

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400kV OHTL

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400KV OHTL REPORT

TYPE OF DOCUMENT (THIRD ISSUE)

PROJECT NO. 70111023

OUR REF. NO. 70111023-509

DATE: JULY 2025

SCOTTISH & SOUTHERN ELECTRICITY NETWORK (SSEN)

EMF ASSESSMENT STUDY FOR 400KV OHTL REPORT

WSP

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Second issue	Third issue
Remarks	Draft Report	Final Report	Final Report
Date	July 2024	August 2024	July 2025
Prepared by			
Project number	70111023	70111023	70111023
Report number	70111023-509	70111023-509	70111023-509

.

CONTENTS

QUALITY CONTROL	1
CONTENTS	2
TERMINOLOGY	4
1 BACKGROUND AND SCOPE OF WORK	5
2 INPUT DATA	6
3 SIMULATION MODEL DEVELOPMENT	8
3.1 SIMULATION TOOL	8
3.2 CONSIDERATIONS FOR THE STUDY	8
3.3 MODEL DEVELOPMENT	8
4 STANDARD EXPOSURE LIMITS	11
4.1 PUBLIC EXPOSURE LIMITS	11
4.2 OCCUPATIONAL EXPOSURE LIMITS	12
5 CASE SCENARIO	13
5.1 CASE - A	13
5.2 CASE - B	13
6 STUDY RESULTS	14
6.1 SIMULATED GRAPH FOR ELECTRIC FIELD	14
6.2 TABULATED CASE RESULTS FOR ELECTRIC FIELD	16
6.3 SIMULATED GRAPH FOR MAGNETIC FIELD	17
6.4 TABULATED CASE RESULTS FOR MAGNETIC FIELD	19
7 CONCLUSION	20

8 REFERENCES 21

TERMINOLOGY

Term	Definition
ENA	Energy Network Association
EMF	Electro Magnetic Fields
ELF	Extremely Low Frequency
ICNIRP	International Commission on Non-Ionizing Radiation Protection
INIRC	International Non-Ionizing Radiation Committee
IARC	International Agency for Research on Cancer
NPS	National Policy Statement
OHTL	Overhead Transmission Line
SCENIHR	Scientific Committee on Emerging and Newly Identified Health Risks
SSEN	Scottish and Southern Electricity Network
WHO	World Health Organisation

1 BACKGROUND AND SCOPE OF WORK

WSP is assigned as the consultant to perform a 400kV Substation and 400kV OHL EMF Assessment Study Report for Scottish & Southern Electricity Networks (SSEN). The EMF Assessment Study is essential to ensure that personnel available in Substations or nearby to the OHTL are not exposed to a harmful level of Electromagnetic Field (EMF).

As per our proposal (70111023) to undertake the EMF studies, the following report is issued by WSP.

EMF assessment Study Report for 400kV OHTL of SSEN – Transmission

This report covers the EMF assessment study for the 400kV OHTL of SSEN Transmission. The proposed tower cross-section diagram considered for the entire study is shown below.

Figure 1- Proposed Suspension Tower AD & BD Diagram

2 INPUT DATA

The following are the input data received from SSEN for the undertaking the EMF studies.

SI. No.	DESCRIPTION	VALUES	UNIT
	Source Fault Level of 400kV OHTL		
Α	Phase Fault	45	kA
A	Earth Fault	-	-
	X/R Ratio of 400kV OHTL		
В	Phase Fault	19.95	
	Earth Fault	6.7	
	Length of the Overhead Transmission Line		
С	Minimum	76	km
	Maximum	115	km
	400kV Tension Insulator Details		
	Creepage Distance	10500	mm
	String Length	7.6	m
D	Mechanical Strength	300	kN
	No. of Discs	22	-
	Disc Type	Glass	-
	Arc Horn Distance	2800	mm
	400kV Suspension Insulator Details		
	Creepage Distance	4290	mm
	String Length	6	m
Е	Mechanical Strength	300	kN
	No. of Discs	24	-
	Disc Type	Glass	-
	Arc Horn Distance	2683	mm

	400kV OHTL Conductors Details		
	Number of Conductor per phase	3	-
	Bundle Spacing	500	mm
_	Maximum Continuous Current Rating of each circuit	5000	А
F	Minimum Continuous Current Rating of each circuit	3370	А
	Soil Resistivity	100	ohm-m
	400kV Tower Footing Resistance	5	ohm
	400k∀ Transmission Line Minimum Ground Clearance	9	m

3 SIMULATION MODEL DEVELOPMENT

3.1 SIMULATION TOOL

CDEGS (**C**urrent **D**istribution, **E**lectromagnetic Fields, **G**rounding and **S**oil Structure Analysis) tool was used to perform the EMF voltage assessment study for 400kV Overhead Transmission Line Tower.

CDEGS is a powerful set of integrated software tools designed to accurately analyse a variety of electromagnetic related problems encountered in all industries involving electric networks.

The use of CDEGS for EMF analysis is recognised within the industry as standard practice.

3.2 CONSIDERATIONS FOR THE STUDY

The following are the data considered as per the confirmation provided by SSEN

- 400kV Span Length is considered to be 350m.
- Ground Clearence of 400kV OHTL is considered as 9m.
- Optimum phasing is also included in the 400kV OHTL model.
- Maximum 400kV Overhead Transmission Line Length (i.e. 115km) is considered for the entire study.
- EMF observation points is extended up to 170m on cross section side of the tower.

3.3 MODEL DEVELOPMENT

The following are the models that have been developed in CDEGS simulation tool to carry out the required EMF assessment study. The insulator lengths provided within the inputs table in section 2 are approximate lengths and final lengths will be confirmed by SSEN during their detailed design. Slight variation in these lengths will have negligible impact on the EMF assessment as the conductor has been sagged to have a minimum clearance to ground of 9m and the EMF values are taken at this closest point to ground where fields are at their maximum.

Figure 2 400kV OHTL Model

Figure 3 EMF Measuring points in YZ Plane in the mid of span

Figure 4 EMF Measuring points in YZ Plane in the mid of tower

4 STANDARD EXPOSURE LIMITS

4.1 PUBLIC EXPOSURE LIMITS

In March 2004, the UK adopted the 1998 guidelines published by ICNIRP. These guidelines (See <u>Table 1</u>) are designed to set conservative exposure levels for the general public to electric and magnetic fields, and they are endorsed by the UK's Health Protection Agency, the World Health Organisation and the UK Government.

It is the policy of the electricity industry to follow these independent guidelines. A Code of Practice CoP, published jointly in 2012 by industry and the Department for Energy and Climate Change (now part of the Department for Business, Energy and Industrial Strategy). This CoP sets out all the practical details needed to apply the exposure limits for transmission lines. All exposures in homes already comply with the ICNIRP guidelines. The electricity industry designs all new equipment to comply with the Government guidelines as set out in the Code of Practice. This includes measures such as adhering to statutory ground clearance requirements and ensuring optimum phasing of high voltage double-circuit overhead lines.

The CoP sets the maximum levels for long term public exposure as 360 μ T for magnetic fields and 9 kV/m for electric fields. Long term exposure relates to places of residence or similar where people regularly spend extended periods of time. In other environments, where exposure can be deemed not to be for a significant period of time, the ICNIRP occupational guidelines, rather that the ICNIRP general public guidelines, shall be deemed to apply.

Table 1 – Public Exposure Limits for Power Frequency EMFs

SI. No.	Public Exposure Levels	Electric Fields	Magnetic Fields
1	Reference level (external unperturbed field)	5kV/m	100 μΤ
2	Field corresponding to the basic restriction (external unperturbed field)	9kV/m	360 μT

4.2 OCCUPATIONAL EXPOSURE LIMITS

Occupational exposure (see <u>Table 2</u>) is defined as any exposure experienced by an individual during work related activities. The limits for occupational exposure are stated in the Control of Electromagnetic Fields at Work Regulations 2016. These limits are enforceable and should not be exceeded.

Table 2- Occupational Exposure Limits for Power Frequency EMFs

SI. No.	Occupational Exposure Levels	Electric Fields	Magnetic Fields
1	Reference level (external unperturbed field)	10kV/m	1000 μΤ
2	Field corresponding to the basic restriction (external unperturbed field)	20kV/m	6000 μΤ

5 CASE SCENARIO

Based on the measuring profile and OHTL loading conditions, the following are the cases considered as discussed with SSEN.

Case A considers the expected continuous operating current for the proposed OHTL.

Case B considers the maximum possible current for the OHTL based on the substation equipment ratings being capped at 5000A. It should however be noted that some substation plant is limited at 4000A so although this assessment has been carried out, it is presented to consider the worst case load conditions however case A is representative of the actual operational values.

5.1 CASE - A

With partial loading of the OHTL (i.e. 3375A), the magnitudes of Electric and Magnetic Fields are measured at the mid of span.

5.2 CASE - B

With full loading of the OHTL (i.e. 5000A), the magnitudes of Electric and Magnetic Fields are measured at the mid of span.

6 STUDY RESULTS

This section presents the simulation results of the EMF assessment study for the Partial and full loading of the 400kV OHTL Circuit and results are tabulated in the <u>Table 3</u> and <u>Table 4</u>.

6.1 SIMULATED GRAPH FOR ELECTRIC FIELD

Figure 5 Electric Field Graph for Case A

Figure 6 Electric Field Profile at 1m Height for Case A

Figure 7 Electric Field Graph for Case B

Figure 8 Electric Field Profile at 1m Height for Case B

6.2 TABULATED CASE RESULTS FOR ELECTRIC FIELD

Table 3 Electric Field result with change in OHTL loading and profile location

		MAGNITU	IDE OF ELECTRIC	FIELD FOR VA	ARIOUS CASES	
			SIMULATED VA			
CASES	PROFILE LOCATION	400kV OHTL LOADING	±9 m from Centre (Lowest Conductor Below)	<u>+</u> 170m from Centre	UK PUBLIC EXPOSURE LIMIT	SAFE/ UNSAFE
	TOWER/MID OF SPAN	A	kV/n	n	kV/m	
Α	MID OF SPAN	3375 A	7.936394	0.010479	9.0	SAFE
В	MID OF SPAN	5000 A	7.881355	0.01043	3 .0	SAFE

6.3 SIMULATED GRAPH FOR MAGNETIC FIELD

Figure 9 Magnetic Field Graph for Case A

Figure 10 Magnetic Field Graph for Case A

Figure 11 Magnetic Field Profile at 1m Height for Case A

Figure 12 Magnetic Field Graph for Case B

Figure 13 Magnetic Field Profile at 1m Height for Case B

6.4 TABULATED CASE RESULTS FOR MAGNETIC FIELD

Table 4 Magnetic Field result with change in OHTL loading and profile location

		MAGNIT	JDE OF MAGNETIC	C FIELD FOR V	ARIOUS CASES	
			SIMULATED VA			
CASES	PROFILE LOCATION	400kV OHTL LOADING	<u>+</u> 9 m from Centre (Lowest <u>+</u> 170m from Centre Below)		UK PUBLIC EXPOSURE LIMIT	SAFE/ UNSAFE
	TOWER/MID OF SPAN	A	Micro T	esla	Micro Tesla	
Α	MID OF SPAN	3375 A	62.74127	0.123508	360	SAFE
В	MID OF SPAN	5000 A	92.30611	0.182544	300	SAFE

7 CONCLUSION

- In all the simulated test cases, the results have shown that the simulated values of Electric Field are well within the UK Exposure Limit.
- Similarly, the simulated value of the Magnetic Field is well within the UK Exposure Limit.

