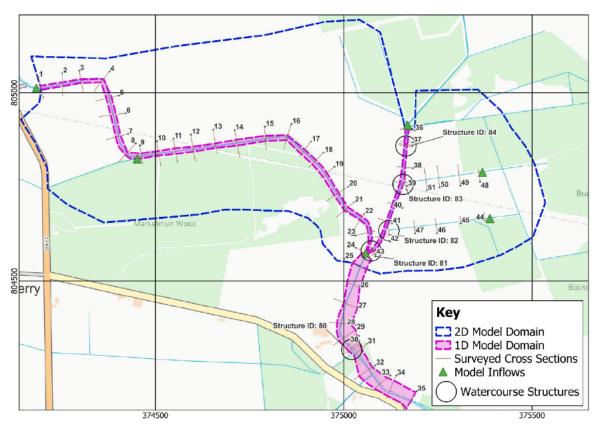
Current SEPA guidance² (2025) on applying climate change allowances in FRAs for land use planning recommends that climate change be accounted for in small catchments (less than 30 km²) by applying a defined increase in peak rainfall intensity, which varies depending on the location of the catchment. The site is situated in the North East Scotland River Basin Region so a 37% increase in rainfall has been applied to the derived 1 in 200 year flow by adjusting the design rainfall, to provide an estimate of the 1 in 200 year + climate change (+ CC) flood flows. The resulting increase in peak flows for all subcatchments, is detailed in **Table 2**.

_

² SEPA (2025). Climate change allowances for flood risk assessment in land use planning Version 6. [online] Available at: https://www.sepa.org.uk/media/jjwpxuso/climate-change-allowances-guidance-v6.pdf

Table 2: 1 in 200 year + Climate Change Peak Flow Estimates (m³/s)

Gormack Burn – Total	Gormack Burn – Total Northern Tributary		North Eastern Drain	
47.79	10.10	0.57	1.67	



3. Hydraulic Modelling

Hydraulic modelling was undertaken to provide a quantitative assessment of the fluvial flood risk for the Gormack Burn, Northern Tributary and the Eastern and North Eastern Drains using a 1D/2D model. Full details of the modelling study are presented in this section.

3.1 Model Construction

A 1D/2D linked hydraulic model of the channels has been constructed using the industry standard Flood Modeller and TUFLOW software packages. The set-up of the model is shown in **Figure 4**.

Contains Ordnance Survey data © Crown copyright and database rights 2025

Figure 4: Model Set-Up

The 1D model represents all the assessed channels with a total length of 2.51 km. This has been constructed based on surveyed cross sections (Drawing No. 6325/01, **Appendix A**). Cross section information is available at a total of 51 locations, at sections representative of channel characteristics and where there are existing structures present with the potential to influence the river hydraulics and subsequently the conveyance of water within the channel. The 1D model incorporates a number of structures which are identified in **Figure 4** and described in **Table 3**.

Table 3: Existing Watercourse Structures

Structure ID	Description & Approximate Dimensions			
84	2 m wide by 2.3 m high rectangular stone bridge			
83	600 mm diameter circular pipe			
82	500 mm diameter circular pipe 2.1 m wide by 2.18 m high rectangular stone bridge			
81				
80	5.24 m wide by 3.80 m high arched stone bridge			

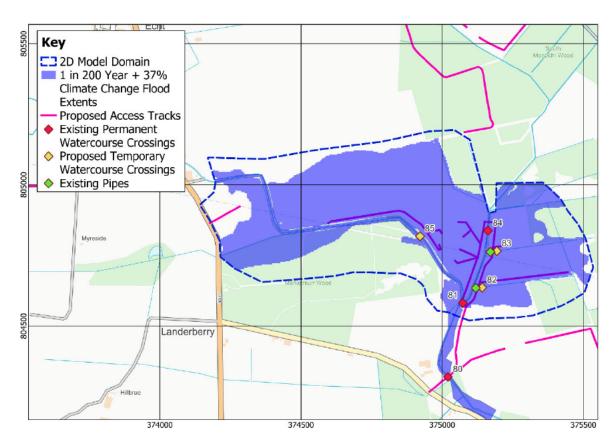
The 2D domain covers an area of 0.48 km² and has been constructed using a combination of topographic survey data within the area of interest and Nextmap data. A fixed mesh of 4 m has been applied in the discretisation of the surface topography with a 2 m grid quadtree refinement included along the banks of the Gormack Burn and the Northern Tributary. This was found sufficient to resolve flow pathways.

