

Fanellan Hub 400 kV Substation and Converter Station Environmental Impact Assessment Report Volume 4 | Technical Appendices

Appendix 13.3 – Drainage Impact Assessment

February 2025

Fanellan

400kV Switching Station and HVDC Converter Station

Drainage Impact Assessment LT459-SWE-XX-XX-T-W-1001

sweco 🖄

Table of contents

1	Introduction5					
	1.1	Site Lo	ocation	5		
	1.2	Purpos	se of this Report	5		
2	Exist	ing Site	Description	6		
	2.1	Site To	pography	6		
	2.2	Ground	d Conditions	6		
	2.3	Waterc	courses and Existing Drainage Features	7		
		2.3.1	Watercourses	7		
		2.3.2	Drainage Features	8		
	2.4	Flood F	Risk	8		
3	Prop	osed De	velopment	9		
4	Surfa	ice Wate	er Drainage	10		
	4.1	Use of	SuDS Principles	10		
	4.2	Design	Parameters	11		
	4.3	Draina	ge Outfall	12		
	4.4	SuDS /	Attenuation Areas	12		
		4.4.1	Switching Station Platform Area	12		
		4.4.2	Convertor Station Platform Area	14		
		4.4.3	Sub-Station Access Road	14		
	4.5	Oil Pol	lution Control	15		
5	Grou	nd Wate	er Drainage	16		
6	Foul	Water D	esign	16		
7	Temp	oorary D	rainage During Construction	16		
8	Wate	r Quality	/			
9	Oper	ation and	d Maintenance			
	9.1	Filter D	Drains	19		
	9.2	Packag	ged (Industry Standard) Treatment Plants			
	9.3	Swales	۶ / Ditches			
	9.4	Detent	ION BASINS	21		
10	Conc	lusions.		23		

List of Appendices

- Appendix A Site Layout Drawings
- Appendix B Drainage Drawings
- Appendix C Greenfield Runoff Rates
- Appendix D Microdrainage Calculations

SWECO 🖄

List of Tables

Table 4-1 - Requirements of SuDS Manual C753	.10
Table 4-2. Drainage Design Parameters	.11
Table 4-3 Outfall Hierarchy	.12
Table 4-4 Switching Station Catchment Discharge Rates	.13
Table 4-5 Convertor Station Discharge Rates	.14
Table 4-6 Access Road Discharge Rates	.14
Table 8-1 - Details of filter drains maintenance	.19
Table 8-2 - Details of swales / ditch maintenance	.20
Table 8-3 – Details of detention basins maintenance	.21

1 Introduction

This Level 3 Drainage Impact Assessment (DIA) has been produced to identify any drainage issues which may arise upon the development of the Fanellan 400kV Switching Station and HVDC Convertor Station, on behalf of Scottish and Southern Energy Networks (SSEN) Transmission. This report will assess the impact of both foul and surface water drainage considering relevant information from the Drainage Strategy (DS). For the Drainage Strategy, see document LT459-SWE-XX-XX-T-C-0501. MicroDrainage was used to model the SuDS network.

This DIA covers the drainage system designed by Sweco only but allows for connection of third party designed elements to be integrated at a later date. Third party design includes roof drainage of the proposed buildings.

1.1 Site Location

The proposed Fanellan development lies approximately 5km southwest of Beauly within the Highland Council local authority. The OS Grid northings and eastings of the site are approximately 248404, 843094 (to the middle of the proposed development site). Access to the site can be taken from the A831 via the A862 and C1106 road from the Black Bridge. Refer to site layout drawing LT459-SWE-XX-XX-D-X-0001 in Appendix A for details and Figure 1-1.

Figure 1-1. Site location to the south of the River Beauly

1.2 Purpose of this Report

The purpose of this DIA report is to detail the impact that proposed drainage will have on the Fanellan site. It explores the methodology of dealing with the surface water run-off and foul water from the proposed site. Furthermore, it gives details on managing groundwater and temporary drainage during construction (to

ensure that this does not contribute to flooding), and the maintenance of the completed network. The report has been prepared considering the requirements and recommendations of the following documents:

- SEPA Water Assessment and Drainage Assessment Guide
- The Highland Council Flood Risk and Drainage Impact
- The Highland Council Flood Risk and Drainage Impact Assessment: Supplementary Guidance
- CIRIA SuDS Manual C753
- SSEN Earthworks Specification SP-NET-CIV-501
- SSEN Drainage Specification SP-NET-CIV-502
- SSEN Pavements and Roadways Specification SP-NET-CIV-503
- SSE HVDC Standardisation Pre Riba-3 (PMI) Works (31st August 2023)
- Scottish Water Record Drawings

As well as the above noted sources of information, the DIA also relies on information from the DS.

2 Existing Site Description

The proposed Fanellan site is located on a mixture of arable land and grassland for agricultural use. The site is bordered to the north and west by mature trees of varying species and to the south and east by the existing unclassified council adopted road. The topography of the site generally falls from east to west towards the road, however, there are a number of undulations or 'knowes' and localised 'gully' type features to the north and southwest of the site. Within the proposed site boundary, there are existing dwelling cottages and farm building as well as unbound access tracks providing access to various points around the site.

2.1 Site Topography

A drone survey was carried out of the site by Cyber Hawk in June 2023 which provided a DTM point cloud survey, included in Appendix B. The highest point of the proposed site is approximately 147m AOD, at the mid-point of the site, falling to the lowest point approximately at 90m AOD at the northeast corner.

There are several drainage features located within the proposed site boundary in the form of land ditches or natural gullies which remove both surface water run-off and the ground water table.

2.2 Ground Conditions

Geotechnical Investigation (GI) was undertaken in August and September 2023. At the time of writing the DIA, the formal Factual Report has not been issued. The proposed development site consists of shallow superficials consisting of sand and cemented glacial till. A localised area of peat was encountered at one trial pit. Rock was encountered throughout the site between a range of 92.5m AOD to 146m AOD.

Over the course of the GI works, groundwater was struck at 21 locations within the proposed development site. The groundwater was encountered at its highest level (125m – 130m AOD) towards the west of the site. The proposed platform level is 127m AOD, therefore, groundwater needs to be managed and drained from the platform. Currently, groundwater monitoring is ongoing at 3 locations and results will be provided in the Ground Investigation Report (GIR) along with a description of groundwater conditions encountered.

Groundwater was encountered both in the superficial Glacial Till and within fractured conglomerate bedrock. Due to the depth of the cuttings required for construction of Fanellan, and the potential inflow from fractured bedrock, this will need to be mitigated through the DS as described in Section 6.

2.3 Watercourses and Existing Drainage Features

2.3.1 Watercourses

The River Beauly passes the proposed development to the north and west, as it makes its way into the Beauly Firth, but is located approximately 725m beyond the proposed site boundary at its closest point.

There are a number of minor un-named watercourses / drainage ditches which are in close proximity to the site, all of which are culverted under the existing unclassified road running parallel to the eastern side of the site.

The first watercourse / drainage ditch is culverted under the road at Easting 248389 and Northing 842226 and flows in an easterly direction eventually discharging into the Lonbuie Burn. The watercourse / drainage ditch appears to drain to a naturally low-lying area of the site.

The second watercourse / drainage ditch is again culverted under the existing public road and flows in a northerly direction towards the River Beauly. The approximate Easting and Northing are 249077 and 843114, where it passes under the road. The watercourse / drainage ditch receives several ditches which drain the road and surrounding land.

A third un-named watercourse / drainage ditch is located at approximately Easting 248590 and Northing 842442 and is culverted under the existing public road. The watercourse flows in an easterly direction and eventually discharges to the Lonbuie Burn.

None of the watercourse / drainage ditches are monitored on the SEPA flood maps shown in Figure 2-1. Reference should be made to drainage drawings LT459-SWE-XX-XX-D-X-0501 and LT459-SWE-XX-XX-D-X-0502 in Appendix B which show the locations of the drainage watercourses / drainage ditches and an overview of the proposed surface water drainage network.

Figure 2-1 - SEPA flood map, taken from the Drainage Strategy

2.3.2 Drainage Features

There are a number of existing drainage features which comprise of land ditches used to cut-off the overland flows coming off the existing fields. There are also cut-off ditches along the existing road, however, many sections of these have no formal outfall and appear to empty via infiltration. The ditches are typically cut with near vertical side slopes.

To the southwest of the site, there is an existing small lochan which is located at Easting 247522 and Northing 842738 which part of the existing catchment of the site drains into. The lochan is topped up by the natural catchment draining into it and is a habitat of fish. The lochan is noted on the SEPA flood map shown in Figure 2-1. Lovat Estates currently owns the drainage in the undeveloped, greenfield area. There have been no existing drainage plans made available for the site.

There is an existing Scottish Water surface water main running along the Northeast of the site. For details on how this ties into the proposed drainage network, see LT459-SWE-XX-XX-D-X-0505 in Appendix B.

2.4 Flood Risk

A review of available information relating to flood risk of the site has been undertaken with the SEPA Flood Maps, Figure 2-1, confirming no river flooding present within the scheme extents. Some surface water

flooding is noted in the map; however, this is considered minor in nature and is not located where the main substation is proposed to be located.

A full Flood Risk Assessment (FRA), document reference LT459-SWE-XX-XX-T-W-1002, has been undertaken and is to be read in conjunction with this DIA.

3 Proposed Development

The proposed Fanellan development shown in Figure 3-1 (and site plans, see LT459-SWE-XX-XX-DX-X-0001, LT459-SWE-XX-XX-DX-X-0002 and LT459-SWE-XX-XX-D-X-0003 of Appendix A) consists of a 240,000m² platform area with associated 400kV substation and associated building constructed on top. The area is split into two 'halves': the proposed switching station and the proposed convertor station. The planning boundary area encompasses 233Ha post development. The earthworks platform sits at a level of 127m AOD and incorporates a number of landforms (landscape bunds) which shield the buildings and associated substation infrastructure from view.

Figure 3-1. Fanellan Site Layout

Access to the substation will be via a 5m (minimum) wide asphalt access road and there will be a series of internal asphalt bound access roads within the perimeter of the substation. The switching station area of the platform will be formed of a build-up of a minimum of 1m crushed rock and will be predominately free draining material. The convertor station area of the substation will consist of several buildings and hardstanding areas

which will be impermeable. There will be welfare buildings included within the development which will be supplied with drinking water and there will also be a foul water system included.

The substation will be surrounded by a security perimeter fence and there will be associated unbound access tracks providing maintenance access to overhead line towers and existing rights of access.

4 Surface Water Drainage

4.1 Use of SuDS Principles

The main impermeable areas on site are the HVDC convertor station, comprising of building roofs and hard standing areas as well as the granular platform where the switching station is situated. Also, surface water will be generated from associated access roads and tracks.

All surface water generated by the site will be drained using Sustainable Drainage Systems (SuDS) principles. This is in accordance with the requirement for SuDS in all new developments in Scotland according to The Water Environment (Controlled Activities) (Scotland) Regulations 2011. This will follow the requirements of the SuDS Manual C753 noted in Table 4.1.

Table 4.1 -	Requirements	of SuDS	Manual C753
1 4.1 -	Requirements	01 3003	Mariual Cr55

Prevention	Prevent run-off of water with particular focus on polluted water.
Control at Source	Control the run-off where it occurs (tanks or pipes)
Control at Site	Control the run-off within the development boundary (swales basins, ponds)
Control in Region	Control the run-off from several sites within the vicinity of the developments (large wetlands, reservoirs)

Further principles are noted below to ensure the safe operation of the final development:

- Removal of surface water from the access roads and hardstanding areas as quickly as possible to provide safety and to minimise nuisance to the travelling public.
- Provision of effective sub-surface drainage to maximise longevity of hardstanding areas and associated earthworks.
- Minimisation of the impact of the runoff on the receiving environment in terms of flood risk and water quality.
- Roofs, earthworks, access roads and other associated features are effectively drained. •
- Consideration is given to future maintenance and operation of the systems. •
- Climate change and possible changes in impermeable area is accounted for.
- The generation of waste during construction and operation is minimised.

LT459-SWE-XX-XX-D-X-0503 in Appendix B gives typical drainage details of a SuDS attenuation and treatment basin and wet swale, including maximum water levels. This drawing also includes typical details for filter drains, cut-off ditches and oil traps. These typical details were used to design the appropriate surface water drainage network for the Fanellan site. This is in accordance with recognised design manuals. All surface water discharges will receive appropriate levels of treatment and attenuation to comply with General Binding Rules (GBR).

4.2 Design Parameters

The overarching requirements of SSEN Drainage Specification, document number SP-NET-CIV-502, are as follows:

- 1 in 200-year rainfall return period protection for operations areas;
- 1 in 1000-year rainfall return period protection for critical equipment;
- 1 in 200-year rainfall return period protection for off-site flooding.

For the purposes of the Fanellan development, it is classed as critical equipment, therefore at the 1 in 1000year return period the maximum depth of water above the finished level of the platform shall be less than 100mm. This 100mm value comes from the minimum level above the finished platform level upon which floor levels will be located. It will stop any occurrences of surface water flooding from entering any buildings.

Climate change will be added to the drainage modelling to ensure a robust system is put in place, in line with SEPA climate change guidance. The SEPA climate change allowances for flood risk assessment in land use planning, version 3, Table 2 recommends for the North highland river basin region a 42% uplift should be applied to all modelling to ensure the system is fit for future increased rainfall events.

Pipe networks and attenuation features shall be analysed using FEH 22 rainfall data for storm durations between 15 minutes to 10080 minutes.

The drainage design parameters follow the guidance set out in SuDS Manual, Sewers for Scotland v4.0 and SSEN specific guidance and are summarised in Table 4.2, below:

Parameter	Value
Pipe networks will not surcharge above manhole covers	200 year + 42% climate change
No flooding above 100mm on platform finished level	1000 year + 42% climate change
No flooding of cut-off ditches and earthworks ditches	200 year + 42% climate change
No flooding of attenuation features	200 year + 42% climate change
Minimum pipe velocity from paved areas	0.75 metre/second
Minimum vegetated SuDs system velocity	0.3 metre/second
Roughness value (k_s) for carrier drains	0.6mm
Roughness value (k_s) for combined drains	1.5mm
Global Time of Entry	5 min
Manning's (n) for new ditches	0.045
Manning's (n) for new wet swales	0.100
Minimum freeboard to open attenuation features	300mm

Table 4.2. Drainage Design Parameters

All SuDS principles used for the Fanellan drainage scheme conform to General Binding Rules 10, 11 and 21 of the Water Environment (Controlled Activities) (Scotland) Regulations 2011 (CAR). The SuDS schemes in this development consider current legislation such as CIRIA Publication C697 – The SuDS Manual.

4.3 Drainage Outfall

The options for dealing with the flows from surface water outfalls are based on the SuDS Manual C753 hierarchy as noted in Table 4.3 below.

Table 4.3 Outfall Hierarchy

Option	Suitability	Comment on Suitability
Infiltrate run-off into the ground	The BRE soakaway test undertaken during the Geotechnical Investigation completed in September 2023 confirmed infiltration rates were visually confirmed as being poor on site.	Not feasible to use this method of outfall due to poor infiltration results.
Discharge run-off to surface watercourse	There are a number of unnamed watercourses located at the extremities of the site. Based on the proposed development levels, outfalls can be achieved to these watercourses.	This is feasible and allows for a number of outfalls if it is preferred to split up the development catchment.
Discharge run-off to surface or combined sewers	There are no Scottish Water sewers in the vicinity of the scheme.	Not feasible.
Discharge run-off into existing water features such as ponds	There are existing pond features in close proximity to the site which currently control run-off. These are located in private land and would need legal agreement to discharge into them.	Not feasible due to the ownership issues associated with this.

4.4 SuDS Attenuation Areas

The outline drainage network and attenuation system are designed in accordance the SuDS Manual and The Highland Council specific flooding guidance. All SuDS attenuation features shall store surface water run-off to the 1 in 200-year return period rainfall event + 42% climate change. Further checks have been undertaken using the 1000-year return period to consider any adverse impacts on the surrounding area and identify exceedance routes. There are several catchment areas on the site which impact the Standard Average Annual Rainfall (SAAR). Data has been assessed using a number of FEH 2013 point data locations to accurately model each of the individual catchments at that location This results in differences in the calculated greenfield run-off rates for the catchments draining to each SuDS attenuation feature. Commentary is provided below on the selection of the discharge rates.