8 REFERENCES

- ICNIRP- Guidelines for Limiting Exposure to time varying Electric, Magnetic and EMF (Up to 300GHz)
- Electric and Magnetic Fields the facts Produced by ENA September 2017
- Working Group C4.208, "EMC within Power Plants and Substations," CIGRE2013
- IEEE Reference paper Magnetic field calculations within substation environment for EMC studies
- National Policy Statement for Electricity Networks Infrastructure (EN-5)

		Field Charles Bearing	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	· ·	Distribution	Transmission 🗸
Revision: 1.00	Classification: Public	Issue Date: July 25		

Appendix D PLS CADD Report for Cumulative Assessment

Optimal Phasing of Adjacent Circuits

```
PLS-CADD Version 20.01x64 14:23:43 02 July 2025
Scottish and Southern Energy
Project Bane: CityEls/Combined_EMF_Check Temp\Combined_EMF_Check.don'
Line Title: 'Max Op'
30 EMF Calculation Notes:

1) Calculations based on the EMF of Southern Service and Southern Service are being any service of Southern Service and Southern Service are being analyzed. The effects of structures are not included unless enabled as noted below.

4) Ground return is being ignored for magnetic field calculations.

Meximus wire distance:

10 (m)
Maximus wire distance:

10 (m)
Maximus wire distance:

10 (m)
Maximus vire distance:

10 (m)
M
```

One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections Section Data for 3D EMF Results:

Section Number	Section Note			i	Filename					Conductors Per Phase		Radius		Condition		WC Temperature (deg C)		us
1			5000.0	700mm aaa	c araucaria.wir	700mms	RAAC	- Araucaria	(H)	3	57.735	1.863	Мак Ор	Creep FE	Left	90.000	16.70	
2		400.0	5000.0	700mm aaa	c araucaria.wir	700mm = :	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
3		400.0	5000.0	700mm aaa	c araucaria.wir	700mm :	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
4		400.0	5000.0	700mm aaa	c araucaria.wir	700mm=	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
5		400.0	5000.0	700mm aas	c araucaria.wir	700mms :	AAAC	- Araucaria	(H)	3	57.735	1.863	Маж Ор	Creep FE	Left	90.000	16.70	0.0
6		400.0	5000.0	700mm aaa	c araucaria.wir	700mm= ;	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
7		400.0	5000.0	700mm aaa	c araucaria.wir	700mm# :	AAAC	- Araucaria	(H)	3	57.735	1.863	Маж Ор	Creep FE	Left	90.000	16.70	00
8		400.0	5000.0	700mm aaa	c araucaria.wir	700mm*	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
9		400.0	5000.0	700mm aas	c araucaria.wir	700mms	AAAC	- Araucaria	(H)	3	57.735	1.863	Маж Ор	Creep FE	Left	90.000	16.70	00
10		400.0	5000.0	700mm aae	c araucaria.wir	700mm = 1	BAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
11		400.0	5000.0	700mm aaa	c araucaria.wir	700mm=	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
12			5000.0		c araucaria.wir					3	57.735		Max Op	Creep FE			16.70	
13		400.0	5000.0	700mm aaa	c araucaria.wir	700mm# :	AAAC	- Araucaria	(H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.70	00
14			5000.0		c araucaria.wir					3	57.735		Max Op	Creep FE			16.70	
15		400.0	5000.0	700mm aaa	c araucaria.wir	700mm=	DAAA	- Araucaria	(H)	3	57.735		Max Op	Creep FE			16.70	0.0
16			5000.0		c araucaria.wir					3	57.735		Маж Ор	Creep FE			16.70	
17			5000.0		c araucaria.wir					3	57.735		Max Op	Creep FE			16.70	
18			5000.0		c araucaria.wir					3	57.735		Max Op	Creep FE			16.70	

Wire low point cross section results between structures 6 and 7

Offset (m)

-200

	Fl+	Cirld Charles Daniers	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid		Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