3.2 Model Roughness

The composition of bed material within a watercourse has a significant influence on the way that water flows through the watercourse channel. This is represented within the hydraulic model using Manning's roughness values. Manning's roughness within the 2D domain was set to a global value of 0.1 to represent agricultural crops, with higher values of 0.15 to applied to wooded areas. Throughout the 1D model a Manning's roughness value of 0.04 was used for the channel. This value is considered to be a reasonably conservative roughness representing the overhanging vegetation and presence of stones and weeds observed along the channel from the site photographs.

3.3 Boundary Conditions

Boundary condition locations are illustrated on **Figure 4**. The model inflows consist of flow-time hydrographs at the upstream end of the 1D networks, generated using flow estimation methods presented in **Section 2**. The downstream boundary is set to a normal-depth condition with the slope set to the average slope of the channel at the downstream extent.


3.4 Model Results

Model results indicate that in a 1 in 200 year plus 37% climate change scenario there would be extensive out of bank flooding within the study area upstream of the confluence of Gormack Burn and the Northern Tributary. Within this area all existing and proposed crossing locations are below the peak flood level. Existing ground levels on the route of the proposed access track are also below the flood level.

Downstream of the confluence the model results indicate that flood extents are confined to the channel and adjacent lower-lying grounds at the banks. There is an existing building to the west of the channel in this location, however this is outside of the flood risk area. The existing bridge structure downstream

of the confluence (Structure ID: 80) has capacity to convey the 1 in 200 year plus climate change flows without any surcharging.

Contains Ordnance Survey data © Crown copyright and database rights 2025

Figure 5: 200 Year + 37% Climate Change Flood Extents under Existing Conditions

Table 4: Water Levels upstream of Existing and Proposed Watercourse Structures

Structure ID	200 + Climate Change Water Level (mAOD)				
85	84.24				
84	83.84				
83	83.83 83.79 83.75				
82					
81					
80	82.77				

3.5 Development Proposals

The development proposals for access tracks and watercourse crossings in this area are:

- Access tracks are to be set no higher than existing ground level.
- The existing permanent crossings are to be repaired with no change to the dimensions.
- The proposed temporary crossings are to be flat deck crossings spanning the existing banktops.

The existing permanent bridges to be used as part of the development (80 and 81) will be repaired to provide a permanent access track for operational and maintenance use only. The existing bridge decks will be removed and replaced with a thinner deck at the same level.

All proposed crossings will be designed to maintain and not reduce the existing capacity of the channel insofar as possible. Designing the structure for a 1 in 200 year plus climate change flow would result in having to raise the bridge deck and access track which would require raised embankments (i.e. land raising in the floodplain), which is not feasible in this location.

Given the rural setting, if a flow greater than the existing capacity of the channel were to occur it would flow over the bridge decks into the adjacent farmland and then back into the channel (as it does at present) and would not increase flood risk to others. There are no nearby built receptors which are at risk and there is considered to be no increased flood risk to others.

On this basis the proposals will not result in an increase in flood risk to nearby receptors other than localised impacts to the existing surrounding agricultural land. There will be no land raising in the flood risk area and no flood protection measures will be required.

4. Conclusion

Fairhurst was appointed to carry out a flood modelling study support of the proposed development of an overhead line from Hurlie to Kintore. Hydraulic modelling has been undertaken to assess the flood risk from the Gormack Burn, Northern Tributary, Eastern Drain and North Eastern Drain.