Due to the scale of the platform, it is proposed to separate the switching station and convertor station areas into separate catchments for attenuation purposes. This ensures that the catchments match (as far as possible) the pre-development discharge rates and ensure there is no increased downstream flood risk to the receiving watercourses. Due to the position of the site (broadly at the high point of the surrounding land), the watercourses are small in nature and cannot accept large discharges of run-off. All roads have suitable gradients and crossfalls to prevent water ponding.

Sweco are not responsible for the internal drainage of the site. A third party will undertake the roof drainage, and this will outfall to the Sweco system. Sweco does not propose to produce long sections for the drainage unless formally requested by the Highland Council as the current proposals are for planning and subject to development during the detailed design phase.

4.4.1 Switching Station Platform Area

The switching station area of the platform is approximately 15ha not including engineered slopes and natural catchments. It is proposed to split this area into two catchments for attenuation purposes and to match the existing catchment area as much as possible.

The greenfield run-off has been calculated for the pre-development area where the platform is located and is shown in Table 4-4 for either Q_{bar} or Q_{med} depending on the analysis used. A number of calculations methods have been used to compare greenfield run-off rates. As the ReFH 2 method is the most favoured under the SuDS Manual, analysis is required to be undertaken to compare the run-off rates with historical methods. The catchment areas noted in Table 4-4 include run-off from any verges, earthworks slopes and landscaping areas. The discharge rate for any SuDS feature shall be limited to this using a means of flow control (vortex control or orifice plate). Analysis has been undertaken to ensure any exceedance events from the attenuation features do not cause any detriment at the 1 in 200-year return period including 42% climate change.. It is proposed to use the 1m granular make-up of the platform to help attenuate rainfall over the platform area due to its size. It has been considered the granular platform make-up will have a voids ratio of 30% which will be suitable for storing run-off in the short term. The proposed areas for the attenuation within the platform are shown in the drainage drawings in Appendix B.

Table 4.4 Switching Station Catchment Discharge Rates

Catchment Area (ha)	IH 124 Discharge Rate Return Period (litres / second)	ReFH 2 Discharge Rates (litres / second)	FEH Discharge Rates (litres / second)	Design Discharge Rate (litres / second)	Storage Volume Provided (m ³⁾
Switching Station East Catchment = 9.682	Q _{bar} = 22.8	Q _{med} = 17.4	Q _{med} = 23.1	ReFH 2 Q _{med}	Granular Platform =19,500 Detention Basin = 6545.0
Switching Station West Catchment = 10.679	Q _{bar} = 26.0	Q _{med} = 39.6	Q _{med} = 35.9	IH124 Q _{bar}	Granular Platform =19,500 Detention Basin = 5695

The discharge rates in Table 4.4 have been calculated via a number of methods and the most conservative rate used in the design modelling. The new drainage networks discharge into drainage features such as ditches rather than formal watercourses and the time of entry from the new drainage network is far shorter than in the pre-development condition. Due to this, the discharge rates have been reduced to ensure no negative impacts throughout the lifecycle of the sub-station. All Greenfield run-off rate calculations are detailed in Appendix C. Additionally, the Switching Station East catchment outfalls to a small ditch which passes under several local authority roads via piped culverts of an unknown diameter and condition, therefore, a conservative approach has been taken. Similarly, the Switching Station West Catchment ultimately enters an existing fishing lochan to the south-west of the scheme extents.

Maintenance access shall be provided to the attenuation features in the form of unbound granular access tracks which, as a minimum, will provide access to all inlet and outlet headwalls with sufficient parking and turning areas for a van and trailer.

Further details of the Switching Station Western and Eastern Catchments can be seen in drawings LT-459-SWE-XX-XX-D-X-0507 and LT-459SWE-XX-XX-D-X-0508 in Appendix B.

These drawings show the SuDS train for the Switching Station Catchment for 1 in 200-year return period plus 42% for climate change. The drawings show flow paths, by indicating flow control chambers, and all drainage outfalls.

Also on these drawings, the 1m granular platform is labelled including 1-200 year and 1–1000-year return periods plus 42% for climate change. Along the road that surrounds the perimeter of the Switching Station, filter drains are predominantly used. Ditches are used for the permeable access tracks. Connections between the SuDS basins and the granular platform are typically carrier drains. There is also a drainage swale used in one area. All roads have suitable gradients and crossfalls to prevent water ponding.

Furthermore, these drawings show the appropriate exceedance routes, marked in black hatching as shown on drawing. The exceedance routes do not allow flooding as they are controlled by weirs and flow into appropriately sized cut-off ditches. Even in the event of over-topping, flooding of the surrounding area will not occur.

The MicroDrainage calculations for both catchments can be found in Appendix D.

4.4.2 Convertor Station Platform Area

The pre-development area where the platform is located greenfield run-off has been calculated as shown in Table 4.5 for either Q_{bar} or Q_{med} depending on the analysis used. A number of calculations methods have been used to compare greenfield run-off rates. As the ReFH 2 method is the most favoured under the SuDS Manual, analysis is required to be undertaken to compare the run-off rates with historical methods. It is proposed to attenuate run-off via in-line basins before discharging into the nearby watercourse. The discharge rate for any the feature shall be limited to this using a flow control device (vortex control or orifice plate). Analysis has been undertaken to ensure any exceedance events from the attenuation features do not cause detriment at the 1 in 200-year return period including 42% climate change. The discharge rate in Table 4-5 have been calculated via a number of methods and the most conservative rate used in the design modelling.

Impermeable Catchment Area (ha)	IH 124 Discharge Rate Return Period (litres / second)	ReFH 2 Discharge Rates (litres / second)	FEH Discharge Rates (litres / second)	Design Discharge Rate (litres / second)	Storage Volume Provided (m ³⁾
HVDC Convertor Station = 7.898	Q _{bar} = 56.2	$Q_{med} = 34.5$	Q _{med} = 27.6	ReFH 2 Q _{med}	Detention Basin = 14265 Note: Volume of
					water storage is <10000m ³

Table 4.5 Convertor Station Discharge Rates

4.4.3 Sub-Station Access Road

A 1.5km access road is provided to the sub-station off Fanellan Road near the U1604 junction. Once completed the road will have an asphalt surface of varying width which will generate run-off. It is proposed to treat and attenuate the run-off in a new wet swale to the west of Fanellan Road before discharging the network into an existing ditch which runs adjacent to Fanellan Road. The proposed discharge rates are noted in Table 5.6. The rates noted in the table below shall be updated as the design progresses based on the actual impermeable area draining to each SuDS feature. For Microdrainage calculations, see Appendix D. The discharge rates in Table 4-6 have been calculated via a number of methods and the most conservative rate used in the design modelling

Table 4.6 Access Road Discharge Rates

Impermeable Catchment Area (ha)	IH 124 Discharge Rate Return Period (litres / second)	ReFH 2 Discharge Rates (litres / second)	FEH Discharge Rates (litres / second)	Design Discharge Rate (litres / second)	Storage Volume Provided (m ³⁾
Permanent Access Road Network AR-1 =1.100	Q _{bar} = 7.8	$Q_{med} = 3.8$	Q _{med} = 5.1	ReFH 2 Q _{med}	Detention Basin = 1463.11

Impermeable Catchment Area (ha)	IH 124 Discharge Rate Return Period (litres / second)	ReFH 2 Discharge Rates (litres / second)	FEH Discharge Rates (litres / second)	Design Discharge Rate (litres / second)	Storage Volume Provided (m ³⁾
Permanent Access Road Network AR-2 = 0.500	Q _{bar} = 3.2	Q _{med} = 2.1	Q _{med} = 2.6	ReFH 2 Q _{med}	Detention Basin = 898.2

4.5 Oil Pollution Control

The Fanellan site will have many components which use or store oil-based products. It is proposed that where oil is stored, earthwork bunds will be used to contain any spillage or seepage. When a leak is detected, an alarm system will alert the sub-station personnel who will begin operating systems to direct the discharge of any contaminated water into any of the surface water drainage systems. Firstly, the contaminated water will be discharged to an above ground oily water mitigation system where it will undergo one level of treatment. The treated water will pass onto another level of treatment either filtration through a filter media or into a SuDS system such as a swale. The water will then move onto further treatment and attenuation within a SuDS basin to remove remaining oil pollutants. For an extra level of protection, all outfalls from SuDS basins will have penstocks and oil traps prior to discharging into the water environment.

5 Ground Water Drainage

Groundwater level monitoring and observations made during the ground investigation indicate that groundwater is shallow, and present in both the superficial Glacial Till (within granular sands and gravels) and the underlying bedrock conglomerate. Groundwater flow within the bedrock is expected to be predominantly within weathered rock and through fractures, evident within the conglomerate. The rate of flow of groundwater will therefore vary depending on the degree of fracturing. Deep cuttings into the bedrock for construction of the substation platform, will intercept groundwater during construction works. Calculations have been made on the likely groundwater inflows to current design cutting faces, using site specific information available and taking into account the likely permeability range, in the absence of in situ or site-specific data. Resulting inflows are as follows:

- Average 5L/s ranging from 0.2L/s to 17L/s in AC (W) noted pipes (SWE-XX-XX-D-G-0001)
- Average 8L/s ranging from 0.3L/s to 27L/s into DC (W) noted pipes (SWE-XX-XX-D-G-0003)

There is expected to be ongoing seepage of groundwater from the exposed cutting faces which will have implications for permanent design and will be managed accordingly. It is proposed to attenuate the ground water, where possible and dependant on flow rates, as it will be intercepted by the pipe network and distributed into the nearby surface water courses at much shorter durations than presently. It is expected that the rates above will be refined as more monitoring data becomes available from the boreholes drilled onsite. Cut-off drains and ditches have been designed to stop surface water from reaching earthwork slopes; the platform; and any access roads on site. Toe-drains will be installed at the base of any embankments to gather any run-off and protect the platform from flooding.

6 Foul Water Design

The foul water generated from toilets and any washing facilities (sinks and showers) provided within the proposed development will have to be treated and discharged to Packaged (Industry Standard) Treatment Plants on site. This is due to the absence of Scottish Water foul or combined sewers within the vicinity of the scheme. The design proposals for the Packaged Treatment Plants will adhere to British Water Flows and Loads – 4 Code of practice for industrial sites and SEPA WAT-RM-03 regulations. The final sizing of the Packaged Treatment Plants shall be agreed with SSEN and authorised by SEPA. It is assumed, at this stage, that usage will be low, but any overflow discharges will be subjected to SEPA approvals process. The foul network will be limited, and the divergent nature of the system means that cross contamination of surface water sewers from foul sewers is very unlikely. For the layout drawing of the Packaged Treatment Plants, including maintenance access, please refer to drawing LT459-SWE-XX-XX-D-X-0504 in Appendix B.

7 Temporary Drainage During Construction

Temporary drainage of surface water during construction will incorporate numerous features such as cut-off and pre-earthwork ditches. These have been permanently designed into the final drainage network to reduce the quantity of temporary drains required. These ditches will be hessian lined or grassed where there is excess sediment predicted. Temporary drainage also comes in the form of filter drains which are to be used where ditches are unsuitable due to site levels. These will treat and convey water. Sedimentation lagoons are to be used before discharging back into the environment. These will store run-off and allow the settlement of sediments. As before, flood risk will be reduced by controlling discharge rates into the downstream watercourse. All works will be supervised and inspected by SSEN to ensure that all works are constructed as per the detailed design drawings. This eliminates any possibility of cross contamination between the foul network and surface water network during construction.

8 Water Quality

Any surface water flows draining from the proposed development have the potential to adversely impact the downstream watercourses adjacent to the site. Table 8-1 notes the pollution hazard indices, from Table 26.2 of The SuDS Manual, for the types of land use that are proposed under the development. Overall, the hazard level associated with surface water flows are considered low based on the indices associated with the development.

Table 8.1 Applicable Pollution Hazard Indices

		Po	Ilution Hazard Indices	3
Land Use	Hazards Level	Total Suspended Solids	Metals	Hydrocarbons
Other roofs (typically commercial properties/industrial roofs)	Low	0.3	0.2	0.05
Individual property driveways, residential carparks, low traffic roads (e.g. cul-de-sacs, homezones and general access roads) and non- residential car parking with infrequent change i.e. <300 traffic movements/day	Low	0.5	0.4	0.4

From Table 26.3 of The SuDS Manual, suitable mitigation measures have been put in place to ensure sufficient treatment takes place to any contaminated water before it is discharged back into the water environment. Table 8-2 denotes the mitigation measures which are used on the development.

Table 8.2 Pollution Hazard Mitigation Indices

SuDS Component	Total Suspended Solids	Metals	Hydrocarbons
Filter Strip	0.4	0.4	0.5
Filter Drain	0.4	0.4	0.4
Swale	0.5	0.6	0.6
Detention Basin	0.5	0.5	0.6

Table 8-3 denotes the treatment train which is employed on the networks associated with the development which drain areas where contaminated run-off will occur. A minimum of two levels of treatment have been provided to ensure sufficient treatment is provided. A SEPA Simple Index Approach calculation has also been undertaken to confirm sufficient treatment is utilised.

Table 8.3 Proposed SuDS Treatment Train

Network	SuDS Treatment 1	SuDS Treatment 2	SuDS Treatment 3
HVAC West	Filter Strip	Detention Basin	-
HVAC East	Filter Strip	Swale	Detention Basin
HVDC Convertor Station	Filter Drain	Detention Basin	-
Access Road	Filter Drain	Swale	-

9 Operation and Maintenance

After completion of the drainage components for the Fanellan development, SSEN will become the accountable body responsible for vesting and maintenance for the site. Tables from the Drainage Strategy report are shown below, detailing the maintenance of each feature within the drainage network.

9.1 Filter Drains

Table 9.1 demonstrations the minimum maintenance regime which should be undertaken for filter drains.

Table 9.1 - Details of filter drains maintenance

•	Maintenance schedule	Required Action	•	Frequency
•	Regular Maintenance	Litter and debris removal.	•	Monthly
		 Manage other vegetation and remove nuisance plants 	•	Monthly at start then as required
•	Occasional Maintenance	Check for areas of poor infiltration due to sediment	•	Annually
		 Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions if required. 	•	Annually
•	Remedial Actions	 Repair erosion or other damage by re-turfing or re-seeding. 	•	As required
		 Re-level uneven surfaces and reinstate design levels. 	•	As required
		Remove and dispose of oils or petrol residues using safe standard practices.	•	As required
•	Monitoring	Inspect drain surface for areas of vehicle overrun or where stone scatter has occurred	•	Half yearly

9.2 Packaged (Industry Standard) Treatment Plants

Treatment tanks must be registered with SEPA prior to their commissioning. The plant should be emptied at 12-month intervals or at the interval period specified by the tank manufacturer. After removal, waste should be treated off site.

9.3 Swales / Ditches

Details of the operational and maintenance requirements of the drainage swales are noted in Table 9.2, below.

•	Maintenance schedule	Required Action	•	Frequency
•	Regular	Litter and debris removal.	•	Monthly
	Maintenance	Grass cutting.	•	Monthly during growing season
		Manage other vegetation and remove nuisance plants	•	Monthly at start then as required
•	Occasional Maintenance	Check for areas of poor vegetation growth due to lack of sunlight or dropping of leaf litter and cut back adjacent vegetation where possible.	•	Annually
		Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions if required.	•	Annually
•	Remedial Actions	Repair erosion or other damage by re-turfing or re-seeding.	•	As required
		Re-level uneven surfaces and reinstate design levels.	•	As required
		Remove and dispose of oils or petrol residues using safe standard practices.	•	As required
•	Monitoring	Inspect drain surface for areas of vehicle overrun or where the topsoil has become compacted.	•	Half yearly

Table 9.2 - Details of swales / ditch maintenance

9.4 Detention Basins

Details of the operational and maintenance requirements of the detention basins are noted in Table 9.3, below.