Headuren X (m) (m	entI		maginary (u7)	Angle H	agnitude (ur)	Polarization	H Magnitude (A/m)	Real I	maginary (kV/m)	Angle 1 (dag)	(kV/m)	Polarization	Real :	-Space Pot Imaginary (kV)	Angle b	lagni tude (kV)
372.0 525. 373.0 525.	0 1.0	0.052 0.071	0.066	51.7 51.8	0.094	7.5 6.8	0.067	0.000	0.007	89.1 87.5	0.007	0.2	-0.000	-0.007 -0.009	89.1 87.5	0.007
369.0 525. 369.0 525. 369.0 525. 367.0 525. 366.0 525.	0 1.0	0.072 0.073 0.073 0.074 0.075	0.091 0.092 0.093 0.094 0.095	51.8 51.8 51.9 51.8	0.118 0.119 0.120 0.121	7.1 7.2 7.3 7.5	0.094 0.096 0.096 0.097	0.000 0.000 0.000 0.001 0.001	0.009 0.009 0.009 0.010 0.010	87.3 87.2 97.1 86.9 86.8	0.009 0.009 0.009 0.010 0.010	0.2 0.2 0.2 0.2 0.2	-0.000 -0.000 -0.000 -0.001 -0.001	-0.009 -0.009 -0.009 -0.010 -0.010	87.3 87.2 97.1 86.9 86.8	0.009 0.009 0.009 0.010
365.0 525. 361.0 525.	0 1.0	0.076	0.096	51.0	0.122	7.6	0.099	0.001	0.010	86.5	0.010	0.2	-0.001	-0.010	86.5	0.010
363.0 525. 362.0 525. 361.0 525. 360.0 525. 359.0 525.	0 1.0	0.078 0.078 0.079 0.080 0.081	0.100 0.101 0.102 0.103	51.8 51.8 51.6 51.8	0.125 0.127 0.129 0.130 0.131	7.9 8.0 8.3 8.3	0.100 0.101 0.102 0.103 0.104	0.601 0.601 0.601 0.601	0.010 0.010 0.010 0.010 0.010	86.4 86.3 96.1 85.0	0.010 0.010 0.010 0.010 0.010	0, 2 0, 2 0, 2 0, 2 0, 2 0, 2	-0.001 -0.001 -0.001 -0.001 -0.001	-0.010 -0.010 -0.010 -0.010 -0.010	86.4 86.3 96.1 86.0 85.8	0.010 0.010 0.010 0.010 0.010
356.0 525. 357.0 525. 356.0 525.	0 1.0	0.083	0.104	51.8 51.8	0.133	0.6 8.8 8.9	0.106 0.107 0.108	0.001	0.011	83.5 85.4	0.010	0.3	-0.001 -0.001 -0.001	-0.010 -0.011 -0.011	85.7 85.6 85.4	0.011
355.0 525. 354.0 525. 353.0 525. 352.0 525.	0 1.0	0.086 0.087 0.087	0.108 0.109 0.110	51.8 51.8 51.8	0.137 0.139 0.141 0.142	9.1 9.2 9.4	0.109 0.111 0.112 0.113	0.601 0.601 0.601	0.011 0.011 0.011	85.1 85.0	0.011 0.011 0.011	0.3 0.3 0.3	-0.001 -0.001 -0.001 -0.001	-0.011 -0.011 -0.011	85.1 85.0 84.0	0.011
351.0 525. 350.0 525. 349.0 525.	0 1.0	0.089	0.113	51.8 51.0	0.144	9.5 9.7 9.9 10.0	0.114 0.116 0.117	0.601	0.011	84.7 84.5 84.5	0.011	0.3	-0.001 -0.001 -0.001	-0.011 -0.011	84.7 94.5	0.011
348.0 525. 347.0 525. 346.0 525. 345.0 525.	0 1.0 0 1.0 0 1.0 0 1.0	0.092 0.093 0.094 0.096	0.117 0.119 0.120 0.121	51.8 51.8 51.8 51.8	0.149 0.151 0.153 0.155	10.1 10.3 10.5 10.6	0.119 0.120 0.122	0.601 0.601 0.601	0.012 0.012 0.012	84.2 84.0 83.9 83.7	0.012 0.012 0.012	0.3 0.3 0.3	-0.001 -0.001 -0.001 -0.001	-0.012 -0.012 -0.012 -0.012	84.2 94.0 83.9 83.7	0.012 0.012 0.012 0.012
846.0 525 845.0 525 844.0 525 843.0 525 842.0 525	0 1.0 0 1.0 0 1.0 0 1.0	0.096 0.097 0.098 0.099	0.121 0.123 0.124 0.136	51.8 51.0 51.8 51.7	0.155 0.156 0.158 0.160	10.5 10.9 11.1	0.122 0.123 0.125 0.126 0.128	0.601 0.601 0.601	0.012 0.012 0.012 0.012 0.012	83.7 83.4 83.2	0.012 0.012 0.012 0.012 0.012	0.3 0.3 0.3 0.3	-0.001 -0.001 -0.001	-0.012 -0.012 -0.012 -0.012	83.7 93.6 83.4 83.2	0.012 0.012 0.012 0.012
941.0 525. 940.0 525. 939.0 525.	0 1.0	0.101 0.102 0.103	0.128 0.129 0.131	51.7 51.7	0.162 0.164 0.167	11.2 11.4 11.5	0.129 0.131 0.132	0.602 0.602 0.602	0.012 0.013 0.013	82.9 82.7	0.013 0.013 0.013	0.3	-0.002 -0.002 -0.002	-0.012 -0.013 -0.013	82.9 82.7	0.013 0.013 0.013
337.0 525. 337.0 525.	0 1.0	0.104 0.106 0.107	0.13Z 0.134 0.136	51.7 51.7	0.169	11.7 11.9 12.1	0.134 0.136 0.138	0.602	0.013	82.4 82.2	0.013	0.3	-0.002 -0.002 -0.002	-0.013 -0.013	82.4 92.2	0.013
335.0 525. 334.0 525. 332.0 525. 332.0 525.	0 1.0	0.109 0.110 0.112	0.137 0.139 0.141 0.143	51.7 51.6	0.175 0.177 0.190 0.182	12.2 12.4 12.5	0.139 0.141 0.143 0.145	0.002 0.002 0.002 0.002	0.013 0.013 0.014	81.9 91.7 81.3	0.013 0.014 0.014	0.3	-0.002 -0.002 -0.002	-0.013 -0.013 -0.014	82.1 81.9 91.7	0.014
331.0 525. 330.0 525. 329.0 525.	0 1.0	0.115 0.116 0.116 0.118	0.145 0.147 0.148	51.6 51.6 51.6	0.185	12.7 12.9 13.1 13.2	0.147 0.149 0.151	0.602	0.014	81.4 81.2 81.0	0.014	0.3 0.3 0.3	-0.002 -0.002 -0.002 -0.002	-0.014 -0.014 -0.014 -0.014	81.5 81.4 01.2 81.0	0.014 0.014 0.014 0.014
328.0 525. 327.0 523. 326.0 525. 325.0 525.	0 1.0 0 1.0 0 1.0 0 1.0	0.116 0.121 0.123 0.125	0.150 0.152 0.155 0.167	51.6 51.5 51.5	0.192 0.195 0.197 0.200	13.4 13.6 13.7 13.9	0.153	0.402 0.402 0.402	0.014 0.015 0.015	80.8 80.4 80.2	0.015 0.015 0.015	0.3 0.3 0.3	-0.002 -0.002 -0.002	-0.014 -0.015 -0.015	80.8 80.4	0.015
324.0 525. 324.0 525. 323.0 525.		0.126 0.128 0.128	0.187 0.159 0.161 0.163	51.5 51.5 51.5 51.5	0.200 0.203 0.206 0.209	14.1 14.3 14.4	0.157 0.159 0.161 0.164 0.166	0.002 0.003 0.003 0.003 0.003	0.015 0.015 0.015 0.015 0.015	90.1 79.9 79.7	0.015 0.015 0.015 0.015 0.016	0.3 0.3 0.3	-0.002 -0.003 -0.003 -0.003	-0.015 -0.015 -0.015 -0.015 -0.015	80.4 80.2 80.1 79.9 79.7	0.015 0.015 0.015 0.015 0.016
321.0 525. 320.0 525. 319.0 525.	0 1.0	0.132 0.134 0.136	0.165 0.168 0.170	51.4 51.4 51.4	0.211 0.214 0.219	14.6 14.8 15.0	0.168 0.171 0.173	0.403 0.403 0.403	0.016 0.016 0.016	79.5 79.3 79.1	0.016	0.3	-0.003 -0.003 -0.003	-0.016 -0.016 -0.016	79.5 79.3 79.1	0.016
318.0 525. 317.0 525. 316.0 525.	0 1.0	0.138 0.140 0.142	0.172 0.175 0.177	51.3 51.3	0.221 0.224 0.227	15.1 15.3 15.5	0.176 0.178 0.181	0.003 0.003 0.003	0.016 0.016 0.017	78.9 78.7 70.5	0.016 0.017 0.017	0.4	-0.003 -0.003 -0.003	-0.016 -0.016 -0.017	78.9 78.7 76.5	0.016
315.0 525. 314.0 525. 313.0 523. 312.0 525.	0 1.0	0.153 0.156 0.158 0.160	0.191 0.193 0.196 0.199	51.2 51.2 51.1	0.245 0.248 0.152 0.255	13.8 14.0 14.2 14.4	0.195 0.198 0.200 0.203	0.603 0.603 0.603 0.604	0.019 0.019 0.019	80.3 80.1 79.9 79.7	0.019 0.019 0.020 0.020	0.4 0.4 0.4 0.4	-0.003 -0.003 -0.003 -0.004	-0.019 -0.019 -0.019 -0.019	80.3 80.1 79.9 79.7	0.019 0.019 0.020
011.0 525. 510.0 525. 309.0 525.	0 1.0	0.163 0.163 0.167	0.201	51.1 51.1 51.0	0.259 0.163 0.266	14.6 14.8 15.0	0.206 0.209 0.212	0.004	0.020 0.020 0.020	79.5 79.3 79.0	0.020	0.4	-0.004 -0.004 -0.004 -0.004	-0.020 -0.020 -0.020	79.7 79.5 79.3 79.0	0.020
000.0 525. 007.0 525. 006.0 525.		0.170 0.173 0.175	0.210 0.213 0.216 0.219	51.0 51.0	0.270 0.174 0.278	15.3 15.4 15.6	0.215 0.218 0.201 0.225	0.004	0.020 0.021 0.021	79.8 78.6 78.4	0.021 0.021 0.021	0.4	-0.004 -0.004 -0.004	-0.020 -0.021 -0.021	78.8 78.6 78.4	0.021
303.0 523. 504.0 523. 303.0 525.	0 1.0	0.178 0.181 0.184 0.107	0.122 0.125 0.126 0.129	50.9 50.9 50.9	0.202 0.187 0.291 0.225	15.5 16.0 16.2 16.4	0.225 0.228 0.231 0.235	0.004 0.005 0.005 0.005	0.021 0.021 0.023 0.022	70.2 77.9 77.7 77.5	0.022 0.022 0.022 0.022	0.4 0.4 0.4 0.4	-0.004 -0.005 -0.005 -0.005	-0.021 -0.021 -0.022 -0.022	77.9 77.7 77.7	0.022 0.022 0.022 0.022
301.0 525. 300.0 525. 209.0 525.	0 1.0	0.190 0.193 0.214 0.217	0.232	50.8 50.9 50.9	0.300	16.6 16.8 15.9	0.239	0.005	0.022 0.023 0.025 0.025	77.2 77.0 76.0	0.023	0.4 0.4 0.4 0.4	-0.005 -0.005 -0.006	-0.022 -0.022 -0.025 -0.026	76.2 77.9 77.7 77.5 77.3 77.0 76.6 76.6 76.4	0.023 0.023 0.026 0.026
298.0 525. 297.0 525. 296.0 523. 295.0 525. 294.0 525.	0 1.0	0.217 0.221 0.224 0.228	0.267 0.271 0.275 0.279 0.294	50.9 50.8 50.8	0.344 0.350 0.355 0.361	16.1 16.3 16.5 16.7	0.270 0.274 0.278 0.283 0.287	0.006 0.006 0.008 0.007	0.025 0.026 0.028 0.026	76.6 76.4 76.1	0.025 0.027 0.027 0.027	0.4	-0.006 -0.006 -0.006 -0.007	-0.026 -0.026 -0.026 -0.026 -0.027	76.6 76.4 76.1 75.9 75.7	0.026 0.027 0.027 0.027