This report forms an appendix to the EIA and presents information relevant to the Kintore to Tealing 400 kV Overhead Line (OHL) Connection (the Proposed Development). It should be read in conjunction with Volume 2, Chapter 13: Hydrology, Hydrogeology, Geology and Soils. Fairhurst are assisting MGroup with the Engineering Services relating to the new 400kV connection between Kintore and Hurlie section of the Proposed Development.

Hydraulic model results indicate that in a 1 in 200 year plus 37% climate change scenario there would be extensive out of bank flooding within the study area upstream of the confluence of Gormack Burn and the Northern Tributary. Within this area all existing and proposed crossing locations are below the peak flood level. Existing ground levels on the route of the proposed access track are also below the flood level.

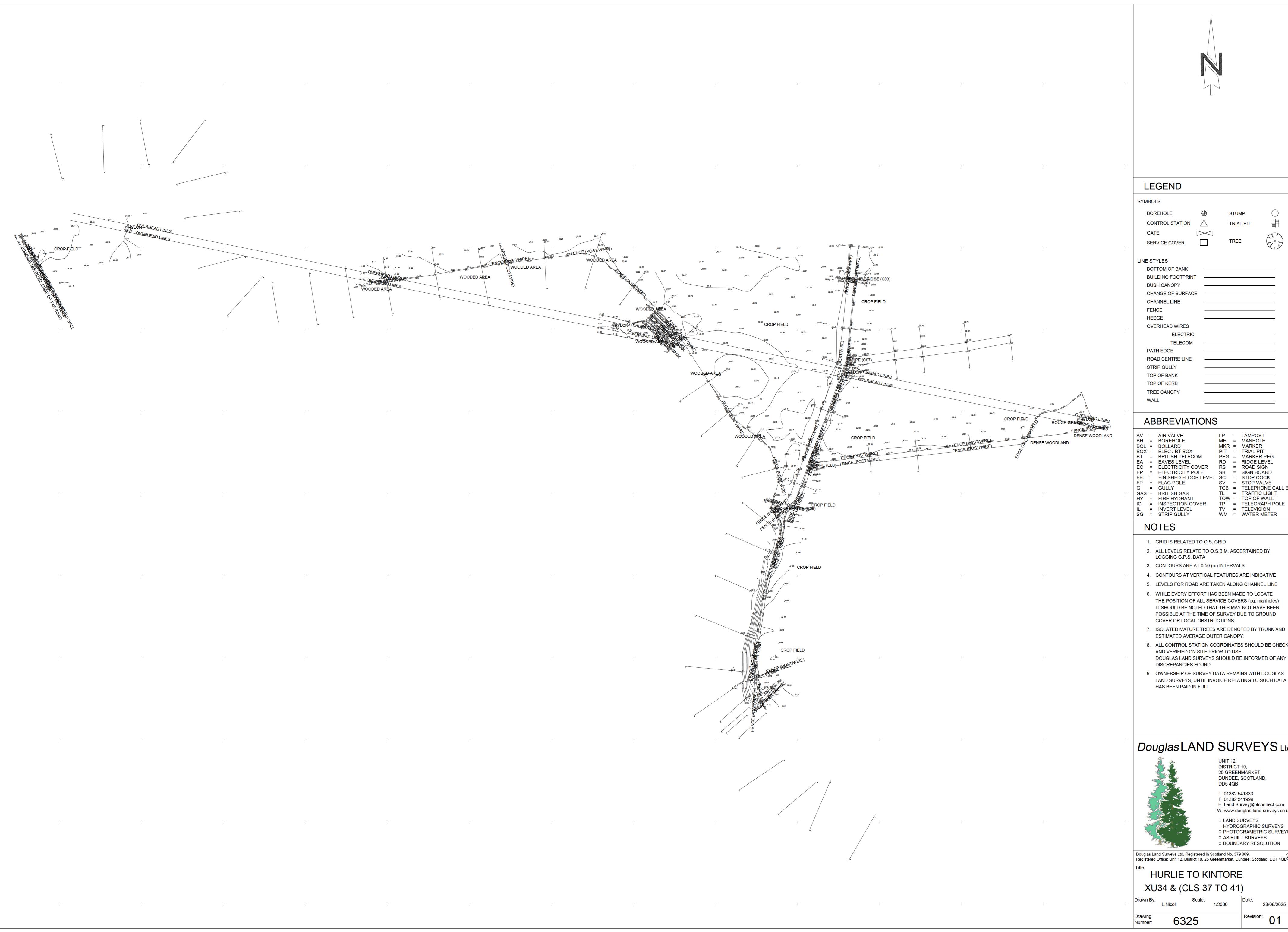
Downstream of the confluence the model results indicate that flood extents are confined to the channel and adjacent lower-lying grounds at the banks. There is an existing building to the west of the channel in this location, however this is outside of the flood risk area. The existing bridge structure downstream of the confluence (Structure ID: 80) has capacity to convey the 1 in 200 year plus climate change flows without any surcharging.