Table 9.3 – Details of detention basins maintenance

•	Maintenance Schedule	Required Action	Frequency	
	Regular Maintenance	Litter and debris removal	Monthly.	
•		 Grass cutting - for spillways and access routes. 	 Monthly (during growing season), or as required. 	
		 Grass cutting - meadow grass in and around basin. 	 Half yearly (spring - before nesting season, and autumn). 	
		 Manage other vegetation and remove nuisance plants. 	 Monthly (at start, then as required). 	
		Tidy all dead growth before start of growing season.	Annually.	
		 Remove sediment from inlets, outlet and forebay. 	Annually (or as required).	
		 Manage wetland plants in outlet pool - where provided. 	Annually.	
	Occasional Maintenance	Re-seed areas of poor vegetation growth.	Annually (or as required).	
		Prune and trim trees and remove cuttings.	2 Years (or as required).	
		 Remove sediment from forebay, when 50% full and from micropools if volume reduced by > 25%. 	 3-10 Years (or as required). 	
•	Remedial Actions	 Repair of erosion or other damage by re- seeding or re-turfing. 	As required.	
		Realignment of rip-rap.	As required.	
		 Repair / rehabilitation of inlets, outlets and overflows. 	As required.	
		Re-level uneven surfaces and reinstate design levels.	As required.	
	Monitoring	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly / After large storms	
		 Inspect banksides, structures, pipework etc for evidence of physical damage. 	Monthly / After large storms	

•	Maintenance Schedule	enance Jule • Required Action		•	Frequency
		•	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	•	Half yearly
		•	Check penstocks and other mechanical devices.	•	Half yearly

10 Conclusions

The DIA is required to document how all drainage associated with the site will be dealt with. The design discharge rates from the SuDS are lower than the IH124 greenfield runoff rates, meaning that the impact on flood risk to the existing watercourses is not increased. As discussed in the body of the report, reduced runoff rates have been promoted due to the informal nature of the receiving drainage features and downstream receptors in private homeowners and fishing ponds.

This report concludes that there is no significant flood risk to the surrounding areas, as the design discharge rates of the SuDS network are limited to discharge rates far less than the pre-development greenfield run-off rates during peak rainfall events which would cause flooding. Exceedance is accounted for, and all basins will be flow controlled to ensure that they are not overwhelmed by excess water flow. The foul water produced on site is directed into two packaged treatment plants sizes of which are still to be provided by SSEN. Groundwater will be controlled via cut-off drains and toe-drains, preventing flooding from any surface water or excess surface water from embankments. Construction of the drainage network will be overseen by SSEN. All parts of the network will be kept separate, eliminating the possibility of cross-contamination from foul water assets.

Maintenance, both long term and short term, will be overseen by SSEN. This still requires formal confirmation. They will take full responsibility for the network post-design.

Appendix A

Site Layout Drawings

LT459-SWE-XX-XX-D-X-0001 LT459-SWE-XX-XX-D-X-0002 LT459-SWE-XX-XX-D-X-0003

Appendix B

Drainage Drawings

LT459-SWE-XX-XX-D-X-0501 LT459-SWE-XX-XX-D-X-0502 LT459-SWE-XX-XX-D-X-0503 LT459-SWE-XX-XX-D-X-0505 LT459-SWE-XX-XX-D-X-0506 LT459-SWE-XX-XX-D-X-0508 LT459-SWE-XX-XX-D-X-0509 LT459-SWE-XX-XX-D-X-0511 LT459-SWE-XX-XX-D-X-0511

P:\6551\65209842_Beauly_Hub\000\D-Z-0000_Drawings\Site Layout Drawings\AutoCAD\0500 - Drainage\ LT459-SWE-XX-XX-D-X-0509_P07 SIMP.dwg

P:\6551\65209842_Beauly_Hub\000\D-Z-0000_Drawings\Site Layout Drawings\AutoCAD\0500 - Drainage\ LT459-SWE-XX-XX-D-X-0511_P05.dwg

Appendix C

Greenfield Runoff Rates

Fanellan Sub-Station East Catchment Fanellan Sub-Station West Catchment HVDC Convertor Station Catchment Permanent Access Road Catchment (AR-1) Permanent Access Road Catchment (AR-2)

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 26/06/2024 08:38	Designed by GBRYAL	
File	Checked by	Diamada
Innovyze	Source Control 2019.1	
<u>ICP SUD</u>	S Mean Annual Flood HVAC EAST	
	Input	
Return Period (yea	rs) 200 Soil 0.300	
Area () SAAR ()	ha) 9.682 Urban 0.000 mm) 872 Region Number Region 1	

Results 1/s

QBAR Rural 22.8 QBAR Urban 22.8 Q200 years 64.1 Q1 year 19.4 Q30 years 43.1 Q100 years 56.6

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 26/06/2024 08:40	Designed by GBRYAL	
File	Checked by	Digitigh
Innovyze	Source Control 2019.1	
FEH M	Mean Annual Flood HVAC EAST	
	Input	
QMED Method	2008	
Site Location G	B 248397 842374 NH 48397 42374 9 682	
SAAR (mm)	872	
URBEXT (1990)	0.0000	
SPRHOST	0.000	
BFIHOST	0.754	
FARL	1.000	
	Results	
QMED Rural (1/:	s) 23.1 QMED Urban (l/s) n/a	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 15/05/2024 09:52	Designed by GBRYAL	
File	Checked by	Diamage
Innovyze	Source Control 2019.1	

ICP SUDS Mean Annual Flood HVAC WEST

Input

Return Period (yea	ars)	200		Soil	0.300
Area	(ha)	10.679		Urban	0.000
SAAR	(mm)	898	Region	Number	Region 1

Results 1/s

 QBAR Rural
 26.0

 QBAR
 Urban
 26.0

 Q200
 years
 73.2

 Q1
 year
 22.1

 Q30
 years
 49.2

 Q100
 years
 64.6

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 26/06/2024 08:42	Designed by GBRYAL	
File	Checked by	Diamada
Innovyze	Source Control 2019.1	
<u>FEH M</u>	lean Annual Flood HVAC WEST	
	Input	
QMED Method Site Location GE	2008 3 247986 842726 NH 47986 42726	
Area (ha)	10.679	
SAAR (mm)	898	
URBEXT (1990)	0.0000	
SPRHUST RETHORT	0.000	
FARL	1.000	
	Results	
QMED Rural (1/s	s) 35.9 QMED Urban (l/s) n/a	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Mirro
Date 24/06/2024 15:09	Designed by GBRYAL	Dcainago
File	Checked by	Diamage
Innovyze	Source Control 2019.1	
ICP SUD	S Mean Annual Flood HVDC	
	Input	
Return Period (yea Area (SAAR (rs) 200 Soil 0.500 ha) 7.898 Urban 0.000 mm) 870 Region Number Region 1	
	Results 1/s	
	BAR Rural 56.2	
Q	BAR Urban 56.2	
Q	200 years 158.0	
	Q1 year 47.8	
	Q30 years 106.3 100 years 139 5	
	100 / Carb 199.5	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 19/08/2024 09:56	Designed by GBRYAL	Dcainago
File	Checked by	Diamage
Innovyze	Source Control 2019.1	
ICP SUD	S Mean Annual Flood ACCESS ROAD .	<u>AR-1</u>
	Input	
Return Period (yea Area (SAAR (rs) 200 Soil 0.500 ha) 1.100 Urban 0.000 mm) 870 Region Number Region 1	
	Results 1/s	
	QBAR Rural 7.8	
	QBAR Urban 7.8	
	2200 years 22.0	
	Ql year 6.7	
	Q30 years 14.8	
	2100 years 19.4	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 19/08/2024 09:59	Designed by GBRYAL	
File	Checked by	Diamarje
Innovyze	Source Control 2019.1	
<u>FEH M</u>	lean Annual Flood ACCESS ROAD AR-	<u>1</u>
	Input	
QMED Method Site Location GE	2008 3 248483 843245 NH 48483 43245	
Area (ha)	1.100	
SAAR (mm)	870	
URBEXT (1990)	0.0000	
SPRHOST	0.000	
BFIHOST	0.675	
FARL	1.000	
	Results	
QMED Rural (1/	s) 5.1 QMED Urban (l/s) n/a	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 07/03/2024 12:24	Designed by GBRYAL	
File	Checked by	Diamaye
Innovyze	Source Control 2019.1	
ICP SU	DS Mean Annual Flood ACCESS ROAD	AR-2
	Input	
Return Period (ye Area SAAR	ars) 2 Soil 0.500 (ha) 0.500 Urban 0.000 (mm) 870 Region Number Region 1	
	Results 1/s	
	QBAR Rural 3.6	
	QBAR Urban 3.6	
	Q2 years 3.2	
	Q1 year 3.0	
	Q30 years 6.7	
	QIUU years 8.8	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Mirro
Date 27/08/2024 16:08	Designed by GBRYAL	Dcainago
File	Checked by	Diamade
Innovyze	Source Control 2019.1	
FEH N	Mean Annual Flood ACCESS ROAD AR-:	2
	Input	
QMED Method Site Location G	2008 B 248483 843245 NH 48483 43245	
Area (ha)	0.500	
SAAR (mm)	870	

Results QMED Rural (l/s) 2.6 QMED Urban (l/s) n/a

0.0000 0.000

0.675

1.000

URBEXT (1990)

SPRHOST BFIHOST

FARL

Fanellan Summary of ReFH 2 Peak Flows

Network	Description	Return period (yrs)	As-rural peak flow (m^3/s)
HVAC (W)	2 year	2	0.004160567
HVAC ('E)	2 year	2	0.017991069
HVDC	2 year	2	0.031860635
Main Access Road (AR-1)	2 year	2	0.004354735
Main Access Bellmouth (AR-2)	2 year	2	0.002130172

Appendix D

MicroDrainage Calculations

Fanellan HVAC Output (AC (W)) Fanellan HVAC Output (AC (E)) Fanellan HVAC Output (HVDC) Permanent Access Road Network Output

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds IS7 (DN		
Det a 26/06/2024 11:27	Designed by CRRVAL	— MICCO
	Cheshed by GBRIAL	Drainage
FILE BEAULY HUB HVAC SURFACE		
Innovyze	Network 2019.1	
STORM SEWER DESIGN	by the Modified Rational Metho	<u>d</u>
Design	Criteria for Storm	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
FE	H Rainfall Model	
Return Perio	od (years)	2
FEH Rainfal	LL Version - Location CB 247986 842726 NH 47096	2013
Site	Data Type	Point
Maximum Rainfal	ll (mm/hr)	550
Maximum Time of Concentrati	ion (mins)	30
Foul Sewage	e (1/s/ha)	0.000
Volumetric Runoff Coeff.		0.750
Add Flow / Climate Change (%)		100
Minimum Backdrop H	Height (m)	0.200
Maximum Backdrop H	leight (m)	1.500
Min Design Depth for Optimis	sation (m)	1.200
Min Vel for Auto Design only (m/s) Min Slope for Optimisation (1.X)		1.00
Min Slope for Optimisat	cion (1:X)	500
Designe	ed with Level Soffits	

			Pa	age 2
Grove House				
Mansion Gate Drive				
Loods 187 ADN				
Dete 20/00/2024 11:27	De e i err e el less		I	אוכרס
Date 26/06/2024 11:37	Designed by	JBRIAL		Irainage
File BEAULY HUB HVAC SURFACE	Checked by			Janage
Innovyze	Network 2019	.1		
Online	<u>e Controls for</u>	Storm		
	/			
Orifice Manhole: HVAC (W)15,	DS/PN: HVAC	(W)2.005, Vo	olume (m³):	193.0
Diamotor (m) 0 125 Discharge	Coofficient 0 6	00 Invent Low	·ol (m) 125 2	00
Diameter (m) 0.125 Discharge	e Coefficient U.6	UU Invert Lev	el (m) 125.3	88
Orifice Manhole: $HVAC$ (W) 21	DS/PN· HVAC	$(W) 4 \cap 01 Vc$	(m^3)	102 7
OTTICE Mannote. IIVAC (W)21,	DS/IN. HVAC	(W)4.001, VC		102.7
Diameter (m) 0.100 Discharge	e Coefficient O A	00 Invert Lev	el (m) 126.00	00
			-= (, ±20.0	
Hydro-Brake® Optimum Manhole: Hy	<u>vac (w)28</u> , ds/	<u>PN: HVA</u> C (W	<u>)1.009,</u> Vol	Lume (m³):
	19.7			
Uni	t Reference MD-S	HE-0208-2600-2	2023-2600	
Desi	gn Head (m)		2.023	
Design	Flow (l/s)		26.0	
	Flush-Flom Objective Min	Ca imiso unstroom	alculated	
	Application	unise upstream	Surface	
Sum	p Available		Yes	
Di	ameter (mm)		208	
Inver	t Level (m)		122.500	
Minimum Outlet Pipe Di	ameter (mm)		225	
Suggested Manhole Di	ameter (mm)		1800	
Control P	oints Head	(m) Flow (1/s)	
Design Point (C	Calculated) 2.	023 26.	0	
	Kick-Flo® 1.	263 20.	7	
Mean Flow over	Head Range	- 22.	6	
The hydrological calculations have	been based on the	e Head/Dischar	ge relations	hip for the
Hydro-Brake® Optimum as specified.	Should another	type of contro	ol device oth	er than a
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th	Should another storage	type of contro routing calcu	lations will	er than a be
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated	Should another these storage	type of contro routing calcu	l device oth lations will	er than a be
Hydro-Brake [®] Optimum as specified. Hydro-Brake Optimum [®] be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Flo	Should another source of these storage ow (1/s) Depth (m	ype of contro routing calcu) Flow (l/s)	Depth (m) Fl	er than a be ow (l/s)
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Flo	Should another these storage	<pre>cype of contro routing calcu) Flow (l/s) 0 21 1</pre>	Depth (m) Fl	er than a be ow (1/s)
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 7.1 1.200 0.200 20.0 1.400	Should another these storage (1/s) Depth (m 22.1 3.00 21.8 3.50	<pre>type of contro routing calcu) Flow (1/s) 0 31.4 0 33.8</pre>	Depth (m) Fl 7.000	er than a be ow (1/s) 47.2 48.8
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.200 20.0 1.400 0.300 24.1	Should another ien these storage (1/s) Depth (m 22.1 3.00 21.8 3.50 23.2 4.00	<pre>type of contro routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0</pre>	Depth (m) Fl 7.000 7.500 8.000	er than a be ow (1/s) 47.2 48.8 50.4
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800	Should another ien these storage (1/s) Depth (m 22.1 3.00 21.8 3.50 23.2 4.00 24.6 4.50	type of control routing calcu 0 31.4 0 33.8 0 36.0 0 38.1	Depth (m) Fl 7.000 7.500 8.000 8.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th Invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000	Should another Should another Storage Depth (n 22.1 21.8 23.2 24.6 25.8 5.000	type of control routing calcu 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000	er than a be ow (l/s) 47.2 48.8 50.4 51.9 53.3
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th Invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200	Should another Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	<pre>cype of contro routing calcu) Flow (l/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th Invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400	Should another from these storage (1/s) Depth (m 22.1 3.00 21.8 3.50 23.2 4.00 24.6 4.50 25.8 5.00 27.0 5.50 28.2 6.00 20.0 5.50 28.2 6.00	<pre>cype of contro routing calcu) Flow (l/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	<pre>cype of contro routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	<pre>type of contro routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Should another Storage Depth (m 22.1 3.00 21.8 3.50 23.2 4.00 24.6 4.50 25.8 5.00 27.0 5.50 28.2 6.00 29.3 6.50	type of control routing calcu 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 43.8 0 45.5	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th Invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Should another Storage Dw (1/s) Depth (n 22.1 3.00 21.8 3.50 23.2 4.00 24.6 4.50 25.8 5.00 27.0 5.50 28.2 6.00 29.3 6.50	<pre>cype of contro routing calcu) Flow (l/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th Invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image I	<pre>type of control routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image I	<pre>type of contro routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7
Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 7.1 1.200 0.200 20.0 1.400 0.300 24.1 1.600 0.400 25.3 1.800 0.500 25.9 2.000 0.600 26.0 2.200 0.800 25.6 2.400 1.000 24.5 2.600	Should another from these storage (1/s) Depth (m 22.1 3.00 21.8 3.50 23.2 4.00 24.6 4.50 25.8 5.00 27.0 5.50 28.2 6.00 29.3 6.50	<pre>type of contro routing calcu) Flow (1/s) 0 31.4 0 33.8 0 36.0 0 38.1 0 40.1 0 42.0 0 43.8 0 45.5</pre>	Depth (m) Fl 7.000 7.500 8.000 8.500 9.000 9.500	er than a be ow (1/s) 47.2 48.8 50.4 51.9 53.3 54.7