293.0 525. 293.0 525. 292.0 525.	0 1.0	0.236 0.240	0.294 0.288 0.292	50.1 50.1 50.7	0.366	16.0 17.1 17.3	0.291 0.296 0.301	0.407 0.407	0.027 0.027 0.027	75.9 75.7 75.4 75.2	0.029 0.028 0.028	0.4 0.4 0.4 0.4	-0.007 -0.007 -0.007	-0.027 -0.027 -0.027	75.4 75.4	0.028
91.0 525. 90.0 525.	0 1.0	0.248	0.301	50.6	0.364	17.5 17.7 18.0	0.306 0.310 0.315	0.007	0.028	74.2 74.7 74.4	0.029	0.4	-0.007 -0.008 -0.008	-0.028 -0.028	75.4 75.2 75.0 74.7 74.5	0.029
80.0 525. 87.0 525. 86.0 525.		0.256 0.261 0.265	0.311 0.316 0.321 0.326	50.4 50.4	0.410	10.2 18.4 18.6	0.321 0.326 0.331	0.008	0.029 0.029 0.029 0.030	74.2 73.9 73.7	0.030	0.4 0.5 0.5 0.5 0.5	-0.008 -0.008 -0.009 -0.009	-0.029 -0.029 -0.029 -0.030	74.2 73.9 73.7 73.4 73.2	0.030 0.030 0.031 0.031
85.0 525 84.0 525 82.0 525 81.0 525		0.275 0.290 0.285	0.331 0.337 0.34Z	50.4 50.3 50.3 50.2 50.2	0.423 0.431 0.439 0.445	19.0 19.2 19.3	0.337 0.343 0.348 0.354 0.361	0.009 0.009 0.009	0.030 0.031 0.031	73.4 73.1 72.0 72.6 72.3	0.031 0.032 0.032	0.5 0.5 0.5	-0.009 -0.009 -0.010	-0.030 -0.031 -0.031 -0.031	73.2 72.0 72.6 72.8	0.031 0.032 0.032 0.033
79.0 525.		0.296	0.348 0.354 0.360	50.1	0,463	19.5 19.7 19.9 20.1	0.361 0.367 0.373 0.380	0.010	0.032	72.0	0.032 0.033 0.033 0.034	0.5	-0.010 -0.010 -0.011 -0.011	-0.031 -0.032 -0.032 -0.032	72.3 72.0 71.8 71.5	0.033
78.0 525. 77.0 525. 76.0 525. 75.0 525.		0.313 0.319 0.325	0.372 0.379 0.385	49.9 49.8	0.456 0.495 0.504	20.8 20.8 20.8 21.0	0.380 0.387 0.394 0.401	0.611 0.611 0.612 0.612	0.033 0.033 0.034	71.5 71.2 70.9 70.6	0.035 0.035 0.035	0.5 0.5 0.5	-0.011 -0.011 -0.012 -0.012	-0.033 -0.033 -0.034	71.5 71.2 70.9 70.6	0.035
74.0 525. 273.0 525. 272.0 525.	0 1.0	0.332	0.392	49.7	0.513 0.523 0.523	21.2 21.5 21.7	0.409 0.416 0.424	0.412 0.413 0.413	0.034	70.3 70.0	0.036	0.5	-0.012 -0.013 -0.013	-0.034 -0.035 -0.035	70.3 70.8 59.7	0.036
71.0 525. 70.0 525. 69.0 525.	0 1.0 0 1.0 0 1.0	0.352 0.359 0.367	0.413 0.421 0.429	49.6 49.5 49.5	0.563 0.564	21.9 22.2 22.4	0.43Z 0.44D 0.44D	0.013 0.014 0.014	0.035 0.036 0.036	69.3 69.0 69.7	0.038 0.038 0.039	0.6 0.6	-0.013 -0.014 -0.014	-0.035 -0.036 -0.036	69.3 69.0 69.7	0.038
68.0 523 67.0 525 66.0 523 65.0 523		0.374 0.382 0.390 0.399	0.435 0.445 0.453 0.461	49.4 49.3 49.3	0.575 0.586 0.595 0.610	12.8 22.8 23.1 23.3	0.457 0.466 0.476 0.485 0.495	0.015 0.015 0.016 0.016	0.037 0.037 0.038 0.038	68.0 67.7 67.3	0.040 0.040 0.041 0.042	0.6 0.6 0.6 0.6 0.6	-0.015 -0.015 -0.016 -0.016 -0.017	-0.037 -0.037 -0.038 -0.038	58.4 58.0 67.7 67.3 67.0	0.040 0.040 0.041 0.042
65.0 525. 64.0 525. 63.0 523. 62.0 525.	0 1.0	0.399 0.407 0.416 0.425	0.461 0.470 0.479 0.489	49.2 49.1 49.0 49.0	0.610 0.622 0.635 0.648	23.3 23.5 23.6 24.0	0.515	0.016 0.017 0.017 0.018	0.038 0.039 0.039 0.040	67.3 67.0 66.6 66.2	0.042 0.042 0.043 0.044	0.6	-0.017	-0.038 -0.039 -0.039 -0.040	56.2	0.042 0.042 0.043 0.044
50.0 525. 59.0 525. 59.0 525.	0 1.0	0.435 0.444 0.455 0.465	0.108 0.508 0.518 0.529	40.0 40.0 48.7 49.7	0.661 0.675 0.689 0.704	24.3 24.5 24.7 25.0	0.526 0.537 0.549 0.560	0.019 0.019 0.020	0.041 0.041 0.041	65.9 65.1 64.7	0.045 0.045 0.046	0.7 0.7 0.1	-0.019 -0.019 -0.029	-0.040 -0.041 -0.041 -0.042	65.1 64.7	0.044 0.045 0.046
56.0 525.	0 1.0	0.476 0.487 0.499	0.551	48.5	0.719 0.735 0.751	15.2 25.5 25.7	0.57Z 0.585 0.599	0.020 0.021 0.022	0.043	63.9 63.5	0.047	0.1	-0.020 -0.021 -0.022	-0.043 -0.043	63.9 63.5	0.045
234.0 523. 252.0 525. 252.0 525.		0.510 0.523 0.536	0.574 0.596 0.599	48.3 49.2 49.2	0.765 0.785 0.903	26.2 26.4	0.625 0.625 0.630	0.022 0.023 0.024	0.044 0.045 0.045	63.1 62.7 62.3	0.000 0.051 0.051	0.7 0.7 0.6	-0.022 -0.023 -0.024	-0.044 -0.045 -0.045	63.1 62.7 62.3	0.050
251.0 525. 250.0 525. 249.0 525. 248.0 525.	0 1.0	0.549 0.563 0.577 0.591	0.612 0.625 0.630 0.653	48.1 48.0 47.9 47.8	0.822 0.841 0.661 0.881	26.7 26.9 27.2 27.4	0.654 0.669 0.665 0.701	0.625 0.625 0.626 0.627	0.046 0.047 0.047 0.048	61.8 61.4 60.9	0.052 0.053 0.054 0.055	0.8	-0.025 -0.025 -0.026 -0.027	-0.046 -0.047 -0.047 -0.048	61.8 61.4 60.9	0.052 0.053 0.054 0.055
248.0 525. 247.0 525. 246.0 523. 245.0 525. 241.0 525.	0 1.0 0 1.0 0 1.0 0 1.0	0.591 0.607 0.613 0.639 0.656	0.653 0.668 0.683 0.698 0.715	47.8 47.7 47.6 47.5 47.4	0.881 0.902 0.924 0.947 0.970	27.4 27.7 27.9 28.2 28.4	0.701 0.718 0.735 0.753 0.772	0.627 0.628 0.629 0.630 0.631	0.048 0.049 0.049 0.050 0.050	60.5 60.0 59.5 59.0 58.5	0.055 0.056 0.057 0.058 0.059	0.8 0.8 0.8 0.9	-0.027 -0.028 -0.029 -0.030 -0.031	-0.048 -0.049 -0.050 -0.050	60.5 60.0 33.3 59.0 58.5	0.055 0.056 0.057 0.058 0.058
243.0 523. 242.0 525	0 1.0	0.882 0.701 0.720	0.742	47.4 47.3 47.2	1.008 1.033 1.059	28.4 28.3 20.5	0,802 0,802 0,822 0,843	0.032 0.033 0.034	0.053 0.054 0.055	58.6	0.062 0.063 0.063	0.5	-0.031 -0.032 -0.033 -0.034	-0.053	58.6	0.062
241.0 523. 240.0 525. 239.0 525. 230.0 523.	0 1.0	0.740 0.760 0.762	0.177 0.196 0.815 0.635	47.1 47.0 46.9	1.086	28.8 29.1 29.3	0.865 0.887 0.910	0.035 0.036 0.038	0.055 0.056 0.057	57.5 57.0 56.4 55.8	0.065	0.9 0.9 1.0	-0.035 -0.036 -0.038	-0.055 -0.055 -0.056 -0.057	57.5 57.0 56.4	0.066
237.0 525. 236.0 525. 235.0 525. 234.0 525.	0 1.0	0.804 0.827 0.851	0.856 0.877 0.899	46.8 46.7 46.6	1.144 1.174 1.205 1.230 1.272	29.6 29.9 30.1 30.4	0.934	0.039 0.040 0.042	0.057	55.3	0.069 0.071 0.072	1.6 1.6 1.1	-0.039 -0.040 -0.042	-0.057 -0.058 -0.059	55.8 55.3 54.7	0.069 0.071 0.072 0.073
233.0 525.	0 1.0	0.876	0.922 0.946 0.971	46.5 46.2 46.2	1.307	30.7	1.012 1.040 1.070	0.043 0.045 0.046	0.059 0.060 0.061	54.0 53.4 52.8	0.073 0.075 0.076	1.1 1.1 1.2 1.4	-0.043 -0.045 -0.046	-0.059 -0.060 -0.061	54.1 53.4 52.8	0.075
231.0 525. 220.0 525. 229.0 525. 228.0 525. 227.0 525.		0.958 0.900 1.019 1.052 1.006	0.597 1.623 1.631 1.680 1.110	46.1 46.0 40.9 45.8 45.6	1.383 1.423 1.464 1.508 1.552	31.2 21.5 31.8 32.0	1.100 1.132 1.165 1.200 1.236	0.048 0.049 0.031 0.053	0.061 0.062 0.063 0.063 0.064	52.1 51.5 50.8 50.1 40.3	0.079 0.079 0.081 0.083 0.094	1.2 1.3 1.5	-0.048 -0.049 -0.051 -0.053 -0.055	-0.061 -0.062 -0.063 -0.063 -0.064	52.1 51.5 30.8 50.1 49.3	0.078 0.079 0.051 0.083 0.094
226.0 525. 225.0 525	0 1.0	1.121	1.142	45.5	1.600	32.3 32.6 32.9 32.2	1.236 1.273 1.312 1.353	0.455	0.064	49.3 48.6 47.8 47.0	0.086	2.3	-0.055 -0.057 -0.059 -0.051	-0.064	48.6 17.8 47.0	0.086
223.0 525. 222.0 525.	0 1.0	1.197 1.238 1.280	1.200 1.244 1.381	45.1 45.0 44.7	1.701 1.755 1.811 1.870	33.4 33.7	1.396	0.061 0.063 0.066 0.088	0.065 0.066 0.066	46.2	0.090 0.091 0.093	1.4 3.4 3.5	-0.063 -0.066 -0.065	-0.066 -0.066 -0.066	46.2	0.090
ZZ1.0 5Z3. 220.0 5Z5. 219.0 5Z5. Z18.0 5Z3.	0 1.0 0 1.0 0 1.0	1.325 1.372 1.421 1.473	1.360	44.7 44.6 44.5	1.870 1.931 1.996 2.064	34.3 24.6 34.9	1.488 1.537 1.588 1.64Z	0.088 0.070 0.073 0.078	0.067 0.067 0.068	44.5 43.7 42.8 41.8	0.093 0.097 0.099 0.102	1.5 1.6 1.4	-0.070 -0.071 -0.071	-0.067 -0.067 -0.067 -0.068	44.5 43.7 12.8 41.5	0.097