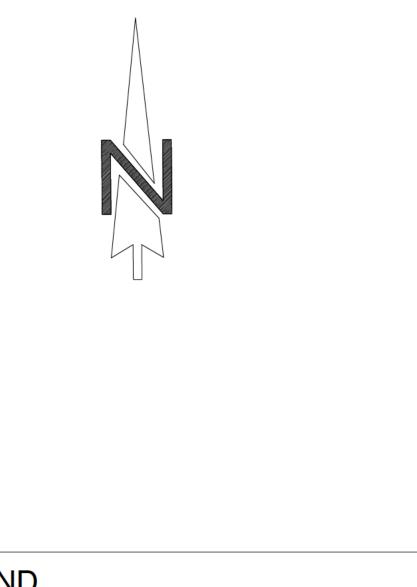
The development proposals for access tracks and watercourse crossings in this area are:

- Access tracks are to be set no higher than existing ground level.
- The existing permanent crossings are to be repaired with no change to the dimensions.
- The proposed temporary crossings are to be flat deck crossings spanning the existing banktops.

The existing permanent bridges to be used as part of the development (80 and 81) will be repaired to provide a permanent access track for operational and maintenance use only. The existing bridge decks will be removed and replaced with a thinner deck at the same level.

All proposed crossings will be designed to maintain and not reduce the existing capacity of the channel insofar as possible. Designing the structure for a 1 in 200 year plus climate change flow would result in having to raise the bridge deck and access track which would require raised embankments (i.e. land raising in the floodplain), which is not feasible in this location.


Given the rural setting, if a flow greater than the existing capacity of the channel were to occur it would flow over the bridge decks into the adjacent farmland and then back into the channel (as it does at present) and would not increase flood risk to others. There are no nearby built receptors which are at risk and there is considered to be no increased flood risk to others.


On this basis the proposals will not result in an increase in flood risk to nearby receptors other than localised impacts to the existing surrounding agricultural land. There will be no land raising in the flood risk area and no flood protection measures will be required.

Appendix A

Topographic Survey

	LEGEND			
	SYMBOLS			
	BOREHOLE		STUMP	\bigcirc
	CONTROL STATION /	\triangle	TRIAL PIT	
	GATE	\sim		
+	SERVICE COVER [TREE	
	LINE STYLES			
	BOTTOM OF BANK			
	BUILDING FOOTPRINT			
	BUSH CANOPY			
	CHANGE OF SURFACE			
	CHANNEL LINE			
	FENCE			
	HEDGE			
+	OVERHEAD WIRES			
	ELECTRIC			
	TELECOM			
	PATH EDGE			
	ROAD CENTRE LINE			
	STRIP GULLY			
	TOP OF BANK			
	TOP OF KERB			
	TREE CANOPY			
	WALL			
+				