Sweco UK		Page 3
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 26/06/2024 11:37	Designed by GBRYAL	Dcainago
File BEAULY HUB HVAC SURFACE	. Checked by	Diamage
Innovyze	Network 2019.1	
Storag	e Structures for Storm	
Infiltration Blanket Ma	nhole: HVAC (W)21, DS/PN: HVAC (W)4.001
Infiltration Coefficient Ba Safa Invert	ase (m/hr) 0.00000 Diameter/Width (m ety Factor 2.0 Length (m Porosity 0.30 Cap Volume Depth (m Level (m) 126.000	a) 130.0 a) 500.0 a) 0.000
<u>Tank or Pond Manhol</u>	e: HVAC (W)28, DS/PN: HVAC (W)1.	009
Inv	vert Level (m) 122.500	
Depth (m)	Area (m²) Depth (m) Area (m²)	
0.000	1489.0 2.500 3067.0	

Sweco UK							Page 4
Grove House							
Mansion Gate	Drive						
Leeds LS7 4D	N						Micco
Date 26/06/20	24 11:37		Design	ned by (GBRYAL		
File BEAULY H	UB HVAC SU	RFACE	Checke	ed by			Digiligh
Innovyze			Networ		.1		
Summar	<u>y of Critic</u>	al Result	s by M	laximum	Level (Rank	1) for S	torm
	maal Dadwati	<u>Sir</u>	<u>nulation</u>	Criteri	<u>a</u> al Elan % af	Motol Ele	- 0 000
F	Hot Sta	rt (mins)	0	MADE) Factor * 10m³	/ha Storag	e 2.000
	Hot Start L	evel (mm)	0		Inlet C	oeffiecien	t 0.800
Manhole He	adloss Coeff	(Global) ().500 Fl	ow per F	Person per Day	(l/per/day) 0.000
Foul Sew	age per hect	are (1/s) (0.000				
1	Number of Ing	out Hydrogr	aphs 0 1	Number o	f Storage Struc	ctures 2	
	Number of (Online Cont	rols 3 1	Number of	f Time/Area Dia	agrams O	
	Number of Of	ffline Cont	rols 0 1	Number of	f Real Time Cor	ntrols 0	
		Synthe	tic Rair	nfall Dei	tails		
	Rat	infall Mode	1	TTOTT DO	<u></u>	FEH	
	FEH Rain:	fall Versio	n		2	2013	
	S	ite Locatio	n GB 24'	7986 842	726 NH 47986 42	2726	
		Cv (Summer	e)		PC 0.	.750	
		Cv (Winter)		0.	840	
	Margin for H	lood Risk Analy	Warnıng sis Time	(mm) 300 step F	J.U DVD Sta ine Inertia Sta	atus ON	
		Allary	DTS St	atus	ON	icus on	
	Pro	file(s)			Summe	r and Wint	er
	Duration(s)	(mins)	15, 30,	60, 120	0, 180, 240, 36	50, 480, 60	00,
			720,	960, 144	40, 2160, 2880,	4320, 576	50,
Potur	n Period(s)	(vears)			7200,	8640, 100	180
Recui	Climate Cha	nge (%)				2	42
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow
HVAC (W) 1 000) HVAC (W) 1	30 Summer	200	+47%	200/15 Summer		
HVAC (W) 1.001	HVAC (W) 2	30 Summer	200	+42%	200/15 Summer		
HVAC (W)1.002	HVAC (W) 3	30 Summer	200	+42%	200/15 Summer		
HVAC (W)1.003	B HVAC (W)4	30 Summer	200	+42%	200/15 Summer		
HVAC (W) 1.004	HVAC (W) 5	30 Summer	200	+42%			
HVAC (W) 1.005) HVAC (W) 6	120 Winter	200 200	+428 +428			
HVAC (W) 3.000	HVAC (W) 8	15 Winter	200	+42%			
HVAC (W) 3.001	HVAC (W) 9	15 Winter	200	+42%			
HVAC (W) 3.002	HVAC (W)10	15 Winter	200	+42%			
HVAC (W) 2.001	HVAC (W) 11	120 Winter	200	+42% ±12%			
HVAC (W) 2.002	HVAC (W)12	120 Winter	200	+42≷			
HVAC (W) 2.004	HVAC (W)14	120 Winter	200	+42%			
HVAC (W) 2.005	HVAC (W)15	120 Winter	200	+42%	200/15 Summer		
HVAC (W) 2.000	HVAC (W) 16	120 Winter	200	+42%			
TVAC (W) 1.000	nvac (w)1/	JU WINLER	200	+4∠∛			
		©198	32-2019	Innovy	ze		

Sweco UK				Page 5
Grove House				
Mansion Gate Drive				
Leeds LS7 4DN				Mirro
Date 26/06/2024 11:37	Designe	d by GBRYAL		Nrainago
File BEAULY HUB HVAC SURF	FACE Checked	by		Diginage
Innovyze	Network	2019.1		
Summary of Critica	<u>l Results by Ma</u>	ximum Level (Ra	ank 1) for S	<u>Storm</u>
	Water Su Werflow Level	urcharged Flooded	Flow / Overf	Pipe
PN Name	Act. (m)	(m) (m ³)	Cap. (1/s	(1/s)
HVAC (W) 1.000 HVAC (W) 1	126.629	0.579 0.000	0.49	76.7
HVAC (W) 1.001 HVAC (W) 2 HVAC (W) 1.002 HVAC (W) 3	126.424	0.612 0.000	1.42	226.5
HVAC (W) 1.003 HVAC (W) 4	126.068	0.409 0.000	1.65	226.7
HVAC (W)1.004 HVAC (W)5	125.972	-1.028 0.000	0.12	1024.4
HVAC (W)1.005 HVAC (W)6	125.312	-1.688 0.000	0.06	913.8
HVAC (W)2.000 HVAC (W)7	126.889	-0.111 0.000	0.01	16.7
HVAC (W)3.000 HVAC (W)8	136.308	-0.614 0.000	0.15	505.6
HVAC (W) 3.001 HVAC (W) 9	133.679	-0.544 0.000	0.22	495.4
HVAC (W) 3.002 HVAC (W) 10	133.275	-0.225 0.000	0.58	500.3
HVAC (W) 2.001 HVAC (W) 11	126.888	-0.112 0.000	0.06	194.3
HVAC (W) 2.002 HVAC (W) 12 HVAC (W) 2.003 HVAC (W) 13	126.864	-0.136 0.000	0.10	228.0
HVAC (W) 2.003 HVAC (W) 13 HVAC (W) 2.004 HVAC (W) 14	126.753	-0.199 0.000	0.03	70.8
HVAC (W) 2.005 HVAC (W) 15	126.722	0.659 0.000	0.06	29.1
HVAC (W) 2.006 HVAC (W) 16	125.437	-1.563 0.000	0.01	29.1
HVAC (W)1.006 HVAC (W)17	124.917	-0.373 0.000	0.50	934.8
	US/MH	Lev	el	
P	N Name	Status Exce	eded	
HVAC (W	N)1.000 HVAC (W)1	SURCHARGED		
HVAC (W	W)1.001 HVAC (W)2	SURCHARGED		
HVAC (W	W)1.002 HVAC (W)3	SURCHARGED		
HVAC (W	W)1.003 HVAC (W)4	SURCHARGED		
HVAC (W	W) 1.004 HVAC (W) 5	OK		
	V) L. UUS HVAC (W) 6	UK FIOOD DICK*		
	$V_{1} \ge 0.000$ $HV \ge 0.000$ $W \ge 0.000$	UK FTOOD KISK,		
HVAC (W	V)3.001 HVAC (W)9	OK		
HVAC (W	N)3.002 HVAC (W)10	OK*		
HVAC (W	N)2.001 HVAC (W)11	FLOOD RISK*		
HVAC (W	N)2.002 HVAC (W)12	FLOOD RISK*		
HVAC (W	W)2.003 HVAC (W)13	FLOOD RISK*		
HVAC (W	N)2.004 HVAC (W)14	FLOOD RISK*		
HVAC (W	N)2.005 HVAC (W)15	FLOOD RISK*		
HVAC (W	V)2.006 HVAC (W)16	OK OV+		
HVAC (W	V)1.000 RVAC (W)1/	UK^		
	©1982-2019	Innovyze		

Sweco	UK								Pa	ge 6
Grove	House									
Mansio	on Gate	Drive								
Leeds	LS7 4D	N							M	licro
Date 2	26/06/20	24 11:37			Designe	d by GE	BRYAL		n	
File E	BEAULY H	UB HVAC	SURFAC	Ξ	Checked	by				
Innovy	ze				Network	2019.1	L		I	
	Summary	<u>y of Crit</u>	<u>cical R</u>	esult	<u>s by Ma</u>	<u>ximum I</u>	<u>evel (Ra</u>	ank 1)	for Sto	rm
		US/MH			Return	Climate	First	(X)	First	: (Y)
	PN	Name	St	corm	Period	Change	Surcha	arge	Flc	ood
HVAC	(W)1.007	HVAC (W)	L8 10080	Winte	er 200	+42%	200/15	Summer		
HVAC	(W)1.008	HVAC (W)	L9 10080	Winte	er 200	+42%	200/120	Winter		
HVAC	(W) 4.000 (W) 4.001	HVAC (W)	20 IS 21 10080	Winte	r 200	+42%	200/30	Winter		
HVAC	(W) 4.001	HVAC (W)2	22 10080	Winte	er 200	+42%	200750	WINCCI		
HVAC	(W)4.003	HVAC (W)2	23 10080	Winte	er 200	+42%				
HVAC	(W) 4.004	HVAC (W)	24 10080	Winte	er 200	+42%				
HVAC	(W) 5.000 (W) 5.001	HVAC (W)	25 360 26 360	Winte	er 200	+42%				
HVAC	(W)4.005	HVAC (W)	25 7200	Winte	er 200	+42%	200/5760	Winter		
HVAC	(W) 4.006	HVAC (W)	26 7200	Winte	er 200	+42%	200/120	Winter	200/1008	0 Winter
HVAC	(W) 4.007 (W) 1 009	HVAC (W)	27 10080 28 10080	Winte	r 200	+42%	200/120	Winter Winter		
HVAC	(W)1.000	HVAC (W)	29 10080	Winte	er 200	+42%	200750	WINCOI		
HVAC	(W)1.011	HVAC (W)	30 10080	Winte	er 200	+42%				
						Water S	urcharged	Flooded	d	
		US/MH	First	(Z) O	verflow	Water S Level	Surcharged Depth	Flooded	d Flow /	Overflow
	PN	US/MH Name	First Overf	(Z) O [.] low	verflow Act.	Water S Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	d Flow / Cap.	Overflow (l/s)
HVAC	PN (W)1.007	US/MH Name HVAC (W)1	First Overf	(Z) O [.] low	verflow Act.	Water S Level (m) 24.523	Surcharged Depth (m) 0.633	Flooded Volume (m ³)	d Flow / Cap.	Overflow (l/s)
HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000	US/MH Name HVAC (W)1 HVAC (W)1	First Overf	(Z) O [.] low	verflow Act. 1	Water S Level (m) 24.523 24.522	Surcharged Depth (m) 0.633 0.696	Flooded Volume (m ³) 0.000	d Flow / Cap.	Overflow (l/s)
HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001	US/MH Name HVAC (W)1 HVAC (W)1 HVAC (W)2 HVAC (W)2	First Overf 8 9 0	(Z) O [.] low	verflow Act. 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539	Surcharged Depth (m) 0.633 0.696 -1.424 0.389	Flooded Volume (m ³) 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002	US/MH Name HVAC (W)1 HVAC (W)1 HVAC (W)2 HVAC (W)2 HVAC (W)2	First Overf 9 0 1 2	(Z) O low	verflow Act. 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003	US/MH N=me HVAC (W) 1 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3	(Z) O [.] low	verflow Act. 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5	(Z) O [.] low	verflow Act. 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5 6	(Z) O [.] low	verflow Act. 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 -0.150	Flooded Volume (m ³) 0.0000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5 5 5 5 5	(Z) O	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601	Curcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.194 -0.150 -0.150 0.041	Flooded (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.005	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5 5 6 5 5 6 7	(Z) O	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.591	Curcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.195 -0.195 -0.150 0.041 0.872 0.882	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.09 0 0.26	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8	(Z) 0 [.]	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271	Flooded (m ³) 0.0000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.20 0 0.00 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.27 0 0.00 0 0.000 0 0.00 0 0.	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.003 (W) 4.004 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.010	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 2	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9	(Z) O	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.20 0 0.26 0 0.19 0 0.04 0 0.06	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.010 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 6 5 6 6 7 8 9 0	(Z) O	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.195 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145	Flooded (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.09 0 0.26 0 0.19 0 0.04 0 0.04 0 0.04 0 0.04 0 0.027	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0	(Z) 0 [.]	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145	Flooded (m ³) 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.27 0 0.27 0 0.00 0 0.27 0 0.27 0 0.27 0 0.00 0 0.27 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.27 0 0.00 0 0.00 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.227 0 0.27 0 0.	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.010 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0	(Z) O	verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145	Flooded (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.09 0 0.26 0 0.19 0 0.04 0 0.06 0 0.27	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.010 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 6 5 6 6 7 8 9 0	(Z) O low US/	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.521 22.486 11.532 pe ow	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145	Flooded Volume (m ³) 0.0000 0.0000 0.0000 0.0000 0.000000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.07 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.027 0 0.027 0 0.00 0 0.00 0 0.027 0 0.00 0 0.027 0 0.027 0 0.00 0 0.027 0 0.00 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.027 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.07 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.027 0 0.027 0 0.027 0 0.00 0 0.27 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.027	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.010 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0	(Z) O low US/ Nau	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.521 22.486 11.532 900 pe ow /s) S	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145	Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.0	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.27 0 0.227 0 0.27 0 0.	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0 0 PN W)1.007	(Z) O low US/ Nau HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe ow /s) S	CHARGED	Flooded Volume (m ³) 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.02 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.27 0 0.227 0 0.27 0 0.	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.010 (W) 1.011	US/MH N≥we HVAC (W) 1 HVAC (W) 2 HVAC (W) 3 HVAC (W) 3 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 5 6 5 5 6 7 8 9 0 0 8 9 0 0 8 9 0 0 8 9 0 0 8 9 0 0 1 2 2 3 4 5 5 6 6 7 8 9 0 0 1 2 2 3 4 5 5 6 6 7 7 8 9 0 0 1 2 2 3 4 5 5 6 6 9 0 1 2 2 3 4 5 5 6 6 9 0 0 1 2 2 3 4 5 5 6 6 9 0 0 1 2 2 3 4 5 5 6 6 9 0 0 1 2 2 3 4 4 5 5 6 6 9 0 0 1 2 2 3 4 4 5 5 6 6 9 0 0 1 2 2 3 4 4 5 5 6 6 7 7 8 9 0 0 9 0 0 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9 0 0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 0 0 1 2 2 7 7 8 9 9 0 0 9 9 0 0 1 2 2 3 7 7 8 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 0 0 0 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 9 0 0 0 9	(Z) O low US/ Nau HVAC HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe ow /s) S 6.4 SUF 6.3 SUF 1.4	CHARGED Curcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.195 -0.195 0.041 0.872 0.822 1.271 -0.191 -0.145 E	Flooded Volume (m ³) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.07 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.027 0 0.027 0 0.00 0 0.027 0 0.00 0 0.027 0 0.00 0 0.27 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.00 0 0.27 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.27 0 0.00 0 0.027 0 0.00 0 0.27 0 0.00 0 0.27 0 0.027 0 0.027 0 0.027 0 0.027 0 0.027 0 0.27 0 0.04 0 0.27 0 0.27 0 0.04 0 0.27 0 0.27 0 0.27 0 0.04 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.04 0 0.27 0	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3 HVAC	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0 0 PN W) 1.007 W) 1.007 W) 1.007 W) 1.007 W) 1.007 W) 1.0007 W) 1.0007 W) 1.0007	(Z) O low US/ Na HVAC HVAC HVAC HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe ow /s) S 6.4 SUF 6.3 SUF 1.4 4.6 SUF	Charged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.195 -0.195 -0.194 -0.150 0.041 0.872 0.882 1.271 -0.191 -0.145 Charged Charged Charged Charged	Flooded Volume (m ³) 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.27 0 0.227 0 0.27 0 0.04 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.04 0 0.27 0 0.27 0 0.27 0 0.04 0 0.27 0 0.	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 7 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 0 8 9 9 0 8 9 9 0 8 9 9 8 9 9 8 9 9 9 9	(Z) O low US/ Nau HVAC HVAC HVAC HVAC HVAC HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 26.539 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe ow /s) S 6.4 SUF 6.3 SUF 1.4 4.6 SUF 4.6	CHARGED CCHARGE	Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.0	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.26 0 0.04 0 0.04 0 0.027	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.001 (W) 5.001 (W) 4.005 (W) 4.005 (W) 4.007 (W) 1.010 (W) 1.011	US/MH Name HVAC (W) 1 HVAC (W) 2 HVAC (W) 3 HVAC (W) 3	First Overf 8 9 0 1 2 3 4 5 6 5 6 5 6 7 8 9 0 0 PN W)1.007 W)1.007 W)1.007 W)1.007 W)1.008 W)4.000 W)4.001 W)4.002 W)4.002	(Z) O low US/ Nau HVAC HVAC HVAC HVAC HVAC HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 25.505 25.205 24.906 25.350 24.764 24.601 24.591 24.547 24.521 22.486 11.532 pe ow /s) S 6.4 SUF 6.3 SUF 1.4 4.6 SUF 4.6 4.6 4.6	CHARGED ChARGED ChARGED CALARSE CHARGED CALARSE CHARGED CALARSE CHARGED CALARSE CAL	Flooded (m ³) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.026 0 0.19 0 0.04 0 0.04 0 0.27	Overflow (l/s)
HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	PN (W) 1.007 (W) 1.008 (W) 4.000 (W) 4.001 (W) 4.002 (W) 4.003 (W) 4.004 (W) 5.000 (W) 5.001 (W) 4.005 (W) 4.007 (W) 1.009 (W) 1.010 (W) 1.011	US/MH N====================================	First Overf 8 9 0 1 2 3 4 5 5 6 5 5 6 7 8 9 0 0 PN W) 1.007 W) 1.007W) 1.007 W) 1.007 W) 1.007 W) 1.007W) 1.007 W) 1.007 W) 1.007 W) 1.007 W) 1.007\\W) 1.007\\W) 1.007\\WW)	(Z) Or low US/ Nau HVAC HVAC HVAC HVAC HVAC HVAC HVAC HVAC	Verflow Act. 1 1 1 1 1 1 1 1 1 1 1 1 1	Water S Level (m) 24.523 24.522 26.676 25.305 25.505 25.205 24.906 25.350 24.01 24.591 24.521 22.486 11.532 S 6.4 SUF 6.3 SUF 1.4 SUF 4.6 4.6 4.6 4.6 4.6 4.6	Surcharged Depth (m) 0.633 0.696 -1.424 0.389 -0.195 -0.145 -	Flooded (m ³) 0.000	d Flow / Cap. 0 0.06 0 0.04 0 0.07 0 0.40 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.27 0 0.227 0 0.27 0 0.04 0 0.27 0 0.04 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.04 0 0.27 0 0.	Overflow (l/s)