	Floranio O Adono esti	Field Cardy Demand	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	, ·	Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

	Floranio O Adono esti	Field Cardy Demand	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	, ·	Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

	Fl 9 Ma	Field Caude Demana	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid		Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

-77.0 525.0 -78.0 525.0	1.0 1.0 1.0	1.716	0.143 0.114 0.666	23.4 23.2 23.0	1.870	34.0 33.7 22.4	1.488	0.091 000 0	0.625	10.0	0.095	1.5 1.5 1.4	0.09Z	0.025	15.4 14.6	0.095
-78.0 525.0 -79.0 525.0 -80.0 525.0 -81.0 525.0 -82.0 525.0	1.0	1.664 1.615 1.568 1.522 1.479	0,660 0,635 0,611	22.8 22.6 22.4	1.811 1.755 1.701 1.649	33.2 32.9 32.6	1.441 1.396 1.353 1.312 1.273	0.090 0.099 0.081 0.086 0.084	0.024 0.022 0.020 0.019 0.017	14.6 13.0 13.0 12.2 11.4	0.093 0.091 0.090 0.088 0.086	1.4 1.4 1.4	0.090 0.099 0.087 0.085 0.084	0.024 0.022 0.020 0.018 0.017	14.6 13.0 13.0 12.2 11.4	0.093 0.091 0.090 0.088 0.086
-83.0 523.0 -84.0 525.0	1.0 1.0 1.0 1.0	1.397	0.566	22.3	1.508	32.3 32.0	1.236	0.081	0.016	10.7	0.084	1.3	0.081	0.016 0.014 0.013 0.012	9.9	0.083
-86.0 525.0 -87.0 525.0 -88.0 525.0 -89.0 525.0	4.0	1.322 1.286 1.252 1.219	0.526 0.507 0.499 0.472	21.5 21.5 21.3 21.2	1.423 1.383 1.344 1.307	31.5 31.2 20.9 30.7	1.132 1.100 1.070 1.040	0.078 0.071 0.076 0.074	0.612 0.611 0.610 0.609	5.6 7.9 7.0 6.6	0.079 0.078 0.076 0.075	1.2 1.2 1.2 1.1	0.070 0.077 0.076 0.074	0.011	7.9 7.2 6.6	0.079 0.078 0.076 0.075
-91.0 525.0 -92.0 525.0	1.0	1.188	0.472 0.456 0.440 0.425	21.0	1.272	30.4 30.1 29.9	0.985	0.073 0.072 0.070	0.008	5.0 5.4 4.0	0.075 0.073 0.072 0.071	1.1	0.073	0.008	5.9 5.3 4.7	0.073 0.072 0.071
-93.0 525.0 -94.0 525.0 -95.0 525.0 -96.0 525.0 -97.0 525.0	1.0	1.100 1.073 1.046 1.021 0.997	0.410 0.396 0.283 0.371 0.358	20.5 20.3 20.1 19.9 19.8	1.174 1.144 1.114 1.088 1.059	29.6 29.3 29.1 28.5 28.5	0.934 0.910 0.667 0.665	0.069 0.068 0.067 0.066 0.064	0,005 0,004 0,004 0,003 0,002	4.2 3.6 3.1 2.5 2.0	0.069 0.068 0.067 0.066 0.065	1.0 1.0 1.0	0,069 0,068 0,067 0,065 0,064	0.005 0.004 0.004 0.003 0.002	3.6 3.0 2.3	0.069 0.068 0.067 0.065
-96.0 523.0 -97.0 525.0 -90.0 525.0 -99.0 525.0 -100.0 525.0 -101.0 525.0	1.0 1.0 1.0 1.0 1.0	0.973	0.358 0.347 0.336 0.325 0.315	19.6	1.003 1.008 0.970 0.947	28.3 28.0 28.4 28.2	0.843 0.822 0.802 0.772 0.753 0.733	0.062 0.062 0.059 0.059	0.002 0.001 0.002 0.001	1.5	0.063	0.9 0.9 0.9 0.9	0.063	0.002 0.001 0.002 0.001	1.4	0.065 0.063 0.062 0.059 0.058
-101.0 525.0 -102.0 525.0 -103.0 525.0 -104.0 525.0	1.0	0.914 0.893 0.672 0.852 0.833	0,315 0,305 0,295 0,286	19.6 19.4 19.3 19.1 18.0	0.947 0.924 0.902 0.881	28.2 21.9 27.7 27.4	0.753 0.735 0.718 0.701	0.056 0.056 0.056	0.001 0.001 0.000 0.001	1.1 0.7 0.5 0.7	0.059 0.058 0.057 0.056 0.055	0.9 0.9 0.8 0.8	0.059 0.059 0.057 0.056 0.055	0,001 0,000 -0,000 -0,000	0.5 -0.0 -0.5	0.058 0.057 0.056 0.055
-105.0 525.0 -106.0 525.0 -107.0 525.0	1.0	0.815	0.277	18.6 18.5 18.3 18.2	0.861	21.2 26.9 26.7	0.669 0.654	0.053 0.052	0.401	1.0 1.5 1.9	0.054 0.053 0.052	0.8 0.8	0.053 0.053	-0.001 -0.001 -0.002	-1.4	0.054 0.053 0.052
-108.0 525.0 -109.0 525.0 -110.0 525.0 -111.0 525.0 -112.0 523.0	1.0 1.0 1.0 1.0 1.0 1.0	0.762 0.746 0.733 0.715 0.700	0.253 0.245 0.238 0.231	18.2 18.0 17.0	0.803 0.785 0.768 0.751 0.733	26.4 26.2 25.9 25.7	0.639 0.625 0.611 0.599 0.585	0.051 0.050 0.050 0.049 0.048	0.602 0.602 0.603 0.603 0.603	2.7 3.1 3.5	0.051 0.051 0.050 0.040 0.049	0.8 0.7 0.7 0.7 0.7 0.7	0.051 0.050 0.050 0.049	-0.002 -0.002 -0.003 -0.003	-2.3 -2.1 -3.1 -3.5	0.051 0.051 0.050 0.049
-113.0 525.0 -114.0 525.0	1.0	0.686	0.224 0.224 0.217 0.211	18.0 17.9 17.7 17.6 17.4	0.704	25.5 25.2 25.0 74.7	0.572	0.047	0.004	4.4	0.047	0.7 0.7 0.7	0.049 0.048 0.047 0.046	-0.004	-3.9 -4.3 -4.7	0.048 0.047 0.046
-113.0 523.0 -116.0 525.0 -117.0 525.0 -118.0 523.0	1.0	0.635 0.637 0.637	0,205 0,199 0,194 0,188	17.3 17.2 17.0 18.9	0.689 0.675 0.661 0.648	24.7 24.5 24.2 24.0	0.549 0.537 0.525 0.515	0.045 0.045 0.044 0.043	0,004 0,005 0,005 0,005	5.5 5.9 6.6	0.045 0.045 0.044 0.044	0.7 0.7 0.7	0.045 0.045 0.044 0.043	-0.004 -0.004 -0.005 -0.005	-5.5 -5.9 -6.2	0.045 0.045 0.044 0.044
-119.0 525.0 -120.0 525.0 -121.0 525.0 -122.0 525.0 -123.0 525.0	1.0 1.0 1.0 1.0 1.0	0.608 0.506 0.505 0.574 0.563	0.183 0.178 0.173 0.168 0.164 0.159	16.5 16.7 16.6 16.3 16.3 16.3	0.635 0.622 0.610 0.598	23.8 23.5 23.5 23.1	0.505 0.495 0.485 0.476 0.465	0.043 0.042 0.041 0.041 0.040	0.005	7.0	0.043 0.042 0.042 0.041	0.6 0.6 0.6 0.6 0.6	0.043 0.043 0.042 0.041 0.041 0.040	-0.005 -0.005 -0.005 -0.005 -0.006	-6.6 -7.0 -7.3 -7.1	0.043 0.042 0.042 0.041 0.040
-123.0 525.0 -124.0 525.0 -125.0 525.0 -126.0 525.0 -127.0 525.0	1.0	0.552 0.542 0.532 0.523	0,164 0,159 0,155 0,151	16.2 16.1 15.9 15.8 15.7	0.584 0.553 0.543	22.8 22.6 22.4 22.2	0.465 0.457 0.449 0.440 0.432	0.039 0.039 0.038	0,406 0,406 0,406 0,406	8.0 8.7 9.0	0.040 0.039 0.039 0.038 0.039	0.6 0.6 0.6 0.6	0.040 0.039 0.039 0.038 0.037	-0.006 -0.006 -0.006	-8.0 -6.4 -8.1 -9.0	0.040 0.039 0.039
-127.0 525.0 -128.0 525.0 -129.0 525.0	1.0 1.0 1.0 1.0	0.513	0.143 0.139	15.5	0.533	21.7 21.5	0.424	0.03T 0.036	0,406	9.7	0.037	0.6 0.5	0.037	-0.006 -0.006	-9.1 -9.1	0.039 0.037 0.037
-130.0 525.0 -131.0 523.0 -132.0 525.0 -132.0 525.0 -134.0 523.0	1.0	0.495 0.487 0.478 0.470 0.462	0.135 0.132 0.128 0.125 0.122	15.2 15.0 14.9	0.513 0.504 0.495 0.496 0.478	21.2 21.0 20.8 20.6	0.409 0.401 0.394 0.397 0.380	0.036 0.035 0.035 0.034 0.034	0.006 0.007 0.007 0.007	10.2 10.6 10.9 11.2	0.036 0.035 0.035 0.035	0.5 0.5 0.5	0,036 0,035 0,035 0,034	-0.006 -0.007 -0.007 -0.007 -0.007	-10.3 -10.8 -10.9 -11.2	0.036 0.035 0.035 0.035
-135.0 525.0 -136.0 525.0 -137.0 525.0	1.0 1.0 1.0	0.454	0.122 0.119 0.116 0.113	14.0 14.8 14.7 14.6 14.4	0.478 0.469 0.461 0.453	20.6 20.3 20.1 10.9 19.7	0.373	0.033	0.407 0.407 0.407	11.5 11.8 12.0 12.3	0.034 0.034 0.033	0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.033	-0.007 -0.007 -0.007 -0.007	-11.5 -11.8 -12.6 -12.3	0.034 0.034 0.033 0.033
-138.0 525.0 -139.0 525.0	1.0	0.432	0.110	14.2	0.445	19.5 19.2	0.354	0.032	0.007	12.6	0.032	0.5	0.032	-0.007 -0.007	-12.6 -12.9	0.032
-141.0 525.0 -142.0 525.0 -143.0 525.0 -144.0 523.0 -145.0 525.0	1.0 1.0 1.0 2.0 1.0	0.415 0.411 0.404 0.305 0.392 0.392	0.102 0.100 0.097 0.095 0.098	14.0 13.9 13.7 13.6	0.423 0.416 0.410 0.403 0.396	18.8 18.6 10.4 18.2	0.337 0.331 0.326 0.321 0.315	0.030 0.030 0.029 0.029	0.407 0.407 0.407 0.407	13.4 13.7 13.9 14.2	0.031 0.031 0.030 0.030 0.039	0.5 0.5 0.5 0.4 0.4	0.030 0.030 0.029 0.029	-0.007 -0.007 -0.007 -0.007 -0.007	-13.4 -13.7 -13.9 -14.2 -14.5	0.031 0.031 0.030 0.030 0.029
-145.0 525.0 -147.0 525.0 -148.0 525.0	1.0	0.374	0.090	13.6 13.5 13.4 13.3 13.2 13.2	0.394 0.378 0.378 0.372	17.7 17.5 17.3 17.1	0,315 0,310 0,306 0,301 0,296	0.029 0.028 0.028 0.021 0.021	0.607 0.607 0.607 0.607	14.4 14.7 14.9 15.2 15.4	0.029 0.029 0.029 0.028 0.029	0.4 0.4 0.4	0.029 0.029 0.028 0.027 0.027	-0.007 -0.007 -0.007 -0.007 -0.007	-14.5 -14.7 -15.0 -15.2 -15.4	0.029