TCB = TELEPHONE CALL BOX TL = TRAFFIC LIGHT TOW = TOP OF WALL TP = TELEGRAPH POLE TV = TELEVISION WM = WATER METER

1. GRID IS RELATED TO O.S. GRID

- 2. ALL LEVELS RELATE TO O.S.B.M. ASCERTAINED BY
- 3. CONTOURS ARE AT 0.50 (m) INTERVALS
- 4. CONTOURS AT VERTICAL FEATURES ARE INDICATIVE
- 5. LEVELS FOR ROAD ARE TAKEN ALONG CHANNEL LINE 6. WHILE EVERY EFFORT HAS BEEN MADE TO LOCATE
- POSSIBLE AT THE TIME OF SURVEY DUE TO GROUND COVER OR LOCAL OBSTRUCTIONS.
- ESTIMATED AVERAGE OUTER CANOPY. 8. ALL CONTROL STATION COORDINATES SHOULD BE CHECKED
- AND VERIFIED ON SITE PRIOR TO USE. DOUGLAS LAND SURVEYS SHOULD BE INFORMED OF ANY
- 9. OWNERSHIP OF SURVEY DATA REMAINS WITH DOUGLAS LAND SURVEYS, UNTIL INVOICE RELATING TO SUCH DATA

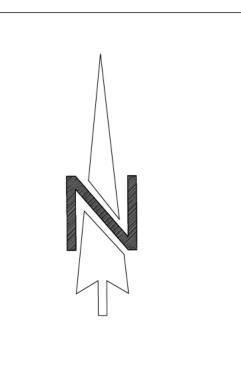
Douglas LAND SURVEYS Ltd.

UNIT 12, DISTRICT 10, 25 GREENMARKET, DUNDEE, SCOTLAND, DD5 4QB

T. 01382 541333 F. 01382 541999 E. Land.Survey@btconnect.com W. www.douglas-land-surveys.co.uk

□ LAND SURVEYS □ HYDROGRAPHIC SURVEYS □ PHOTOGRAMETRIC SURVEYS □ AS BUILT SURVEYS□ BOUNDARY RESOLUTION

Douglas Land Surveys Ltd. Registered in Scotland No. 379 369.


Registered Office: Unit 12, District 10, 25 Greenmarket, Dundee, Scotland, DD1 4QB

XU34 & (CLS 37 TO 41)

Revision: 01

23/06/2025

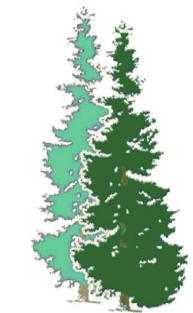
LEGEND			
SYMBOLS			
BOREHOLE		STUMP	\subset
CONTROL STATION	\triangle	TRIAL PIT	
GATE			
SERVICE COVER		TREE	
LINE STYLES			
BOTTOM OF BANK			
BUILDING FOOTPRINT	г —		
BUSH CANOPY			
CHANGE OF SURFACE	E		
CHANNEL LINE			
FENCE			
HEDGE			
OVERHEAD WIRES			
ELECTRIC			
TELECOM			
PATH EDGE			
ROAD CENTRE LINE			
STRIP GULLY			
TOP OF BANK	-		
TOP OF KERB			
TREE CANOPY			
WALL			

ABBREVIATIONS

ΑV	=	AIR VALVE	LP	=	LAMPOST
BH	=	BOREHOLE	MH	=	MANHOLE
BOL	=	BOLLARD	MKR	=	MARKER
BOX	=	ELEC / BT BOX	PIT	=	TRIAL PIT
BT	=	BRITISH TELECOM	PEG	=	MARKER PEG
EA	=	EAVES LEVEL	RD	=	RIDGE LEVEL

SV = STOP VALVE

EC = ELECTRICITY COVER RS = ROAD SIGN
EP = ELECTRICITY POLE SB = SIGN BOARD
FFL = FINISHED FLOOR LEVEL SC = STOP COCK FP = FLAG POLE
G = GULLY
GAS = BRITISH GAS