Sweco UK		Page 7
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 26/06/2024 11:37	Designed by GBRYAL	
File BEAULY HUB HVAC SURFACE	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	PN	US Na	/MH ame	Pipe Flow (1/s)	Status	Level Exceeded
HVAC	(W)5.000	HVAC	(W)25	0.0	OK	
HVAC	(W)5.001	HVAC	(W)26	0.0	OK	
HVAC	(W)4.005	HVAC	(W)25	14.3	SURCHARGED	
HVAC	(W)4.006	HVAC	(W)26	14.6	SURCHARGED	
HVAC	(W)4.007	HVAC	(W)27	15.0	SURCHARGED	
HVAC	(W)1.009	HVAC	(W)28	26.0	SURCHARGED*	
HVAC	(W)1.010	HVAC	(W)29	26.0	OK	
HVAC	(W)1.011	HVAC	(W)30	26.0	OK*	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 26/06/2024 11:31	Designed by GBRYAL	
File BEAULY HUB HVAC SURFACE	Checked by	Urainage
Innovyze	Network 2019.1	
STORM SEWER DESIGN	by the Modified Rational Metho	<u>d</u>
Design	Criteria for Storm	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
FE	H Rainfall Model	
Return Perio	od (years)	2
Site	e Location GB 248397 842374 NH 48397	42.374
	Data Type	Point
Maximum Rainfa	ll (mm/hr)	550
Maximum Time of Concentrat:	ion (mins)	30
Foul Sewage	e (l/s/ha)	0.000
Volumetric Rund	DII COEII. DIMD (%)	100
Add Flow / Climate (Change (%)	42
Minimum Backdrop I	Height (m)	0.200
Maximum Backdrop H	Height (m)	1.500
Min Design Depth for Optimis	sation (m)	1.200
Min Vel for Auto Design of	only (m/s)	1.00
Min Slope for Optimisat	tion (1:X)	500
Designe	ed with Level Soffits	

Sweco UK		Page 2
Grove House		
Mansion Gate Drive		
Looda LC7 (DN		
		Micro
Date 26/06/2024 11:31	Designed by GBRYA	
File BEAULY HUB HVAC SURFACE	Checked by	Brainage
Innovyze	Network 2019.1	
Online	Controls for Stor	<u>rm</u>
Orifice Manhole: HVAC(E)-2,	DS/PN: HVAC(E)-1.	001, Volume (m³): 193.4
Diameter (m) 0.100 Discharge	e Coefficient 0.600 Ir	nvert Level (m) 126.000
Hudro-Brake® Ontimum Manhole. H	VAC(E) = 20 DS/DN.	HVAC(E) = 1 0 11 Volume (m3).
Hydro-Brakes Optimum Mannole: H	VAC(E)-ZU, DS/PN: . 797 7	$HVAC(E) = 1.011$, $VOIUMe(M^2)$:
	<u></u>	
Uni	t Reference MD-SHE-01	84-1740-1196-1740
Desi	gn Head (m)	1.196
Design	Flow (l/s)	17.4
	Flush-Flo™	Calculated
	Objective Minimise	upstream storage
Sum	n Available	Surlace
Di	ameter (mm)	184
Inver	t Level (m)	104.500
Minimum Outlet Pipe Di	ameter (mm)	225
Suggested Manhole Di	ameter (mm)	1500
Control P	oints Head (m) H	rlow (l/s)
Design Point (C	Calculated) 1.196	17.4
	Flush-Flo™ 0.374	17.4
	Kick-Flo® 0.819	14.5
Mean Flow over	Head Range -	14.9
The budgelesical calculations have	heen beend on the Heel	d/Dischause veletionship for the
Hydro-Brake® Optimum as specified	Should another type	of control device other than a
Hydro-Brake Optimum® be utilised th	en these storage rout:	ing calculations will be
invalidated	5	5
Depth (m) Flow (1/s) Depth (m) Flo	ow (l/s) Depth (m) Flo	ow (1/s) Depth (m) Flow (1/s)
0.100 6.5 1.200	17.4 3.000	27.0 7.000 40.6
0.200 16.3 1.400	18.8 3.500	29.1 7.500 42.0
0.300 17.3 1.600	20.0 4.000	31.0 8.000 43.3
0.400 17.4 1.800	21.1 4.500	32.8 8.500 44.6
0.500 17.2 2.000	22.2 5.000	34.5 9.000 45.9
	23.3 5.500	36.1 9.500 47.1
1.000 16.0 2.600	25.2 6.500	39.2

Sweco UK		Page 3
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 26/06/2024 11:31	Designed by GBRYAL	
File BEAULY HUB HVAC SURFACE	Checked by	Urainage
Innovyze	Network 2019.1	
<u>Storage</u>	<u>Structures for Storm</u>	
Infiltration Blanket Manh	nole: HVAC(E)-2, DS/PN: HVAC(E)-1	.001
Infiltration Coefficient Base Safet I Invert Le	e (m/hr) 0.00000 Diameter/Width (m) 1 y Factor 2.0 Length (m) 5 Porosity 0.30 Cap Volume Depth (m) 0 evel (m) 126.000	30.0 00.0 .000
Tank or Pond Manhole:	HVAC(E)-20, DS/PN: HVAC(E)-1.01	<u>L</u>
Inver	t Level (m) 104.500	
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)	
0.000	2338.0 2.000 4397.0	

Grove House Mansion Gate Drive Leeds LS7 4DN Designed by GERVAL Date 26/05/2024 11:31 Checked by File BRAULY HUB HVAC SURFACE Checked by Innovyze Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simplation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (wins) 0 Manbol Beadloss Coeff (Global) 0.500 Flow per Person per Day (L/per/day) 0.000 Foul Swage per hetting (L/p) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Offline Controls 2 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Real The Controls 0 Cv (Burmer) 0.750 Cv (Burmer) 0.750 Cv (Burmer) 0.750 Stetus ON Prostile (S) Surmary of Prood Bisk Narning (mm) 300.0 TUD Status ON Pros 110 (S) (mins) 15, 30, 60, 120, 180, 240, 3400, 48	Sweco UK						P	age 4	
Mansion Gate Drive Leads LS7 4DN Date 26/06/2024 11:31 File BRAULY HUB HVAC SURFACT Checked by Innovyze Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADE Factor * 10m ² /hs Storage 2.000 Hot Start fails 0 MADE Factor * 10m ² /hs Storage 2.000 Hot Start fails 0 MADE Factor * 10m ² /hs Storage 2.000 Number of Start (anis) 0 Mumber of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Time Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Online Controls 0 Number of Storage Structures 0 Data Type 2011 CV (Summer) 0.750 CV (Winter) 0.750 CV (Winter) 0.750 CV (Winter) 0.750 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 660, 720, 960, 1440, 2160, 240, 360, 480, 560, 720, 964, 1000 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 560, 720, 964, 1000 Number Of Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 560, 720, 964, 1000 Network(b) - 1 15 Winter 200 +428 PVAC(b) - 201 EVAC(b) - 2 1060 Winter 200 +428 PVAC(b) - 201 EVAC(b) - 2 1060 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 2 1060 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 3 15 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 3 15 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 5 15 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 5 15 Winter 200 +428 EVAC(b) - 201 EVAC(b) - 5 15 Winter 200 +428 EVAC(b) - 1003 EVAC(b) - 5 15 Winter 200 +428 EVAC(b) - 1003 EVAC(b) - 11 15 Winter 200 +428 EVAC(b) - 1003 EVAC(b) - 11 1	Grove House								
Leeds L87 4DN Date 26/06/2024 11:31 Pite BRAULY HUB HVAC SURFACE Checked by Innovyse Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (wins) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start (wins) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start (wins) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 MADD Factor - 10:4*/A Storage 2.000 Hot Start level (ma) 0 0.000 Foll Sewage per hecture (1/4) 0.000 Foll	Mansion Gate	Drive							
Date 26/06/2024 11:31 Designed by GRYAL File BEAULY HUB HVAC SURFACE Checked by Innovyze Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simmary of Critical Results by Maximum Level (Rank 1) for Storm March 1 Areal Reduction Pactors Note (Storage 2.000 Hot Start (and) 0 Maxboard 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (and) 0 Marboard 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (and) 0.000 Hot Start (and) 0.000 Number of Colling Controls 2 Number of Storage Structures 2 Number of Onling Controls 2 Number of Storage Structures 2 Number of Orling Controls 0 State Location GB 248397 842374 Data Type 0.750 CY (Winter) 0.30 Duration (a) (mina) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2860, 4320, 5760, 720, 960, 1440, 2160, 2860, 4320, 5760, 720, 960, 1440, 2160, 2860, 4320, 5760, 720, 960, 1440, 2120, 2860, 4320, 5760, 720, 960, 1440, 2120, 2860, 4320, 5760, 7200, 8640, 10080 Return Period(S) (years) 200 Climate Change (s) <	Leeds LS7 4I	DN						Mirro	
File BRAULY HUB HVAC SURFACE Checked by Innovyze Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Summary of Critical Results by Maximum Level (Rank 1) for Storm Summary of Critical Results by Maximum Level (Rank 1) for Storm Summary of Critical Results by Maximum Level (Rank 1) for Storm Summary of Critical Results by Maximum Level (Rank 1) for Storm Summary of Critical Results by Maximum Level (Rank 1) for Storm Manbel Beadlos Coeff (Glohal) 0.500 Flow per Ferson per Day (L/per/day) 0.000 Foul Sewage per hotize (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Storage Toint Cv (Summer) Cv (Summer) 0.750 Cv (Summer) 0.750 Cv (Summer) 0.750 Cv (Summer) 0.840 Margin for Flood Risk Marning (mm) 300.0 DVD Status ON Nale Status 0 Vertic(s) (years) 200 Climate Change (s) 200 Return Period(s) (years) 201 Climate Change (s) 20 <t< td=""><td>Date 26/06/20</td><td>24 11:31</td><td></td><td>Designe</td><td>ed by Gi</td><td>BRYAL</td><td></td><td></td></t<>	Date 26/06/20	24 11:31		Designe	ed by Gi	BRYAL			
Innovyze Network 2019.1 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 MADD Factor * 10m*/As Storage 2.000 Number Start Level (m) 0 MADD Factor * 10m*/As Storage 2.000 Number of Online Controls 0 Number of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Real Time Controls 0 Synthetic Rainfall Model FEH FEH Rainfall Model FEH FEH Rainfall Model FEH Rainfall Model CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON Froifle(s) Summer and Winter Profile(s) Summer Profile(s)	File BEAULY H	IUB HVAC SUF	RFACE	Checked	d by			Janage	
Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Mathe Reduction Factor 1.000 MADD Factor * 10m'/ha Storage 2.000 Mathe Reduction Factor 1.000 Mathe Reduct Coeff (Global) 0.500 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Real Time Controls 0 Synthetic Rainfall Metalis FEH Rainfall Woold FEH FEH Rainfall Woold FEH FEH Rainfall Woold FEH Number of Flood Kisk Warning (mm) 300.0 DVD Status ON Area Project Change Burded Change (N) Profile(s) Summer and Minter Duration(s) (mins) 15, 30, 60, 120,	Innovyze		I	Networ]	k 2019.	1			
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mm) 0 Intel Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Offline Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Site Location GB 248397 842374 NH 48337 42374 Data Type O' (Winter) O' (Winter) O' (Summer) O' (Summer) O' (Summer) Duration (s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 7200, 9640, 10080 Return Period(s) (years) Climate Change (%) 42 WAC(E)-1.001 HVAC(E)-1 15 Winter VO (B) - 1020 HVAC(E)-1 15 Winter VAC(E) - 2.001 HVAC(E)-1	Summar	y of Critica	al Result:	s by Ma	.ximum I	Level (Rank	1) for St	<u>orm</u>	
Number of fliput Hydrographs 0 Number of Storage Structures 2 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Working Bainfall Wersion 2013 Site Location GB 248397 842374 NH 48397 42374 Data Type Data Type Cv (Summer) Cv (Summer) Cv (Summer) Cv (Winter) O.840 Margin for Flood Risk Warning (mm) 300.0 DUTS Status ON Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 422 VS/MH Return Climate First (X) First (Y) First (Z) PN Name Storm Period Change Surcharge Flood Overflow HVAC(E)-1.000 HVAC(E)-1 HVAC(E)-2.001 HVAC(E)-4 HVAC(E)-1.001 HVAC(E)-6 HVAC(E)-1.001 HVAC(E)-6 H	Anhole He Foul Sev	Areal Reductio Hot Star Hot Start Le eadloss Coeff wage per hecta	Simi on Factor 1 t (mins) vvel (mm) (Global) 0 re (l/s) 0	<u>alation</u> .000 A 0 .500 Flc .000	<u>Criteria</u> dditiona MADD w per Pe	l Flow - % of Factor * 10m³/ Inlet Co rson per Day (Total Flow ha Storage effiecient l/per/day)	0.000 2.000 0.800 0.000	
Synthetic Rainfall Details Rainfall Workion 2013 FEH Rainfall Version 2013 Site Location GB 248397 842374 NH 48397 42374 Data Type Data Type Point CV (Summer) 0.750 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status ON Analysis Timestep Fine Inertia Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1400, 2160, 2880, 4320, 5760, 720, 9640, 10080 Return Period(s) (years) 200 Climate Change (%) 42 VS/MH Return Climate First (X) First (Y) First (Z) FW NAC (E) -1.000 HVAC (E) -1 15 Winter VS/MH Return Climate First (X) HVAC (E) -1.001 HVAC (E) -1 15 Winter VAC (E) -2.001 HVAC (E) -1 15 Winter VAC (E) -2.001 HVAC (E) -3 15 Winter VAC (E) -2.001 HVAC (E) -5 15 Winter VAC (E) -2.003 HVAC (E) -6 15 Winter VAC (E) -2.003	:	Number of Inp Number of On Number of Of:	ut Hydrogra nline Contr fline Contr	phs 0 Ni ols 2 Ni ols 0 Ni	umber of umber of umber of	Storage Struct Time/Area Diag Real Time Cont	cures 2 grams 0 crols 0		
DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 200 Climate Change (%) 42 VS/MH Return Climate First (X) First (Y) First (Z) PN Name Storm Period Change Surcharge Flood Overflow HVAC(E)-1.000 HVAC(E)-2 1080 Winter 200 +42% 200/60 Winter HVAC(E)-1.001 HVAC(E)-2 15 Winter 200 +42% HVAC(E)-2.001 HVAC(E)-4 15 Winter 200 +42% HVAC(E)-2.001 HVAC(E)-5 15 Winter 200 +42% HVAC(E)-2.003 HVAC(E)-6 15 Winter 200 +42% HVAC(E)-1.003 HVAC(E)-7 30 Summer 200 +42% HVAC(E)-3.001 HVAC(E)-13 15 Winter 200 +42% HVAC(E)-3.001 HVAC(E)-13 15 Winter 200 +42% HVAC(E)-1.003 HVAC(E)-14 30 Summer 200 +42% <td></td> <td>Rai FEH Rainf Si Margin for F.</td> <td><u>Synthet</u> nfall Model all Version te Location Data Type Cv (Summer) Cv (Winter) lood Risk W Analys</td> <td>ic Rain: GB 248: arning (is Times</td> <td><u>fall Deta</u> 397 8423 (mm) 300. step Fir</td> <td>ails 20 74 NH 48397 42 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</td> <td>FEH 013 374 int 750 340 cus ON cus ON</td> <td></td>		Rai FEH Rainf Si Margin for F.	<u>Synthet</u> nfall Model all Version te Location Data Type Cv (Summer) Cv (Winter) lood Risk W Analys	ic Rain: GB 248: arning (is Times	<u>fall Deta</u> 397 8423 (mm) 300. step Fir	ails 20 74 NH 48397 42 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	FEH 013 374 int 750 340 cus ON cus ON		
US/MH Return Climate First (X) First (Y) First (Z) HVAC (E) -1.000 HVAC (E) -1 15 Winter 200 +42% HVAC (E) -1.001 HVAC (E) -2 10080 Winter 200 +42% HVAC (E) -2.000 HVAC (E) -3 15 Winter 200 +42% HVAC (E) -2.001 HVAC (E) -4 15 Winter 200 +42% HVAC (E) -2.002 HVAC (E) -5 15 Winter 200 +42% HVAC (E) -2.003 HVAC (E) -6 15 Winter 200 +42% HVAC (E) -1.002 HVAC (E) -7 30 Summer 200 +42% HVAC (E) -3.000 HVAC (E) -11 15 Winter 200 +42% HVAC (E) -3.001 HVAC (E) -12 15 Winter 200 +42% HVAC (E) -3.001 HVAC (E) -13 15 Winter 200 +42% 200/15 Summer HVAC (E) -1.004 HVAC (E) -14 30 Summer 200	Retur	DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%)							
HVAC(E) -1.000 HVAC(E) -1 15 Winter 200 +42% HVAC(E) -1.001 HVAC(E) -2 10080 Winter 200 +42% HVAC(E) -2.000 HVAC(E) -3 15 Winter 200 +42% HVAC(E) -2.001 HVAC(E) -3 15 Winter 200 +42% HVAC(E) -2.001 HVAC(E) -4 15 Winter 200 +42% HVAC(E) -2.002 HVAC(E) -5 15 Winter 200 +42% HVAC(E) -2.003 HVAC(E) -6 15 Winter 200 +42% HVAC(E) -1.002 HVAC(E) -7 30 Summer 200 +42% HVAC(E) -1.003 HVAC(E) -13 15 Winter 200 +42% HVAC(E) -3.000 HVAC(E) -12 15 Winter 200 +42% HVAC(E) -3.001 HVAC(E) -13 15 Winter 200 +42% HVAC(E) -3.002 HVAC(E) -13 15 Winter 200 +42% HVAC(E) -1.004 HVAC(E) -14 30 Summer 200 +42% HVAC(E) -1.005 HVAC(E) -15 30 Winter 200 +42% HVAC(E) -1.006 HVAC(E) -16 <th>PN</th> <th>US/MH Name</th> <th>Storm</th> <th>Return Period</th> <th>Climate Change</th> <th>First (X) Surcharge</th> <th>First (Y) Flood</th> <th>First (Z) Overflow</th>	PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	
HVAC(E)-1.009 HVAC(E)-18 30 Winter 200 +42% 200/15 Summer	HVAC (E) -1.000 HVAC (E) -1.001 HVAC (E) -2.000 HVAC (E) -2.001 HVAC (E) -2.002 HVAC (E) -2.003 HVAC (E) -1.002 HVAC (E) -1.003 HVAC (E) -3.000 HVAC (E) -3.001 HVAC (E) -3.002 HVAC (E) -1.004 HVAC (E) -1.005 HVAC (E) -1.006 HVAC (E) -1.007 HVAC (E) -1.008	HVAC (E) -1 HVAC (E) -2 HVAC (E) -2 HVAC (E) -3 HVAC (E) -4 HVAC (E) -5 HVAC (E) -6 HVAC (E) -7 HVAC (E) -8 HVAC (E) -11 HVAC (E) -12 HVAC (E) -13 HVAC (E) -14 HVAC (E) -15 HVAC (E) -16 HVAC (E) -17	15 Winter 0080 Winter 15 Winter 15 Winter 15 Winter 30 Summer 30 Winter 15 Winter 15 Winter 30 Summer 30 Summer 30 Winter 30 Winter 30 Winter	200 200 200 200 200 200 200 200 200 200	+42% +42% +42% +42% +42% +42% +42% +42%	200/60 Winter 200/15 Summer 200/15 Summer 200/15 Summer			
©1982-2019 Innovvze	HVAC(E)-1.009	HVAC(E)-18	30 Winter	200	+42%	200/15 Summer			