-149.0 525.0 -130.0 525.0 -151.0 525.0 -152.0 525.0	1.0	0.357 0.351 0.366	0.694 0.682 0.680 0.679	13.0 12.9 12.8	0.372 0.365 0.361 0.355	17.1 16.9 16.7 16.5	0.291	0.021 0.021 0.026 0.026	0.607 0.607 0.607	15.7 15.9	9.029 9.028 9.027 9.027	0.4 0.4 0.4	0.027 0.027 0.026 0.026	-0.007 -0.007 -0.007 -0.007	-15.4 -15.1 -15.9 -16.1	0.028 0.028 0.027 0.027
-153.0 525.0 -154.0 525.0 -155.0 525.0 -156.0 525.0	1.0 1.0 1.0 1.0 1.0	0.341 0.336 0.331 0.207	0.077 0.075 0.073 0.068	1Z.7	0.350 0.344 0.339 0.304	16.3 16.1 15.9 16.0	0.278 0.274 0.270 0.242	0.025 0.025 0.025 0.021	0.407 0.407 0.407	16.4	0.027 0.026 0.026 0.025		0.025 0.025 0.025 0.022	-0.007 -0.007 -0.007 -0.007	-16.4 -16.6 -16.8	0.027 0.026 0.026 0.023
-157.0 525.0 -158.0 525.0 -159.0 525.0	1.0	0.292	0.067	12.5 12.9 12.8 12.7 12.6	0.300	16.6 16.4 16.2	0.239	0.022	0.407	16.8 17.0 17.3 17.5	0.023	0.4 0.4 0.4 0.4 0.4	0.022	-0.007 -0.007	-17.6 -17.3 -17.5 -17.7	0.023
-160.0 525.0 -161.0 525.0 -162.0 525.0 -163.0 525.0	1.0	0.280 0.276 0.272	0.062 0.061 0.059 0.059	12.4	0.287 0.282 0.279 0.274	16.0 15.8 15.6 15.4	0.228 0.225 0.221 0.218	0.021 0.020 0.020 0.020	0.407 0.407 0.407	17.9 18.2 19.4	0.022 0.022 0.021 0.021	0.4 0.4 0.4	0.021 0.020 0.020	-0.007 -0.007 -0.007 -0.007	-17.9 -18.2 -19.4 -18.6	0.022 0.022 0.021 0.021
-163.0 525.0 -164.0 525.0 -165.0 525.0 -166.0 525.0 -167.0 525.0	1.0 1.0 1.0 1.0	0.268 0.264 0.260 0.257 0.253	0.658 0.657 0.656 0.654 0.653	12.3 12.2 12.1 12.0 11.9	0.274 0.270 0.260 0.263 0.259	15.4 15.2 15.0 14.8 14.6	0.218 0.215 0.212 0.209 0.206	0.020 0.020 0.019 0.019 0.019	0.407 0.407 0.407 0.407	18.6 18.8 19.0 19.3 19.5	0.021 0.021 0.021 0.020 0.020	0.4 0.4 0.4 0.4	0.020 0.020 0.019 0.019 0.019	-0.007 -0.007 -0.007 -0.007 -0.007	-18.6 -18.8 -19.0 -19.3 -19.5	0.021 0.021 0.021 0.020 0.020
-160.0 525.0 -169.0 525.0 -170.0 525.0 -171.0 525.0	1.0	0.250 0.245 0.243 0.240	0.652 0.651 0.650 0.649	11.0	0.255 0.252 0.248 0.245	14.4 14.2 14.0 13.8	0.202 0.200 0.198 0.195	0.019 0.018 0.018	0.607 0.607 0.607	19.7 19.9 20.1 20.3	0.020 0.020 0.019 0.019	0.4 0.4 0.4	0.019 0.018 0.018 0.018	-0.007 -0.007 -0.007 -0.007	-19.7 -19.9 -20.1 -20.3	0.020 0.020 0.019 0.019
-172.0 525.0 -173.0 525.0 -174.0 525.0	1.0	0.222	0.048 0.047 0.046	12.0	0.227 0.224 0.221 0.210	15.3 15.1	0.181 0.178 0.176	0.016 0.016 0.016	0.005	18.7	0.017 0.017 0.016	0.4	0.016	-0.005 -0.005	-18.7 -18.6	0.017 0.017 0.016
-173.0 523.0 -176.0 525.0 -177.0 525.0 -170.0 523.0	1.0	0.213 0.210 0.207 0.204	0.045 0.044 0.043 0.042	11.6 11.7 11.7 11.6	0.211	15.0 14.8 14.6 14.4	0,173 0,171 0,168 0,166	0.015 0.015 0.015	0.405 0.405 0.405	19.1 19.3 19.5	0.016 0.016 0.016 0.016	0.4 0.3 0.3	0.015 0.015 0.015 0.015	-0.005 -0.005 -0.005	-19.3 -19.5 -19.7	0.016 0.016 0.016 0.016
-179.0 525.0 -180.0 525.0 -191.0 525.0	1.0	0.202 0.199 0.196	0.041 0.040 0.039 0.039	11.4	0.206 0.203 0.200 9.107	14.1 14.1 12.9 13.7	0.161	0.015 0.014 0.014	0.005 0.005 0.005	20.1	0.015 0.015 0.015	0.3	0.014	-0.005 -0.005 -0.005	-19.9 -20.1 -20.2	0.015 0.015 0.015
-183.0 525.0 -184.0 525.0 -185.0 525.0 -186.0 525.0 -187.0 525.0	1.0 1.0 1.0 1.0	0.191 0.189 0.186 0.184 0.181	0.038 0.037 0.036 0.036 0.035	11.3 11.2 11.1 11.1 11.0 10.6	0.195 0.192 0.190 0.187 0.185	13.6 13.4 13.2 13.1 12.9	0.157 0.155 0.153 0.151 0.149 0.147	0.014 0.014 0.013 0.013 0.013	0.405 0.405 0.405 0.405 0.405	20.4 20.6 20.8 21.0 21.2 21.4	0.015 0.015 0.014 0.014	0.3 0.3 0.3 0.3 0.3	0.014 0.014 0.014 0.013 0.013 0.013	-0.005 -0.005 -0.005 -0.005 -0.005	-20.6 -20.8 -21.0 -21.2 -21.4	0.015 0.015 0.014 0.014
-188.0 523.0 -189.0 525.0	1.0	0.179	0.034	10.6 10.8 10.8	0.182	12.7	0.145	0.013	0.605	21.5	0.014	0.3	0.013	-0.005	-21.5	0.014
-190.0 525.0 -191.0 525.0 -192.0 525.0 -192.0 525.0	1.0 1.0 1.0 1.0 1.0	0.174 0.172 0.170 0.169	0,032 0,032 0,032 0,031	10.8 10.8 10.7 10.6 10.6 10.5	0.177 0.175 0.173 0.171 0.169	12.4 12.2 12.1 11.9	0.141 0.139 0.138 0.136	0.012 0.012 0.012	0.005 0.005 0.005	21.6 22.1 22.2 22.4	0.014 0.013 0.013 0.013	0.3 0.3 0.3	0.012 0.012 0.012 0.012 0.012	-0.005 -0.005 -0.005	-21.9 -22.1 -22.2 -22.4	0.014 0.013 0.013 0.013
-194.0 525.0 -195.0 525.0 -196.0 525.0 -197.0 525.0	1.0	0.166 0.164 0.162 0.160	0.031 0.030 0.029 0.029	10.5 10.4 10.3 10.3	0.169 0.167 0.164 0.162	11.7 11.6 11.4 11.2	0.134 0.132 0.131 0.129	0.012 0.012 0.012 0.012	0.005 0.005 0.005 0.005	22.6 22.7 22.9 23.1	0.013 0.013 0.013 0.013	0.3 0.3 0.3	0.012 0.012 0.012	-0.005 -0.005 -0.005 -0.005	-22.6 -22.1 -22.9 -23.1	0.013 0.013 0.013 0.013
-198.0 525.0 -199.0 525.0 -200.0 525.0 -201.0 525.0	1.0	0.158 0.156 0.154 0.152	0.028 0.028 0.027 0.027	10.2 10.2 10.1	0.160 0.158 0.354	11.1 10.9 10.9	0,128 0,126 0,125 0,125	0.011 0.011 0.011	0.005 0.005 0.005	23.2 23.4 22.6 23.7	0.012 0.012 0.012 0.012	0.3 0.3 0.2	0.011 0.011 0.011	-0.005 -0.005 -0.005	-23.2 -23.4 -23.6 -23.1	0.01Z 0.012 0.012 0.012
-202.0 525.0 -202.0 525.0	1.0	0.150 0.149 0.147	0.026	10.0	0.153 0.151 0.149	10.5 10.2 10.1	0.122 0.120 0.119	0.011 0.011 0.011	0.405	23.9 24.0 24.2	0.012	0.3	0.011 0.011 0.011	-0.005 -0.005	-23.9 -24.0 -24.2	0.012 0.012 0.012
-204.0 525.0 -205.0 525.0 -206.0 525.0 -207.0 525.0 -208.0 525.0 -209.0 525.0	1.0 1.0 1.0 1.0	0.145 0.143 0.142 0.140 0.139	0.025 0.025 0.024 0.024 0.024	9.8 9.8 9.7 9.7 9.6	0.147 0.145 0.144 0.142 0.141	10.0 6.8 9.7 9.5 9.4	0.117 0.116 0.114 0.113 0.112	0.011 0.010 0.010 0.010	0.405 0.405 0.405 0.405	24.4 24.5 24.7 24.8 25.0	0.012 0.011 0.011 0.011	0.3 0.3 0.3 0.3 0.3	0.011 0.010 0.010 0.010 0.010	-0.005 -0.005 -0.005 -0.005 -0.005	-24.4 -24.5 -24.7 -24.8 -25.0	0.012 0.011 0.011 0.011 0.011
-210.0 525.0 -211.0 525.0 -212.0 525.0	1.0	0.137 0.135 0.134	0,023	9.5 9.5	0.139 0.137 0.136	9.4 9.2 9.1 8.9	0.111 0.109 0.108	0.010 0.010 0.010 0.010	0,605	25.3 25.4	9.011 9.011 9.011	0.3	0.010 0.010 0.010	-0.005 -0.005	-25.3 -25.4	0.011 0.011 0.011
-213.0 525.0 -214.0 523.0 -215.0 525.0 -216.0 525.0	1.0 1.0 1.0	0.132 0.131 0.129 0.129	0.022 0.022 0.021 0.021	9.5 9.4 9.2	0.134 0.133 0.131 0.130	6.0 8.5 6.3	0.107 0.108 0.104 0.103	0.010 0.009 0.009	0,005 0,005 0,005 0,005	25.5 25.7 25.8 26.0	0.011 0.010 0.010 0.010	0.3 0.3 0.2 0.2	0.010 0.009 0.009 0.009	-0.005 -0.005 -0.005 -0.005	-25.6 -25.7 -25.8 -26.0	0.011 0.010 0.010 0.010
-217.0 525.0 -218.0 525.0 -219.0 525.0	1.0	0.125	0.021	9.3	0.128 0.127 0.125	8.2 8.0 7.9	0.101	0.009 0.009 0.009	0.004 0.004 0.004 0.004	26.1 26.3 26.4	0.010	0.2	0.009	-0.004 -0.004	-26.1 -26.3 -26.4	0.010 0.010 0.010
-220.0 523.0 -221.0 525.0 -222.0 525.0 -223.0 525.0	1.0	0.122 0.121 0.120 0.110	0.020 0.020 0.019 0.019	9.2 9.2 9.1 9.1	0.124 0.123 0.121 0.120	1.8 1.6 1.5 1.3	0.099 0.098 0.097 0.095	0.009	0.004 0.004 0.004 0.004	26.5 26.7 26.8 26.9	0.010 0.010 0.010 0.010	0.2 0.2 0.2	0.009	-0.004 -0.004 -0.004 -0.004	-26.5 -26.7 -26.9 -26.9	0.010
-224.0 525.0 -225.0 525.0 -226.0 525.0 -227.0 525.0	1.0 1.0 1.0	0.117 0.116 0.115 0.114	0.019 0.018 0.018 0.018	9.1 9.0 9.0	0.119 0.118 0.115 0.115	7.2 7.1 5.9	0.095 0.094 0.093 0.092	800,0 800,0 800,0	0.004 0.004 0.004	27.1 27.2 27.3 27.5	0.009 0.009 0.009	0.2 0.2 0.2	0.008 0.008 0.008	-0.004 -0.004 -0.004	-27.1 -27.2 -37.3 -27.5	0.009 0.009 0.009
-227.0 525.0 -228.0 525.0	1.0	0.083	0.013	9.0	0.084	7.5	0.002	0.008	0.003	29.1	0.009	0.2	0.008	-0.003	-29.1	0.007