TCB = TELEPHONE CALL BOX TL = TRAFFIC LIGHT TOW = TOP OF WALL HY = FIRE HYDRANT TP = TELEGRAPH POLE IC = INSPECTION COVER TV = TELEVISION IL = INVERT LEVEL SG = STRIP GULLY WM = WATER METER

NOTES

1. GRID IS RELATED TO O.S. GRID

- 2. ALL LEVELS RELATE TO O.S.B.M. ASCERTAINED BY LOGGING G.P.S. DATA
- 3. CONTOURS ARE AT 0.50 (m) INTERVALS
- 4. CONTOURS AT VERTICAL FEATURES ARE INDICATIVE
- 5. LEVELS FOR ROAD ARE TAKEN ALONG CHANNEL LINE
- 6. WHILE EVERY EFFORT HAS BEEN MADE TO LOCATE THE POSITION OF ALL SERVICE COVERS (eg. manholes) IT SHOULD BE NOTED THAT THIS MAY NOT HAVE BEEN POSSIBLE AT THE TIME OF SURVEY DUE TO GROUND COVER OR LOCAL OBSTRUCTIONS.
- 7. ISOLATED MATURE TREES ARE DENOTED BY TRUNK AND ESTIMATED AVERAGE OUTER CANOPY.
- 8. ALL CONTROL STATION COORDINATES SHOULD BE CHECKED AND VERIFIED ON SITE PRIOR TO USE. DOUGLAS LAND SURVEYS SHOULD BE INFORMED OF ANY DISCREPANCIES FOUND.
- 9. OWNERSHIP OF SURVEY DATA REMAINS WITH DOUGLAS LAND SURVEYS, UNTIL INVOICE RELATING TO SUCH DATA HAS BEEN PAID IN FULL.

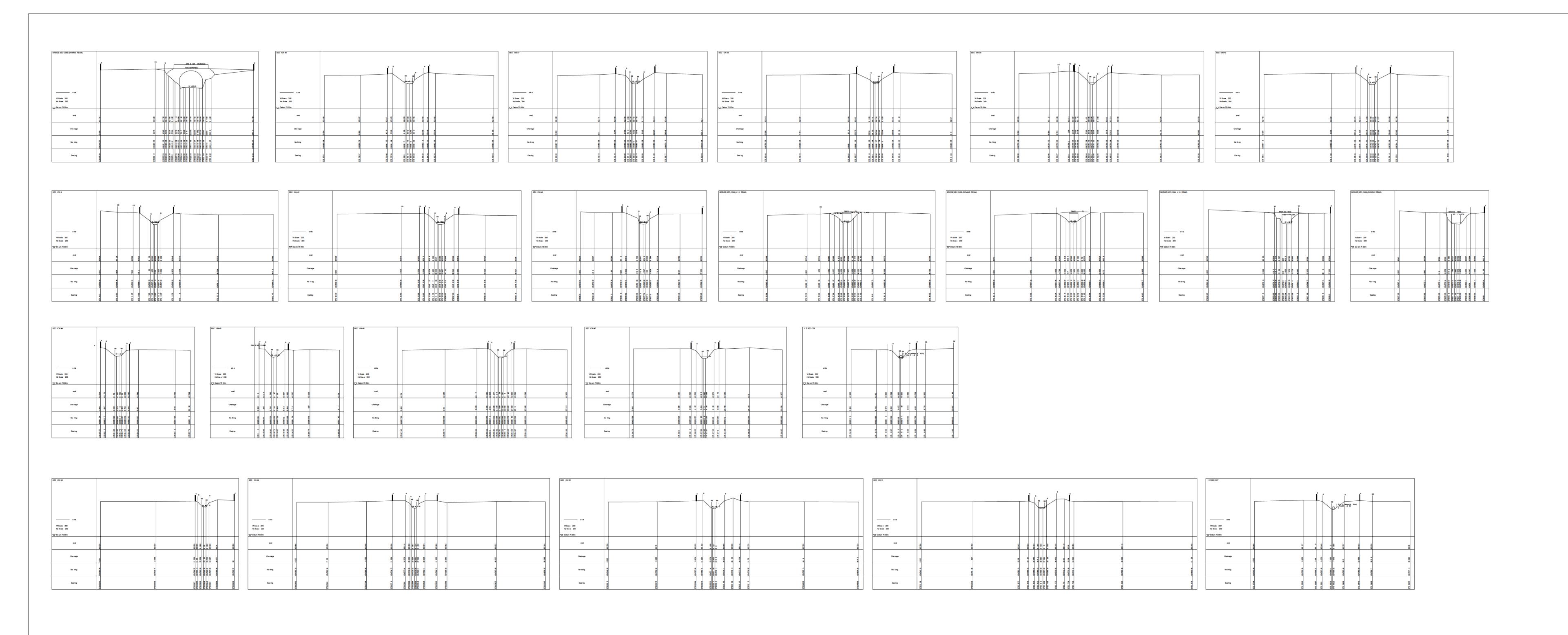
Douglas LAND SURVEYS Ltd.