Sweco UK							Pag	ge 5
Grove House								
Mansion Gate D	rive							
Leeds LS7 4DN	I						N /	icco
Date 26/06/202	4 11:31		Designe	d bv GBR	YAL			
File BEAULY HU	IB HVAC SU	RFACE	Checked	bv				ainage
Innovyze	2 11110 20		Network	2019 1				
			THE EWOLD IN	2019.1				
Summary	of Critic	al Resul	lts by Max	ximum Le	vel (Ra	ank 1)	for Sto	rm
		Orrenflerr	Water Su	Ircharged	Flooded	Flow /	Orromflore	Pipe Flow
PN	Name	Act.	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)
	Traine	11001	()	()	()	oup.	(1,5)	(1)0)
HVAC(E)-1.000	HVAC(E)-1		126.677	-1.333	0.000	0.10		4991.7
HVAC(E)-1.001	HVAC(E)-2		126.589	0.364	0.000	0.21		15.3
HVAC (E) -2.000	HVAC(E)-3		125.399	-0.401	0.000	0.22		/9.1
HVAC(E) -2.001	HVAC(E) -4		125.275	-0.268	0.000	0.46		144.6 230 7
HVAC(E) -2.002	HVAC (E) = 5		124 934	-0.176	0.000	0./0		209.1 311 8
HVAC (E) -1.002	HVAC (E) -7		124.473	-0.230	0.000	0.69		336.8
HVAC(E) -1.003	HVAC (E) -8		124.263	-0.140	0.000	0.94		341.1
HVAC(E)-3.000	HVAC(E)-11		126.831	1.306	0.000	1.30		142.1
HVAC(E)-3.001	HVAC(E)-12		126.167	0.992	0.000	2.42		202.6
HVAC(E)-3.002	HVAC(E)-13		125.062	0.047	0.000	1.10		386.2
HVAC(E)-1.004	HVAC(E)-14		123.995	-0.208	0.000	0.74		804.2
HVAC(E)-1.005	HVAC(E)-15		118.747	0.147	0.000	1.14		807.4
HVAC (E) -1.006	HVAC (E) -16		117.717	-0.683	0.000	0.14		856.3
HVAC(E) = 1.007	HVAC(E) = 10 HVAC(E) = 17		117.121	-1.981	0.000	0.01		009.0 962 1
HVAC (E) -1.008	HVAC (E) -18		106.102	0.802	0.000	2.77		962.1
			IIS/MH		Leve	_ 1		
		PN	Name	Status	Excee	ded		
		(=) 1 000						
	HVAC	(E) - 1.000	HVAC(E) - 1		OK ZD			
	HVAC	(E) = 1.001 (E) = 2.000	HVAC(E) = 2 HVAC(E) = 3	SURCHARGE	אר עי			
	HVAC	(E) -2.001	HVAC (E) -4	()K			
	HVAC	(E)-2.002	HVAC (E) -5	(ЭK			
	HVAC	(E)-2.003	HVAC(E)-6	(ЭK			
	HVAC	(E)-1.002	HVAC(E)-7	(ЭK			
	HVAC	(E) -1.003	HVAC(E)-8	(ЭК			
	HVAC	(E) - 3.000	HVAC (E) -11	FLOOD RIS	SK			
	HVAC	(E)-3.001 (E)-3.002	HVAC(E) = 12	SURCHARGE	םצ חי			
	HVAC	(E) - 1.004	HVAC (E) -14	JUNCHARGE)K			
	HVAC	(E) -1.005	HVAC (E) -15	SURCHARGE	ED			
	HVAC	(E)-1.006	HVAC(E)-16	(ЭK			
	HVAC	(E)-1.007	HVAC(E)-16	(ЭK			
	HVAC	(E)-1.008	HVAC(E)-17	OF	<u> </u>			
	HVAC	(E)-1.009	HVAC(E)-18	SURCHARGE	зD			
		∩1 (Innoviria				
		UL:	JUZ-ZUIY .	тпполдзе				

Sweco UK							Pa	ige 6
Grove House								
Mansion Gate D	rive							
Leeds LS7 4DN	1						N	licro
Date 26/06/202	4 11:31		Designe	ed by GBR	YAL		n	rainare
File BEAULY HU	IB HVAC SUE	RFACE	Checked	d by				
Innovyze			Networ	k 2019.1				
Summary of Critical Results by Maximum Level (Rank 1) for Storm								
PN	US/MH Name	Storm	Return Period	Climate Change	First (X Surcharg	() Fi	irst (Y) Flood	First (Z) Overflow
HVAC(E)-1.010 H	VAC(E)-19 1()080 Winter	200	+42%				
HVAC(E)-1.011 H	VAC(E)-20 10)080 Winter	200	+42% 20	0/120 Wi	nter		
HVAC(E) -1.012 H	VAC(E)-21 10	080 Winter	200	+42%				
HVAC(E)-1.013 H	VAC(E)-22 8 VAC(E)-23 8	3640 Summer 3640 Winter	200	+42%				
			Water 8	Surcharged	Flooded			Pipe
	US/MH	Overflow	Level	Depth	Volume	Flow /	Overflow	w Flow
PN	Name	Act.	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)
HVAC(E)-1.010	HVAC(E)-19		105.779	-0.021	0.000	0.00		31.4
HVAC(E)-1.011	HVAC(E)-20		105.682	0.582	0.000	0.05		17.4
HVAC(E) -1.012	HVAC(E) - 21		104.459	-0.166	0.000	0.15		17.4
HVAC(E) -1.013 HVAC(E) -1.014	HVAC(E)-22 HVAC(E)-23		103.285	-1.317	0.000	0.00		17.4
	HVAC (HVAC (HVAC (HVAC (PN E) -1.010 H E) -1.011 H E) -1.012 H E) -1.013 H E) -1.014 H	US/MH Name VAC(E)-11 VAC(E)-20 VAC(E)-22 VAC(E)-22 VAC(E)-23	Status 9 (C) 0 SURCHARGE 1 (C) 2 (C) 3 OF	Level Exceed	1 led		
		©198	82-2019	Innovyze				
		0200						

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date $\frac{28}{08}$, $\frac{2024}{09}$; 44	Designed by GBRYAL	
	Charled by GBRIAD	Drainage
FILE BEAULY HUB HVDC SURFACE		
Innovyze	Network 2019.1	
STORM SEWER DESIGN	by the Modified Rational Method	1
Design	Criteria for Storm	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
FE	H Rainfall Model	
Return Perio	od (years)	2
FEH Rainfal	ll Version	2013
Site	e Location GB 248483 843245 NH 48483	43245
Neuimum Deinfel	Data Type	Point
Maximum Rainia	(mm/nr)	300
Maximum Time of Concentration	$(1/g/b_2)$	0 000
Volumetric Runo	off Coeff	0.750
	PTMP (%)	100
Add Flow / Climate (Thange (%)	42
Minimum Backdrop H	Height (m)	0.200
Maximum Backdrop H	Height (m)	1.500
Min Design Depth for Optimis	sation (m)	1.200
Min Vel for Auto Design o	only (m/s)	1.00
Min Slope for Optimisat	zion (1:X)	500
Designe	ed with Level Soffits	

Sweco IIK							Page 2		
Grove House							rage 2		
Mangian Cata	Drino								
Mansion Gale	DIIVE								
Leeds LS/41							Micro		
Date 28/08/20)24 09:4	4	Desig	ned by GB	RYAL		Drainage		
File BEAULY H	HUB HVDC	SURFACE.	Check	ed by			brainage		
Innovyze			Netwo	rk 2019.1					
		0.1'	<i>a</i> .	1 6 9					
		Onli	ne Contro	ols for St	torm				
Hvdro-Brake@) Optimu	m Manhole	: HVDC 29	. DS/PN:	HVDC1.006	. Volume	(m³): 94.5		
				,,					
		τ	Mnit Refere	nce MD-SHE-	-0215-2760-	1972-2760			
		De	sign Head	(m)		1.972			
		Desi	gn Flow (1	/s)		27.6			
			Flush-F	10 ive Minimi	ise unstrea	m storage			
			Applicat	ion	ibe appered	Surface			
		5	ump Availa	ble		Yes			
			Diameter (mm)		215			
		Inv	rert Level	(m)		115.000			
	Minimum C	outlet Pipe	Diameter (mm)		300			
	Suggest	ed Mannole	Diameter (mm)		1800			
		Control	Points	Head (m) Flow (1/s	5)			
	D	esian Point	(Calculate	ad) 197	2 27	6			
	D	cordin rotine	Flush-Fl	Lo™ 0.58	1 27	.6			
			Kick-Fl	Lo® 1.25	0 22	.2			
	M	ean Flow ov	er Head Rar	ige	- 23	.9			
The hydrologi	Ical calcu	lations hav	re been bas	ed on the H	Head/Discha	rge relatio	onship for the		
Hydro-Brake (optimum® b	e utilised	then these	storage ro	outing calc	ulations w	ill be		
invalidated				j	· · · · · · · · · · · · · · · · · · ·				
Depth (m) Fl	ow (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (l/s)		
0.100	7.3	1.200	23.3	3.000	33.7	7.000	50.8		
0.200	20.9	1.400	23.4	3.500	30.3	7.500	52.5		
0.400	25.0	1.800	25.0	4.500	41.0	8.500	55.8		
0.500	27.5	2.000	27.8	5.000	43.2	9.000	57.4		
0.600	27.6	2.200	29.1	5.500	45.2	9.500	58.9		
0.800	27.1	2.400	30.3	6.000	47.1				
1.000	26.0	2.600	31.5	6.500	49.0				

Swooo JIK		Dago 3
Grove House		Fage 5
Mangion Gate Drive		
Looda 197 ADN		
Dete 28/08/2024 00:44	Degigned by CREVAL	MICrO
Eilo DENULY HUD INDO CHDEACE	Charled by GBRIAL	Drainage
THE BEAULY HOB HVDC SURFACE	Network 2010 1	ر .
Innovyze	Network 2019.1	
Storage	Structures for Storm	
Tank or Pond Manho	ole: HVDC 29, DS/PN: HVDC1.006	
Inver	t Level (m) 115 000	
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)	
0.000	3514.0 3.000 5996.0	
 	32-2019 Innovvze	