	Floatuia O Magnatia	Field Chiede Demont	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	• •	Distribution	Transmission 🗸
Revision: 1.00	Classification: Public	Issue Date: July 25		

Optimal Phasing of Adjacent Circuits

PIS-CADD Version 20.01864 13:59:08 02 July 2025 Scottish and Southern Energy Project Hame: "CityEs/Combined_EMF_Check Temp\Combined_EMF_Check.don' Line Title: "Max Op'

DD EMF Calculation Notes:
1) Calculation Notes:
1) Calculation Notes:
1) Calculation State on the EMRT Bed Shock methods (3rd Edition, 2005 - 7.4 Calculation of Magnetic Fields and Appendices 7.1 Calculation of Field Ellipse Parameters and 7.6 Electric Field Calculations for 3D Geometry).
2) Only the added ground TIM,
4) Ground return is being ignored for magnetic field calculations are being analysed. The effects of structures are not included unless enabled as noted below.
4) Ground return is being ignored for magnetic field calculations.

Matrim wire distance: 1.00 (m)
Maximum wire distance: 300.00 (m)
Maximum wire distance: 300.00 (m)
Maximum wire distance: 1.00 (m)
Basult interval: 1.00 (m)
Basult interval: 1.00 (m)
Basult interval: 360.00 (m)
Magnetic field limit: 360.00 (m)
Maximum wire distance: 300.00 (m)
Maximum wire

One or more sections have wind from both directions which is not supported. A wind direction of left is being used for those sections.

Section Data for 3D EMF Results:

Section Number	Note	Ph-Ph	(Amps)	Filename			Descriptio		nductors er Phase	Bundle Diameter (cm)	Radius (cm)	Weather Case	Condition		Temperature (deg C)	
1		400.0	5000.0	700mm aaac araucaria.wii	700mm ²	AAAC -	Araucaria (B)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16.700
2		400.0	5000.0	700mm aaac araucaria.wi:	700mm ³	AAAC -	Araucaria (E)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
3		400.0	5000.0	700mm asac araucaria.wir	700mm ³	AAAC -	Araucaria (E)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
4		400.0	5000.0	700mm asac araucaria.wi:	700mm ³	AAAC -	Araucaria (B	3	3	57.735	1.863	Max Op	Creep FE			16.700
5		400.0	5000.0	700mm aaac araucaria.win	700mm ²	AAAC -	Araucaria (H)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16.700
6		400.0	5000.0	700mm aaac araucaria.wi:	700mm ²	AAAC -	Araucaria (B)	3	57.735	1.863	Max Op	Creep FE	Left	90.000	16,700
7		400.0	5000.0	700mm agac araucaria.wit	700mm ²	AAAC -	Araucaria (B	3	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
8		400.0	5000.0	700mm aaac araucaria.wii	700mm ²	AAAC -	Araucaria (E)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
9		400.0	5000.0	700mm aaac araucaria.wii	700mm²	AAAC -	Araucaria (B	1	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16.700
10		400.0	5000.0	700mm aaac araucaria.wii	700mm²	AAAC -	Araucaria (B	i	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
11		400.0	5000.0	700mm aaac araucaria.wir	700mm ²	AAAC -	Araucaria (E)	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16.700
12		400.0	5000.0	700mm aaac araucaria.wii	700mm ³	AAAC -	Araucaria (B	3	3	57.735	1.863	Max Op	Creep FE	Left	90,000	16,700
13		400.0	5000.0	700mm aaac araucaria.wii	700mm ²	AAAC -	Araucaria (E	j	3	57.735	1.863	Max Op	Creep FE			16.700
14		400.0	5000.0	700mm agac araucaria.wir					3	57.735	1.863		Creep FE			16,700
15		400.0	5000.0	700mm agac araucaria.wii	700mm²	AAAC -	Araucaria (B	i i	3	57.735	1.863	Max Op	Creep FE			16,700
16		400.0	5000.0	700mm aaac araucaria.win	700mm ²	AAAC -	Araucaria (E)	3	57.735	1.863		Creep FE			16,700
17		400.0	5000.0	700mm agac araucaria.wir					3	57.735	1.863		Creep FE			16,700
18		400.0	5000.0	700mm agac araucaria.wi:	700mm ²	AAAC -	Araucaria (B	i i	3	57.735		Max Op	Creep FE		90,000	16.700

		Florenio () NA	Field Church Demant	Appli	ies to
	EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid		Distribution	Transmission ✓
I	Revision: 1.00	Classification: Public	Issue Date: July 25		