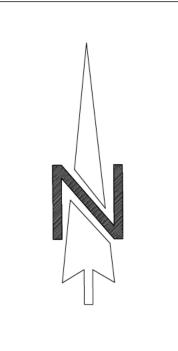
UNIT 12, DISTRICT 10, 25 GREENMARKET, DUNDEE, SCOTLAND, DD5 4QB T. 01382 541333

F. 01382 541999 E. Land.Survey@btconnect.com W. www.douglas-land-surveys.co.uk

□ LAND SURVEYS ☐ HYDROGRAPHIC SURVEYS □ PHOTOGRAMETRIC SURVEYS □ AS BUILT SURVEYS □ BOUNDARY RESOLUTION

23/06/2025


Douglas Land Surveys Ltd. Registered in Scotland No. 379 369.


Registered Office: Unit 12, District 10, 25 Greenmarket, Dundee, Scotland, DD1 4QB

HURLIE TO KINTORE XU34 & (CLS 37 TO 41)

1/500 L.Nicoll

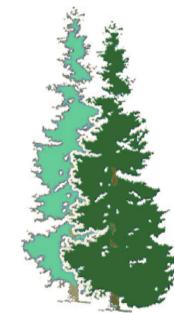
Revision: 6325

LEGEND			
SYMBOLS			
BOREHOLE		STUMP	\bigcirc
CONTROL STATION	\triangle	TRIAL PIT	
GATE			
SERVICE COVER		TREE	
LINE STYLES			
BOTTOM OF BANK			
BUILDING FOOTPRIN	т —		
BUSH CANOPY			
CHANGE OF SURFAC	CE		
CHANNEL LINE			
FENCE			
HEDGE			
OVERHEAD WIRES			
ELECTRIC	· —		
TELECOM			
PATH EDGE			
ROAD CENTRE LINE			
STRIP GULLY			
TOP OF BANK			
TOP OF KERB TREE CANOPY			

		,			2,
BH	=	BOREHOLE	MH	=	MANHOLE
BOL	=	BOLLARD	MKR	=	MARKER
BOX	=	ELEC / BT BOX	PIT	=	TRIAL PIT
BT	=	BRITISH TELECOM	PEG	=	MARKER PEG
EA	=	EAVES LEVEL	RD	=	RIDGE LEVEL
EC	=	ELECTRICITY COVER	RS	=	ROAD SIGN
EP	=	ELECTRICITY POLE	SB	=	SIGN BOARD
FFL	=	FINISHED FLOOR LEVEL	SC	=	STOP COCK
FP	=	FLAG POLE	SV	=	STOP VALVE
G	=	GULLY	TCB	=	TELEPHONE CALL BOX
GAS	=	BRITISH GAS	TL	=	TRAFFIC LIGHT
HY	=	FIRE HYDRANT	TOW	=	TOP OF WALL
IC	=	INSPECTION COVER	TP	=	TELEGRAPH POLE
IL	=	INVERT LEVEL	TV	=	TELEVISION
SG	=	STRIP GULLY	WM	=	WATER METER