Sweco UK							1	Page 4	
Grove Hous	se								
Mansion Ga	te Driv	ve							
Leeds LS7	4DN							Micro	
Date 28/08	8/2024 (09:44		Desig	ned by GBRYA	L		Dcainago	
File BEAUL	Y HUB H	HVDC SURF	ACE	Check	ed by			Dialitage	
Innovyze				Netwo:	rk 2019.1				
~	-	~							
Summary of Critical Results by Maximum Level (Rank 1) for Storm									
	Areal	Peduction	<u>Si</u> Factor	imulation	<u>Criteria</u>	ow - & of r	rotal Flor	v 0 000	
	Arcur	Hot Start	(mins)	0	MADD Fact	or * 10m³/h	na Storage	2.000	
	Hot	Start Leve	el (mm)	0		Inlet Coe	effiecient	0.800	
Manhol Foul	e Headlo Sewage	ss Coeff ((per hectare	Global) e (l/s)	0.500 F	low per Person	per Day (]	l/per/day)	0.000	
	Numbe	er of Input	Hydrog	raphs 0	Number of Stor	age Struct	ures 1		
	Nun	nber of Onl	ine Con	trols 1	Number of Time	Area Diag	rams 0		
	11 UIIL	AL OL ULL	Line COII	CTOTP U	C 11 - C Kedl	. IIME COIL	TOTO U		
		Rainf	Synth	etic Rai el	ntall Details	ਸ	EH		
	I	FEH Rainfal	l Versi	on		20	13		
		Site	e Locati	on GB 24	8483 843245 NH	1 48483 432	45		
		Cr.	Data Ty	pe m)		Poi	nt		
		Cv	v (Winte	r)		0.7	40		
	M				(
Margin for Flood Risk Warning (mm) 300.0 DVD Status ON Analysis Timestep Fine Inertia Status ON									
			-	DTS S	tatus ON				
	Dura	Profil ation(s) (n	le(s) mins)	15.30	. 60. 120. 180	Summer	and Wint	er 0.	
			,	720,	960, 1440, 21	.60, 2880,	4320, 576	0,	
R	eturn Pe	riod(s) (ve	ears)			7200,	8640, 100 2	80 00	
	Cli	mate Change	e (%)				-	42	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z) Overflow	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	
HVDC1.000	HVDC 1	15 Winter	200	+42%	200/15 Summer				
HVDC2.000	HVDC 2	15 Winter	200	+42%					
HVDC2.001	HVDC 3	15 Winter	∠00 200	+42* +42*					
HVDC2.003	HVDC 5	15 Winter	200	+42%					
HVDC2.004	HVDC 6	30 Winter	200	+42%					
HVDC2.005	HVDC 7	30 Winter	200	+42%	200/15 Winter				
HVDC2.006	HVDC 8	30 Winter	200	+42%	200/15 Summer				
HVDC3.001	HVDC 10	30 Summer	200 200	+42%	200/15 Summer				
HVDC1.001	HVDC 11	15 Winter	200	+42%	200/15 Summer				
HVDC1.002	HVDC 12	15 Winter	200	+42%					
HVDC1.003	HVDC 13	15 Winter	200	+42%	200/15 Summer				
HVDC1.004	HVDC 14	15 Winter	200	+42% ≠42%	200/15 Summer				
HVDC4.001	HVDC 16	15 Winter	200	+42%					
HVDC4.002	HVDC 17	15 Winter	200	+42%					
			©19	82-2019) Innovyze				

Sweco UK		Page 5
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 28/08/2024 09:44	Designed by GBRYAL	
File BEAULY HUB HVDC SURFACE	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m ³)	Cap.	(l/s)	(1/s)	Status	Exceeded
HVDC1.000	HVDC 1	124.622	0.722	0.000	3.86		1980.8	SURCHARGED	
HVDC2.000	HVDC 2	125.697	-0.178	0.000	0.51		49.1	OK	
HVDC2.001	HVDC 3	125.572	-0.105	0.000	0.83		80.0	OK	
HVDC2.002	HVDC 4	125.380	-0.099	0.000	0.89		78.0	OK	
HVDC2.003	HVDC 5	125.303	-0.138	0.000	0.78		161.8	OK	
HVDC2.004	HVDC 6	125.147	-0.020	0.000	0.91		183.8	OK	
HVDC2.005	HVDC 7	124.984	0.012	0.000	1.07		217.9	SURCHARGED	
HVDC2.006	HVDC 8	124.419	-0.345	0.000	0.21		217.8	OK	
HVDC3.000	HVDC 9	125.274	2.737	0.000	1.22		14.8	SURCHARGED	
HVDC3.001	HVDC 10	124.889	2.651	0.000	2.21		32.1	SURCHARGED	
HVDC1.001	HVDC 11	122.306	0.639	0.000	1.78		2202.2	SURCHARGED	
HVDC1.002	HVDC 12	120.955	-0.412	0.000	0.57		2199.7	OK	
HVDC1.003	HVDC 13	119.028	0.861	0.000	0.95		2151.4	SURCHARGED	
HVDC1.004	HVDC 14	118.100	0.933	0.000	1.73		2141.0	SURCHARGED	
HVDC4.000	HVDC 15	125.649	-0.076	0.000	0.75		48.0	OK	
HVDC4.001	HVDC 16	124.168	-0.132	0.000	0.36		48.2	OK	
HVDC4.002	HVDC 17	121.727	-0.073	0.000	0.77		93.5	OK	

Sweco UK				Pag	ge 6
Grove House					
Mansion Gate Drive					
Leeds LS7 4DN				M	irm
Date 28/08/2024 09:44	Design	ed by GBRYAL			
File BEAULY HUB HVDC SURFACE	Checke	d by			alliage
Innovyze	Networ	k 2019.1			
Summary of Critical Resul	ts by Ma	aximum Level	(Rank 1)) for Stor	cm
			(,	
US/MH Return	Climate	First (X)	First (Y)	First (Z)	Overflow
US/MH Return PN Name Storm Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200	Climate Change +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200	Climate Change +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MHReturnPNNameStormPeriodHVDC4.003HVDC 1815 Winter200HVDC1.005HVDC 1915 Winter200HVDC5.000HVDC 2015 Winter200HVDC6000HVDC 2115 Winter200	Climate Change +42% +42% +42%	First (X) Surcharge 200/15 Summer 200/15 Summer	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200	Climate Change +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200	Climate Change +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.001 HVDC 24 15 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.002 HVDC 24 15 Winter 200 HVDC5.002 HVDC 25 15 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.002 HVDC 24 15 Winter 200 HVDC5.003 HVDC 25 15 Winter 200 HVDC5.004 HVDC 26 15 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.002 HVDC 24 15 Winter 200 HVDC5.003 HVDC 25 15 Winter 200 HVDC5.004 HVDC 26 15 Winter 200 HVDC5.004 HVDC 26 15 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.002 HVDC 24 15 Winter 200 HVDC5.003 HVDC 25 15 Winter 200 HVDC5.004 HVDC 26 15 Winter 200 HVDC5.005 HVDC 27 15 Winter 200 HVDC5.005 HVDC 28 4320 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
US/MH Return PN Name Storm Period HVDC4.003 HVDC 18 15 Winter 200 HVDC1.005 HVDC 19 15 Winter 200 HVDC5.000 HVDC 20 15 Winter 200 HVDC6.000 HVDC 21 15 Winter 200 HVDC6.001 HVDC 22 15 Winter 200 HVDC5.001 HVDC 23 15 Winter 200 HVDC5.002 HVDC 24 15 Winter 200 HVDC5.003 HVDC 25 15 Winter 200 HVDC5.004 HVDC 26 15 Winter 200 HVDC5.005 HVDC 27 15 Winter 200 HVDC5.006 HVDC 28 4320 Winter 200 HVDC1.006 HVDC 29 4320 Winter 200	Climate Change +42% +42% +42% +42% +42% +42% +42% +42%	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
HVDC4.003	HVDC 18	119.351	-0.089	0.000	0.65		92.5	OK	
HVDC1.005	HVDC 19	117.187	0.170	0.000	1.31		2204.4	SURCHARGED	
HVDC5.000	HVDC 20	126.954	3.054	0.000	2.01		2484.7	FLOOD RISK	
HVDC6.000	HVDC 21	126.009	0.509	0.000	0.37		28.8	SURCHARGED	
HVDC6.001	HVDC 22	125.924	0.849	0.000	1.02		78.2	SURCHARGED	
HVDC5.001	HVDC 23	125.720	2.120	0.000	2.01		2478.5	SURCHARGED	
HVDC5.002	HVDC 24	124.463	1.163	0.000	2.20		2466.3	SURCHARGED	
HVDC5.003	HVDC 25	122.855	-0.145	0.000	1.00		2427.7	OK	
HVDC5.004	HVDC 26	121.153	-0.447	0.000	0.51		2427.2	OK	
HVDC5.005	HVDC 27	117.784	1.184	0.000	1.96		2421.9	FLOOD RISK	
HVDC5.006	HVDC 28	116.962	0.512	0.000	0.03		64.6	SURCHARGED	
HVDC1.006	HVDC 29	116.961	1.661	0.000	0.04		27.6	SURCHARGED	
HVDC1.007	HVDC 30	107.065	-0.235	0.000	0.11		27.6	OK	

Sweco UK		Page 1			
Grove House					
Mansion Gate Drive					
Leeds LS7 4DN		Micco			
Date 28/08/2024 09:47	Designed by GBRYAL				
File MAIN ACCESS ROAD SURFAV	Checked by	Dialitatje			
Innovyze	Network 2019.1				
STORM SEWER DESIGN	by the Modified Rational Method	d			
Design	Criteria for Storm				
Pipe Sizes STA	NDARD Manhole Sizes STANDARD				
FE	H Rainfall Model				
Return Perio	od (years)	2			
FEH Rainfal	ll Version	2013			
Site	e Location GB 248483 843245 NH 48483	43245			
	Data Type	Point			
Maximum Rainfal	ll (mm/hr)	550			
Maximum Time of Concentration	ion (mins)	30			
Foul Sewage	e (l/s/ha)	0.000			
Volumetric Runo	off Coeff.	0.750			
	PIMP (%)	100			
Add Flow / Climate C	Change (%)	42			
Minimum Backdrop H	Height (m)	0.200			
Maximum Backdrop H	Height (m)	1.500			
Min Design Depth for Optimis	sation (m)	1.200			
Min Vel for Auto Design o Min Slope for Optimisat	only (m/s) zion (1:X)	1.00 500			
Dogiona	ad with Lovel Coffitz				
Designe	ed with Level Sollits				
					Dage 2
---	--	--	--	--	---
L'YOVA HOURA					
Mangian Cata Drive					
Leeds LS7 4DN					Micro
Date 28/08/2024 09:47	Designed	d by GBR	YAL		Drainage
File MAIN ACCESS ROAD SURFAV	Checked	by			Brainage
Innovyze	Network	2019.1			
Online Hurdro-Broko® Optimum Monholo: A	Controls	s for Sto	<u>orm</u> P_11_010	Volumo	(m3)• 11 5
Ingero Brakes Opermum Mannore: A	K I 20,	DS/FN• A	IK II.010	, vorune	(111) • 11.5
Unit	Reference	MD-SHE-C	087-4300-1	820-4300	
Desig	n Head (m))		1.820	
Design	Flow (l/s)			4.3	
	Flush-Flo	Minimi-	Ca	Iculated	
	pplication	: MITUIMIS U	se upstream	Surface	
Sump	Available	-		Yes	
Dia	meter (mm))		87	
Invert	Level (m))		70.000	
Minimum Outlet Pipe Dia	meter (mm))		100	
Suggested Manhole Dia	meter (mm)			1200	
Control Po	ints	Head (m)	Flow (1/s)	
Design Point (Ca	alculated)	1.820	4.3	3	
I	Flush-Flo™	0.380	3.0	5	
	Kick-Flo®	0.774	2.9	9	
Mean Flow over H	lead Range	-	3.4	1	
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	een based Should and en these st	on the He other type corage rou	ad/Dischar of contro ting calcu	ge relatic l device c lations wi	onship for the other than a ll be
Depth (m) Flow (l/s) Depth (m) Flow	w (l/s) De	pth (m) F	low (l/s)	Depth (m)	Flow (l/s)
0.100 2.6 1.200	3.5	3.000	5.4	7.000	8.1
0.100 2.6 1.200 0.200 3.4 1.400	3.5 3.8	3.000 3.500	5.4 5.8	7.000 7.500	8.1 8.4
0.100 2.6 1.200 0.200 3.4 1.400 0.300 3.6 1.600	3.5 3.8 4.0	3.000 3.500 4.000	5.4 5.8 6.2	7.000 7.500 8.000	8.1 8.4 8.6
0.100 2.6 1.200 0.200 3.4 1.400 0.300 3.6 1.600 0.400 3.6 1.800	3.5 3.8 4.0 4.3	3.000 3.500 4.000 4.500	5.4 5.8 6.2 6.6	7.000 7.500 8.000 8.500	8.1 8.4 8.6 8.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 3.8 4.0 4.3 4.5	3.000 3.500 4.000 4.500 5.000	5.4 5.8 6.2 6.6 6.9	7.000 7.500 8.000 8.500 9.000	8.1 8.4 8.6 8.9 9.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 3.8 4.0 4.3 4.5 4.7 4.9	3.000 3.500 4.000 4.500 5.000 5.500 6.000	5.4 5.8 6.2 6.6 6.9 7.2 7.5	7.000 7.500 8.000 8.500 9.000 9.500	8.1 8.4 8.6 8.9 9.1 9.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 3.8 4.0 4.3 4.5 4.7 4.9 5.1	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	5.4 5.8 6.2 6.6 6.9 7.2 7.5 7.8	7.000 7.500 8.000 8.500 9.000 9.500	8.1 8.4 8.6 8.9 9.1 9.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5 3.8 4.0 4.3 4.5 4.7 4.9 5.1	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	5.4 5.8 6.2 6.6 6.9 7.2 7.5 7.8	7.000 7.500 8.000 8.500 9.000 9.500	8.1 8.4 8.6 8.9 9.1 9.4

Sweco UK		Page 3
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micro
Date 28/08/2024 09:47	Designed by GBRYAL	
File MAIN ACCESS ROAD SURFAV	Checked by	Dialitada
Innovyze	Network 2019.1	
Storage	Structures for Storm	
Tank or Pond Manho	ble: AR-1 20, DS/PN: AR-11.010	
Inver	rt Level (m) 70.000	
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)	
0.000	271.0 2.200 1059.1	
©198	32-2019 Innovyze	

Sweco UK							Page 4			
Grove Hous	se									
Mansion Ga	ate Driv	ve								
Leeds LS7	4DN						Mirro			
Date 28/08	8/2024 ()9:47		Design	ned by GBRY	AL	Dcainago			
File MAIN	File MAIN ACCESS ROAD SURFAV Checked by									
Innovyze				Networ	rk 2019.1					
Summary of Critical Results by Maximum Level (Rank 1) for Storm										
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0										
	Numk	per of Offl	ine Cont	rols 0 1	Number of Rea	l Time Controls	0			
	Synthetic Rainfall DetailsRainfall ModelFEHFEH Rainfall Version2013Site Location GB 248483 843245 NH 48483 43245Data TypeData TypePointCv (Summer)0.750Cv (Winter)0.840									
	Marq	in for Flo	od Rigk I	Warning	(mm) 300 0	NUD Status OF	FF			
	Marg	III IOI FIO	Analy:	sis Time	step Fine Ir	nertia Status OF	FF			
			-	DTS St	atus ON					
	Dura	Profi ation(s) (r	le(s) mins)	15, 30 720,	, 60, 120, 18 960, 1440, 2	Summer and 0, 240, 360, 48 160, 2880, 4320	Winter 0, 600, , 5760,			
R	eturn Pei	riod(s) (ye	ears)			/200, 8640	200			
	Clin	mate Change	e (%)				42			
PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Fir Flood Ove	st (Z) Overflow erflow Act.			
AR-11.000	AR-1 1	15 Winter	200	+42%						
AR-11.001	AR-1 2	15 Winter	200	+42%						
AR-11.002	AR-1 3	15 Winter	200	+42% +42%						
AR-11.003	AR-1 4 AR-1 5	15 Winter	200 200	+42%						
AR-11.005	AR-1 6	15 Winter	200	+42%						
AR-11.006	AR-1 7	15 Winter	200	+42%						
AR-11.007	AR-1 8	15 Winter	200	+42%						
AR-12.000	AR-1 9	15 Winter	200	+42%	200/15 Summer	c				
AR-12.001	AR-1 10	15 Winter	200	+42%						
AR-12.002	AR-1 12	15 Winter	200 200	+42≷ +42%						
AR-12.004	AR-1 13	15 Winter	200	+42%						
AR-12.005	AR-1 14	15 Winter	200	+42%						
AR-12.006	AR-1 15	15 Winter	200	+42%	200/15 Summer	<u>:</u>				
AR-12.007	AR-1 16	15 Winter	200	+42%	200/15 0	~				
AK-12.008	AR-1 1/	15 winter	200	+428	200/15 Summer	-				
			©198	82-2019	Innovyze					