LP = LAMPOST

NOTES


1. GRID IS RELATED TO O.S. GRID

ABBREVIATIONS

AV = AIR VALVE

- 2. ALL LEVELS RELATE TO O.S.B.M. ASCERTAINED BY LOGGING G.P.S. DATA
- 3. CONTOURS ARE AT 0.50 (m) INTERVALS
- 4. CONTOURS AT VERTICAL FEATURES ARE INDICATIVE
- 5. LEVELS FOR ROAD ARE TAKEN ALONG CHANNEL LINE
- 6. WHILE EVERY EFFORT HAS BEEN MADE TO LOCATE THE POSITION OF ALL SERVICE COVERS (eg. manholes) IT SHOULD BE NOTED THAT THIS MAY NOT HAVE BEEN POSSIBLE AT THE TIME OF SURVEY DUE TO GROUND COVER OR LOCAL OBSTRUCTIONS.
- 7. ISOLATED MATURE TREES ARE DENOTED BY TRUNK AND ESTIMATED AVERAGE OUTER CANOPY.
- 8. ALL CONTROL STATION COORDINATES SHOULD BE CHECKED AND VERIFIED ON SITE PRIOR TO USE. DOUGLAS LAND SURVEYS SHOULD BE INFORMED OF ANY DISCREPANCIES FOUND.
- 9. OWNERSHIP OF SURVEY DATA REMAINS WITH DOUGLAS LAND SURVEYS, UNTIL INVOICE RELATING TO SUCH DATA HAS BEEN PAID IN FULL.

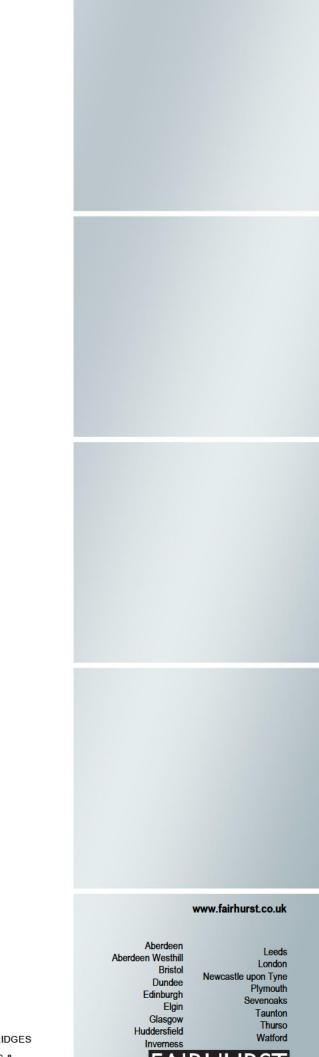
Douglas LAND SURVEYS Ltd.

UNIT 12, DISTRICT 10, 25 GREENMARKET, DUNDEE, SCOTLAND, DD5 4QB

T. 01382 541333 F. 01382 541999 E. Land.Survey@btconnect.com W. www.douglas-land-surveys.co.uk

□ LAND SURVEYS HYDROGRAPHIC SURVEYS □ PHOTOGRAMETRIC SURVEYS □ AS BUILT SURVEYS □ BOUNDARY RESOLUTION

23/06/2025


Douglas Land Surveys Ltd. Registered in Scotland No. 379 369.

Registered Office: Unit 12, District 10, 25 Greenmarket, Dundee, Scotland, DD1 4QB

HURLIE TO KINTORE XU34 & (CLS 37 TO 41)

1/500 L.Nicoll

Revision: 6325

CIVIL ENGINEERING • STRUCTURAL ENGINEERING • TRANSPORTATION • ROADS & BRIDGES PORTS & HARBOURS • GEOTECHNICAL & ENVIRONMENTAL ENGINEERING • PLANNING &

DEVELOPMENT • WATER SERVICES • HEALTH & SAFETY / CDM SERVICES