Sweco UK		Page 5
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Mirro
Date 28/08/2024 09:47	Designed by GBRYAL	Desinado
File MAIN ACCESS ROAD SURFAV	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Water	Surcharged	Flooded	Flow /	Overflow	Pipe		Lovol
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded
AR-11.000	AR-1 1	120.662	-0.318	0.000	0.06		44.3	OK	
AR-11.001	AR-1 2	116.637	-0.293	0.000	0.09		104.8	FLOOD RISK*	
AR-11.002	AR-1 3	105.439	-0.231	0.000	0.20		197.7	FLOOD RISK*	
AR-11.003	AR-1 4	93.827	-0.213	0.000	0.25		255.4	FLOOD RISK*	
AR-11.004	AR-1 5	86.450	-0.160	0.000	0.38		302.6	FLOOD RISK*	
AR-11.005	AR-1 6	83.322	-0.168	0.000	0.36		326.3	FLOOD RISK*	
AR-11.006	AR-1 7	77.593	-0.177	0.000	0.34		337.7	FLOOD RISK*	
AR-11.007	AR-1 8	73.237	-0.203	0.000	0.58		338.1	OK*	
AR-12.000	AR-1 9	119.646	0.041	0.000	1.05		37.6	SURCHARGED	
AR-12.001	AR-1 10	119.180	-0.134	0.000	0.34		37.1	OK	
AR-12.002	AR-1 11	115.726	-0.179	0.000	0.33		99.1	OK	
AR-12.003	AR-1 12	105.929	-0.146	0.000	0.50		147.8	OK	
AR-12.004	AR-1 13	96.497	-0.098	0.000	0.76		203.6	OK	
AR-12.005	AR-1 14	88.649	-0.086	0.000	0.84		226.5	OK	
AR-12.006	AR-1 15	80.974	0.159	0.000	1.01		290.9	SURCHARGED	
AR-12.007	AR-1 16	75.739	-0.156	0.000	0.64		290.3	OK	
AR-12.008	AR-1 17	72.898	0.733	0.000	1.27		285.3	FLOOD RISK	

©1982-2019 Innovyze

Sweco UK		Page 6
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Mirro
Date 28/08/2024 09:47	Designed by GBRYAL	Desinado
File MAIN ACCESS ROAD SURFAV	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
AR-11.008	AR-1 18	15 Winter	200	+42%	200/15 Summer			
AR-11.009	AR-1 19	2880 Winter	200	+42%	200/15 Summer			
AR-11.010	AR-1 20	2880 Winter	200	+42%	200/15 Summer			
AR-11.011	AR-1 21	2880 Winter	200	+42%				

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
AR-11.008	AR-1 18	72.671	0.666	0.000	1.23		618.1	SURCHARGED	
AR-11.009	AR-1 19	71.811	0.606	0.000	0.06		20.8	SURCHARGED	
AR-11.010	AR-1 20	71.810	1.210	0.000	0.02		4.3	SURCHARGED	
AR-11.011	AR-1 21	69.995	-0.590	0.000	0.00		4.3	OK	

Sweco UK		Page 1
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 28/08/2024 09:51	Designed by GBRYAL	
File MAIN ACCESS BELLMOUTH S	Checked by	Dialidye
Innovyze	Network 2019.1	
STORM SEWER DESIGN	by the Modified Rational Method	
Design	Criteria for Storm	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
FE	CH Rainfall Model	
Return Perio	od (years)	2
FEH Rainfa	ll Version	2013
Site	e Location GB 248483 843245 NH 48483	43245
Mandaum Data fai	Data Type	Point
Maximum Rainia.	(mm/nr)	550
Maximum Time of Concentral.	((((((((((((((((((((((((((((((((((((30
Volumetric Pup	e (1/S/Ha) off Coeff	0.000
Volumeette Run	DIMD (%)	100
Add Flow / Climate (Change (%)	42
Minimum Backdrop I	Height (m)	0.200
Maximum Backdrop I	Height (m)	1.500
Min Design Depth for Optimis	sation (m)	1.200
Min Vel for Auto Design of	only (m/s)	1.00
Min Slope for Optimisat	tion (1:X)	500
Design	ed with Level Soffits	

Sweco UK							Page 2
Grove Hous	e						
Mansion Ga	te Drive						
Leeds I.S7	4DN						
Date 28/08	/2024 09:5	1	Designe	d by CBPS	ZλΤ.		MILIO
Date 20/00			Charland				Drainage
FILE MAIN .	ACCESS BEL	LMOUTH S		yd			
Innovyze			Network	2019.1			
Hydro-Bral	ce® Optimu	<u>Online</u> m Manhole:	e Control: AR-2:27,	s for Sto DS/PN: AI	<u>orm</u> R-2:1.008	8, Volume	e (m³): 6.7
		Uni	lt Referenc	e MD-SHE-0	064-2100-1	336-2100	
		Desi	ign Head (m)		1.336	
		Desigi	Flush-Flo) TM	Ca	∠.⊥ lculated	
			Objectiv	e Minimis	e upstream	storage	
			Applicatio	n		Surface	
		Sun	mp Availabl	e		Yes	
		Di	Lameter (mm)		64 37 300	
	Minimum (Dutlet Pipe Di	lameter (mm)		100	
	Suggest	ed Manhole Di	Lameter (mm)		1200	
		Control I	ointe	Head (m)	Flow (1/g)		
			011105	meau (m)	110% (1/5)		
	D	esign Point (Calculated)	1.336	2.1	-	
			Kick-Flo®	0.281	1.4		
	М	ean Flow over	Head Range		1.7	7	
ml, 1, 7, 7							
The hydrol	ogical calcu	ulations have	been based	on the Hea	ad/Dischar	ge relatio	onship for the
The hydrol Hydro-Brak	ogical calcu e® Optimum a	ulations have as specified.	been based Should an	on the Hea other type	ad/Dischar of contro	ge relation l device c	onship for the other than a
The hydrol Hydro-Brak Hydro-Brak invalidate	ogical calcu e® Optimum a e Optimum® } d	ulations have as specified. oe utilised th	been based Should an nen these s	on the Hea other type torage rout	ad/Dischar of contro ting calcu	ge relatic l device c lations wi	onship for the other than a ll be
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m)	ogical calcu e® Optimum a e Optimum® b d Flow (1/s)	ulations have as specified. oe utilised th Depth (m) Fl	been based Should an hen these s ow (1/s) De	on the Hea other type torage rout epth (m) FJ	ad/Dischar of contro ting calcu	ge relatic 1 device c 1ations wi Depth (m)	nship for the other than a ll be Flow (1/s)
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m)	ogical calcu e® Optimum a e Optimum® b d Flow (1/s)	Depth (m) Fl	been based Should an nen these s ow (1/s) De	on the Head other type torage rout	ad/Dischar of contro ting calcu	ge relatic l device c lations wi Depth (m)	The state of the s
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200	ogical calcu e® Optimum a e Optimum® b d Flow (1/s) 1.5 1.7	Depth (m) Fl 1.200	been based Should an hen these s ow (1/s) De 2.0 2.1	on the Hea other type torage rout epth (m) FJ 3.000 3.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3	ge relatic 1 device c lations wi Depth (m) 7.000 7.500	<pre>ponship for the other than a ll be Flow (1/s) 4.5 4.7</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600	been based Should an nen these s ow (1/s) De 2.0 2.1 2.3	on the Hea other type torage rout epth (m) FJ 3.000 3.500 4.000	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5	ge relatic 1 device c lations wi Depth (m) 7.000 7.500 8.000	<pre>public for the pther than a ll be Flow (1/s) 4.5 4.7 4.8</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7	Depth (m) Fl 1.200 1.400 1.800	been based Should an nen these s ow (1/s) De 2.0 2.1 2.3 2.4	on the Head other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500	ad/Dischar of contro ting calcu Low (1/s) 3.0 3.3 3.5 3.7	ge relatic l device c lations wi Depth (m) 7.000 7.500 8.000 8.500	<pre>bonship for the ther than a ll be Flow (1/s)</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500	ogical calcu e® Optimum a e Optimum® b d Flow (1/s) 1.5 1.7 1.8 1.7 1.6	Depth (m) Fl 1.200 1.400 1.800 2.000	been based Should an nen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5	on the Head other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.000	ad/Dischar of contro ting calcu Low (1/s) 3.0 3.3 3.5 3.7 3.9	ge relatic l device c lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000	<pre>bonship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 </pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	ogical calcu e® Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5	Depth (m) Fl 1.200 1.400 1.600 2.000 2.200 2.400	been based Should an nen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7	on the Head other type torage rout 3.000 3.500 4.000 4.500 5.000 5.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.0	ge relatic l device c lations wi 7.000 7.500 8.000 8.500 9.000 9.500	<pre>bonship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an en these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout Ppth (m) F1 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.2 4.4	ge relatic l device c lations wi Depth (m) 7.500 8.000 8.500 9.000 9.500	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatic 1 device c 1 divice c 1 device c	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® B d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an nen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o	<pre>onship for the other than a</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatic l device c lations wi 7.000 7.500 8.000 8.500 9.000 9.500	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout apth (m) F1 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatic l device c lations wi 7.000 7.500 8.000 8.500 9.000 9.500	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® 1 d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout Ppth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatic l device c lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a 11 be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o 1 divice o 1 divice o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>onship for the other than a</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 ations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a 11 be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout apth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatic l device c lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	<pre>onship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2</pre>
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o 1 divice o 1 divice o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 ations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o 1 divice o 1 divice o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nship for the other than a 11 be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o 1 divice o 1 divice o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nship for the other than a 11 be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® d flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Hea other type torage rout apth (m) FJ 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o 1 divice o 1 divice o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mship for the other than a 11 be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2
The hydrol Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	ogical calcu e® Optimum a e Optimum® H d Flow (1/s) 1.5 1.7 1.8 1.7 1.6 1.5 1.7 1.8	Depth (m) Fl 1.200 1.400 1.600 1.800 2.200 2.400 2.600	been based Should an hen these s ow (1/s) De 2.0 2.1 2.3 2.4 2.5 2.6 2.7 2.8	on the Head other type torage rout apth (m) Fl 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu Low (1/s) : 3.0 3.3 3.5 3.7 3.9 4.0 4.2 4.4	ge relatio 1 device o 1 divice o	nship for the other than a ll be Flow (1/s) 4.5 4.7 4.8 5.0 5.1 5.2

Sweco UK		Page 3
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Micco
Date 28/08/2024 09:51	Designed by GBRYAL	
File MAIN ACCESS BELLMOUTH S	Checked by	Diamaye
Innovyze	Network 2019.1	
Storage	Structures for Storm	
Tank or Dond Manho	10. אם-2.27 אם/פת יאם 2.1 009	
	10. AR-2.27, D5/PN. AR-2.1.000	
Inve	rt Level (m) 37.300	
Doubh (m) 3-	(m^2) Depth (m) Area (m^2)	
Depth (m) Are	$a (m^{-}) $ bepch (m) Area (m ²)	
0.000	131.0 1.800 736.0	
	22-2019 Innousia	
©198	zz-zora runovyze	

Sweco UK							Page 4			
Grove Hou	.se									
Mansion G	ate Dri	ve								
Leeds LS	7 4DN						Mirro			
Date 28/0	8/2024	09:51		Design	ed by GBRYAL		Drainage			
File MAIN	ACCESS	BELLMOUTH	I S	Checke	d by		Diamage			
Innovyze				Networ	k 2019.1					
Summary of Critical Results by Maximum Level (Rank 1) for Storm										
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1										
	Num	ber of Offli	ine Cont	rols 0 N	Number of Real 1	'ime Contro	ls 0			
	Mar	Rainfa FEH Rainfal: Site I Cv Cv Cv	<u>Synthe</u> all Mode l Versio Locatio Data Typ (Summer (Winter d Risk W	tic Rain l n GB 248 e))) Varning (<u>fall Details</u> 483 843245 NH 4 mm) 300.0	FEH 2013 8483 43245 Point 0.750 0.840 DVD Status	OFF			
	Dui	Profil ration(s) (m	e(s)	DTS Sta 15, 30, 720,	60, 120, 180, 960, 1440, 2160	Summer a: 240, 360, , 2880, 43 7200, 86	NG Winter 480, 600, 20, 5760, 40, 10080			
:	Return Pe	eriod(s) (ye	ars)			,	200			
	Cl:	imate Change	(%)				42			
PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow Overflow Act.			
AR-2:1.000	AR-2:19	15 Winter	200	+42%						
AR-2:1.001	AR-2:20	15 Winter	200	+42%						
AR-2:1.002	AR-2:21	15 Winter	200	+42%						
AR-2:2.000	AR-2:17	15 Winter 15 Winter	200	+42%						
AR-2:2.002	AR-2:22	15 Winter	200	+42%						
AR-2:2.003	AR-2:23	15 Winter	200	+42%	200/15 Summer					
AR-2:1.003	AR-2:22	15 Winter	200	+42%						
AR-2:1.004	AR-2:23	15 Winter	200	+42%	000/17					
AR-2:1.005	AR-2:24	15 Winter	200	+42%	200/15 Summer					
AR-2:1.006	AR-2:25	15 Winter	200	+42% +47%	200/480 Wintor					
AR-2:1.007	AR-2:20	2160 Winter	200	+42%	200/15 Summer					
AR-2:1.009	AR-2:28	2160 Winter	200	+42%						
AR-2:1.010	AR-2:29	2160 Winter	200	+42%						
			©198	32-2019	Innovyze					

Sweco UK		Page 5
Grove House		
Mansion Gate Drive		
Leeds LS7 4DN		Mirro
Date 28/08/2024 09:51	Designed by GBRYAL	Desinado
File MAIN ACCESS BELLMOUTH S	Checked by	Diamage
Innovyze	Network 2019.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
AR-2:1.000	AR-2:19	71.451	-0.089	0.000	0.65		88.6	OK	
AR-2:1.001	AR-2:20	63.076	-0.074	0.000	0.76		102.9	OK	
AR-2:1.002	AR-2:21	57.608	-0.072	0.000	0.78		126.9	OK	
AR-2:2.000	AR-2:17	68.652	-0.118	0.000	0.10		4.9	OK	
AR-2:2.001	AR-2:18	62.712	-0.038	0.000	0.90		45.0	OK	
AR-2:2.002	AR-2:22	57.113	-0.117	0.000	0.46		73.8	OK	
AR-2:2.003	AR-2:23	48.585	0.185	0.000	1.57		72.8	SURCHARGED	
AR-2:1.003	AR-2:22	48.171	-0.104	0.000	0.74		228.6	OK	
AR-2:1.004	AR-2:23	43.948	-0.087	0.000	0.82		260.2	OK	
AR-2:1.005	AR-2:24	39.767	0.392	0.000	2.50		262.1	SURCHARGED	
AR-2:1.006	AR-2:25	39.194	-0.131	0.000	0.75		262.4	OK	
AR-2:1.007	AR-2:26	38.682	0.082	0.000	0.04		9.8	SURCHARGED	
AR-2:1.008	AR-2:27	38.681	1.231	0.000	0.05		2.1	SURCHARGED	
AR-2:1.009	AR-2:28	35.890	-0.110	0.000	0.16		2.1	OK	
AR-2:1.010	AR-2:29	35.812	-0.113	0.000	0.14		2.1	OK	