30 EMF Point B	ment				8			H (EF				-Space Pot	ential	
	Y (m)	1	(42)	(uff)	Angle H	(47)	Polarization Asial Batio &	Magnitude (A/m)	Real I (kV/m)	(kV/m)	(deg)	(kV/a)	Polarization Axial Ratio &	Real 1 (kV)	Imaginary (hU)	Angle b	(kV)
372.0 525 371.0 525	.0 1.0		0.052	0.06E 0.062	51.7 69.6	0.084	7.5 12.7	0.067	0.002	0.008 0.009	70.2 86.2	0.009	0.2 0.2	-0.002 0.001	-0.009 -0.009	79.2 -86.2	0.000
370.0 525 369.0 525	.0 1.0		0.023	0.063	69.5	0.067	12.9	0.053	0.001	0.009	86.4	0.009	0.2	0.001 0.001	-0.009 -0.009	-86.4	0.009
360.0 525 367.0 525 366.0 525	.0 1.0		0.024 0.025 0.025	0.064	69.4	0.069	13.5 13.5 13.6	0.055	0.001	0.009	86.6 86.7	0.009	0.2	0.001 0.001 0.001	-0.009 -0.009	-86.6 -86.7 -86.8	0.009
364.0 525			0.025	0.066	69.4	0.072	14.0	0.057	0.000	0.009	86.9	0.009	0.2	0.000	-0.009	-16.0	0.009
363.0 525 362.0 525	.0 1.0		0.026	0.068	69.3	0.073 0.074 0.074 0.075	14.4	0.059	0.000	0.009	87.0	0.009	0.2	0.000	-0.009 -0.009 -0.009	-87.0 -87.1 -87.2 -87.2 -87.5 -87.5	0.009
361.0 525 360.0 525 359.0 525	.0 1.0		0.026	0.070	69.2 69.1	0.074	14.9 15.1 15.3	0.059	0.000 0.000	0.009	87.2 87.3 87.5	0.010	0.2 0.2 0.2	0.000	-0.009 -0.010 -0.010	-87.2 -67.3	0.010
350.0 525 357.0 525	.0 1.0		0.028	0.072	69.0	0.076 0.077 0.078	15.5 15.7	0.061	0.000	0.010	67.6 87.7	0.010	0.2	0.000	-0.010	-67.6 -87.7	0.010
356.0 525 356.0 525	.0 1.0	1	0.028	0.074 0.075 0.076	68.9	0.079 0.080 0.081	16.0	0.063	0.000	0.010	87.5	0.010	0.2	0.000	-9.010 -0.010 -9.010	-67.0	0.010
354.0 525 353.0 525 352.0 525	.0 1.0		0.029	0.076	68.8 68.7	0.082	16.4 16.7 16.9	0.065	0.000 0.000	0.010	88.0 99.2 88.3	0.010	0.z 0.2 0.2	0.000	-0.010 -0.010 -0.010	-88.0 -69.2 -69.3	0.010
351.0 525 350.0 525	.0 1.0	1	0.031	0.076	68.6	0.085 0.085	17.1 17.3 17.6	0.057 0.058 0.059	0.000	0.010	00.4 88.5	0.010	0.2	0.000	-0.010	-66.2 -88.3 -60.4 -88.5	0.010
349.0 525 349.0 525 347.0 525			0.032	0.080	60.5	0.085	17.6 17.9 18.0	0.059	D.000 D.000	0.011 0.011 0.011	00.6 00.9 88.9	0.011	0.2 0.2	0.000	-0.011 -0.011 -0.011	0.05- 0.00- 0.05-	0.011
346.0 525	.0 1.0		0.033	0.003	60.3		18.5 18.5		0.000	0.611	69.0		0.2	0.000		-85.0 -89.2	
344.0 525 343.0 525 342.0 525	.0 1.0		0.034	0.086	68.2 68.1 68.0	0.091 0.092 0.093	18.0 19.2	0.072 0.073 0.074 0.075	0.000 0.000	0.011	89.4 89.4	0.011 0.011 0.011	0.2	0.000	-0.011 -0.011 -0.011 -0.011	-89.2 -89.3 -89.4	0.011 0.011 0.011
341.0 525 340.0 525 339.0 525	.0 1.0 .0 1.0		0.036 0.037 0.037	0.000	67.9 67.9 67.7 67.6 67.5	0.096 0.097 0.099	19.4 19.6	0.076	0.000 0.000 0.000	0.012 0.012 0.012	89.8 89.9	0.012 0.012 0.012	0.2	0.000	-0.012 -0.012 -0.012	-89.6 -89.7 -89.8 -90.0	0.012 0.012 0.012
339.0 525 338.0 525	.0 1.0	1		0.091	67.7		19.0	0.079		0.012		0.012	0.2		-0.012 -0.012	89.9	0.012
338.0 525 337.0 525 336.0 525	.0 1.0		0.039	0.092	67.5	0.103	20.4	0.079 0.001 0.092	D. 000	0.012 0.012 0.012	09.7 89.5	0.012 0.012 0.012	0.3	-0.000	-0.012 -0.012 -0.012	89.9 89.6	0.012 0.012 0.012
335.0 525 334.0 525 333.0 525	.0 1.0		0.041 0.041 0.042	0.098 0.097 0.099 0.100	67.5 67.4 67.3	0.104 0.106 0.107	10.8 21.1 21.3	0.085 0.085 0.086	0.000 0.000 0.000	0.012 0.013 0.013	89.4 89.1 89.0	0.012 0.013 0.013 0.013	0.3 0.3 0.3	-0.000 -0.000 -0.000	-9.012 -0.012 -0.013 -0.013	89.3 89.1 89.0	0.012 0.013 0.013
332.0 525 331.0 525	.0 1.0		0.042		67.3 67.2 67.1	0.100	21.5		0.000	0.013							
330.0 525 339.0 525 328.0 525 327.0 525	.0 1.0		0.044	0.103 0.104 0.106 0.107	67.0 66.0 66.8 66.7	0.112 0.113 0.115 0.117	22.0 22.2 22.0	0.089 0.090 0.092 0.093	D. 000 D. 000	0.013 0.013 0.013 0.013	00.6 98.5 05.3 99.1	0.013	0.3 0.3 0.3	-0,000 -0,000 -0,000 -0,000	-9.013 -9.013 -9.013 -9.013	00.6 00.5 00.3	0.013 0.013 0.013
326.0 525	.0 1.0		0.045	0.107 0.109 0.110	66.6	0.117 0.119 0.120	22.5 22.7 23.0	0.093 0.094 0.095	0.000 0.000 0.001	0.014	88.0 87.5 87.6	0.013	0.3 0.3 0.3	-0.000 -0.000 -0.001 -0.001	-0.013 -0.014 -0.014 -0.014	88.0 87.6	0.014
325.0 525 324.0 525 323.0 525	.0 1.0		0.049	0:112	66.6 66.5 66.4	0.122	23.2		0.001	0.014	87.6 87.5	0.014	0.3	-0.001	-3.014 -0.014	87.6 87.5	0.014
323.0 525 322.0 525 321.0 525 320.0 525	.0 1.0		0.052	0.114 0.115 0.117	66.3 66.1	0.126 0.126 0.128 0.130	23.7 22.9 24.2 24.4	0.099	0.001 0.001 0.001	0.014 0.014 0.014 0.015	87.3 87.1 86.9	0.014	0.3	-0.001 -0.001 -0.001 -0.001	-0.014 -0.014 -0.014	87.5 87.3 87.1	0.014 0.014
319.0 525	.0 1.0		0.054 0.054 0.055 0.056	0.110	66.1 66.0 65.9 63.0 65.7	0.132	24.6	0.100	0.001 0.001 0.001 0.001	0.035	86.7	0.015 0.015 0.015 0.015	0.3	-0.001 -0.001 -0.001	-0.015 -0.015	87.1 86.7 86.7 86.4	0.015
316.0 525 317.0 525 316.0 525 316.0 525	.0 1.0		0.056	0.122	65.7	0.134 0.136 0.138	24.9 25.1 25.4 25.8	0.107 0.108 0.110 0.105	0.001 0.001 0.001	0.015	86.4 86.2	0.015	0.3	-0.001 -0.001	-0.015 -0.015 -0.015	86.4	0.015
314.0 525	.0 1.0		0.057 0.046 0.047 0.049	0.126 0.125 0.127	60.6 69.6 63.4	0.138 0.133 0.135 0.137	16.0	0.108	0.001 0.001 0.000	0.015 0.617 0.017	88.2 88.0 88.2	0.015	0.3	0.001 0.001 0.001	-9.015 -5.017 -9.017	-88.Z -88.Z	0.015
313.0 525 312.0 525 311.0 525	.0 1.0		0.058	0.129	69.1	0.140	26.5 26.5	0.111	0.000	0.017 0.017 0.017 0.018	99.4 88.6	0.017 0.017 0.017 0.018	0.4	0.000 0.000 0.000	-0.017 -0.017 -0.017 -0.018	-88.6 -88.9 -89.1	0.017 0.017 0.017 0.018
311.0 525 310.0 525 309.0 525	.0 1.0			0.133 0.135 0.137	68.7 68.5	0.142 0.145 0.147	26.0	0.115	0.000 0.000 0.000		89.1 89.3		0.4				
309.0 525 307.0 525			0.055	0.139	68.3 68.2	0.150 0.15Z 0.15Z	27.4	0.119 0.121 0.124	D.000 D.000	0.618 0.618 0.618	89.5 89.7 89.7	0.018	0.4	0.000	-0.010 -0.018 -0.010	-69.6 -89.8	0.019
306.0 525 305.0 525 304.0 525 303.0 525	.0 1.0 .0 1.0		0.060	0.144 0.146 0.149	60.0 67.8 67.6	0.158 0.161 0.164	27.6 28.1 28.3	0.126 0.128 0.130	0.000 0.000 0.000	0.019	89.6	0.019 0.019 0.019 0.019	0.4 0.4 0.4	-0.000 -0.000 -0.000	-0.019 -0.019 -0.019	90.0 89.7 69.5 89.2	0.019
362.0 525 361.0 525			0.063	0.151			28,5 28.5 29.0	0.133 0.135		0.019	89.2		0.6		-0.019 -0.019 -0.019	18.9	0.019
259.0 525	.0 1.0		0.068	0.156 0.159 0.196	67.0 66.9 65.4	0.170 0.173 0.204	29.2	0.138	0.000 0.001 0.001	0.020	99.7 88.4 99.1	0.019	0.5 0.5	-0.000 -0.001 -0.001	-9.020	88.4 88.2	0.020
298.0 525 297.0 525	.0 1.0		0.087	0.189 0.192 0.195	65.2	0.208 0.212 0.216	26.0 26.2	0.166	0.001 0.001 0.001	0.622	87.9 67.6 87.4	0.022	0.5 0.5 0.5	-0.001 -0.001 -0.001	-0.022 -0.023 -0.023	87.9 87.6 87.4	0.022
250.0 525	.0 1.0	3	0.094	0.199	64.0 64.7 64.6	0.220	26.5 26.7 26.0	0,173 0,175 0,178	0.001 0.001	0.623 0.623 0.624	86.8	0.023	0.5	-0.001	-0.023	86.8	0.023
293.0 525 292.0 525	.0 1.0		0.098	0.205	64.4	0.228	27.2	0.181	0.001	0.024	86.5	0.024	0.5	-0.001 -0.002	-0.024 -0.024	86.6	0.024
261.0 525 250.0 525 269.0 525	.0 1.0		0.105	0.213	63.9	0.236 0.241 0.245	27.7 27.9 28.1	0.198 0.192 0.195	D. 002 D. 002	0.625 0.625	86.0 85.4	0.024	0.5	-0,002 -0,002 -0,002	-0.025 -0.025	86.0 85.7 85.4	0.025
288.0 525 287.0 525	.0 1.0	1	0.111	0.224	62.4	0.250	28.4	0.199	0.002	0.025	85.1	0.025	0.5	-0.002	-9.025	65.1	0.025
186.0 525 385.0 525 184.0 525	.0 1.0		0.117	0.232 0.236 0.241	63.2 63.1 62.9	0.260 0.265 0.270	28.9 29.1 29.3	0.207 0.211 0.215	0.002 0.003 0.003	0.026 0.026 0.027	84.5 84.2 83.9	0.026	0.5 0.5 0.6	-0.003 -0.003 -0.003	-0.026 -0.026 -0.027	84.5 84.2 83.9	0.026
283.0 525 582.0 525	.0 1.0		0.125	0.245	62.7	0.276	19.6	0.219	0.003	0.027	83.5	0.027	0.6	-0.003 -0.003	-0.027 -0.027	63.6	0.027
281.0 525 290.0 525	.0 1.0		0.133	0.254	62.4	0.287	30.1	0.228 0.233 0.238	0.003	0.027	82.9	0.028	0.6 0.6	-0.003	-0.028	82.9 82.6 82.2	0.028
279.0 525 278.0 525 277.0 525	.0	1	0.140	0.264 0.269 0.274	62.0 61.0 61.6	0.299 0.305 0.311	30.5 30.6 31.0	0.243	0.004 0.004 0.004	0.028 0.029 0.029	82.2 61.9 81.5	0.028	0.6	-0.004 -0.004 -0.004	-0.028 -0.029 -0.029	81.5 81.5	0.029
276.0 525 275.0 525	.0 1.0	1	0.152	0.279	61.3	0.318 0.325 0.33Z	31.2 21.5	0.255 0.258 0.254	0.005	0.029	81.Z 80.8	0.030	0.6	-0.005 -0.005 -0.005	-9.029 -0.030 -9.030	81.2	0.030
274.0 525 273.0 525 272.0 525	.0 1.0		0.165	0.296	60.0 60.7	0.339	31.7 22.0 32.2	0.270 0.276	0.005 0.005 0.006	0.030	80.4 80.0 79.7	0.030	0.7 0.7 0.7	-0.005 -0.005 -0.006	-0.030 -0.030 -0.031		0.030
271.0 025 270.0 525	.0 1.0	3	0.174	0.308	60.5	0.354	32.4	0.282	0.006	0.031	79.3	0.032	0.7	-0.006	-0.031 -0.032	90.1 19.7 79.3 78.9	0.032
269.0 525 269.0 525 267.0 525	.0 1.0		0.100	0.321 0.327 0.334	60.2 60.0	0.370 0.378 0.387	32.9 22.2 33.4	0.294 0.301 0.308	0.007 0.007 0.007	0.032 0.032 0.033	70.5 70.1 77.7	0.033	0.7 0.7 0.7	-0.00T -0.00T	-0.032 -0.032 -0.033		0.033
366.0 525 365.0 525	0 1.0		0.200	0.341 0.349 0.356	59.4 59.2	0.396 0.405 0.414	33.6	0.315 0.322 0.330 0.338	0.000	0.033	77 2	0.034	0.7 0.8 0.0	-0.008	-0.077	70.1 17.7 17.2 16.8 16.4 15.9	0.034
264.0 525 263.0 525 262.0 525			0.212	0.364	28 8	0.424	34.1 34.3 34.6		0.000 0.000 0.000	0.034 0.034 0.035 0.035	76.8 76.4 75.9 75.3	0.035 0.035 0.036 0.036		-0.008 -0.009 -0.009	-0.034 -0.034 -0.035 -0.035	75.0	0.035
261.0 525	.0 1.0		0.232	0.388	58.4 58.3	0.445 0.456 0.467	34.8	0.364 0.363 0.372	0.009	0.035	75.0	0.037	0.8	-0.009 -0.010 -0.010	-0.025	75.0 75.0 74.5 74.1	0.037 0.037 0.039
260.0 525 259.0 525 258.0 525	.0 1.0		0.245	0.397	58.1	0.467	35.5 35.7		0.010 0.011 0.011	0.036	74.5 74.1 73.6	0.038	0.9	-0.010	-9.036 -9.036 -9.037	74.1	0.038
258.0 525 257.0 525 256.0 525 255.0 525	.0 1.0	1	0.253 0.261 0.269 0.277	0.425	58.1 57.9 57.7	0.478 0.490 0.503	35.9	0.300	0.012	0.637 0.637 0.638 0.638	73.6 73.1 72.6	0.038 0.039 0.040	0.9	-0.011 -0.011 -0.012	-0.037 -0.037 -0.038 -0.038	73.6 73.1 72.6	0.038
255.0 525 254.0 525 253.0 525	.0 1.0 .0 1.0)	0.277	0.435 0.455 0.466	57.3 57.1 56.0	0.516 0.529 0.543 0.557	36.2 26.4 36.6	0.410	0.012 0.013 0.014	0.038	72.1 71.5 71.0	0.040	0.9	-0.012 -0.013 -0.014 -0.014	-9.038 -9.039 -9.039 -9.040	72.1 71.5 71.0 70.5	0.040 0.041 0.042
251.0 525	.0 1.0		0.314	0.478	56.7	0.557	27.1 37.3 37.5	0.443	D. 014 D. 015	0.040	69.9	0.042	1.0 1.0 1.0	-0.014 -0.015 -0.015 -0.016	-9,040	8.9 . 0	0.043
249.0 525 248.0 525 247.0 525	.0 1.0		0.324 0.325 0.345 0.357	0.489	56.5 56.3 56.0	0.619	37.5 37.7	0.467 0.480 0.493	0.015 0.016 0.017	0.041	69.3 68.8 68.2	0.044	1.0	-0.016	-0.041 -0.041 -0.042	68.8 68.2 67.6	0.044 0.045 0.045
246.0 525	.0 1.0 .0 1.0 .0 1.0		0.369	0.514 0.527 0.540	55.6 55.4	0.654	31.7 30.0 38.2 30.4	0.493 0.504 0.521	0.018 0.018	0.042	68.2 67.6 67.0	0.046	1.1	-0.017 -0.018 -0.018 -0.019	-0.043 -0.043	67.0	0.046
244.0 525 244.0 525	.0 1.0		0.382	0.556		0.692		0.550 0.577	0.019 0.020 0.020	0.044	65.7	0.048	1.1		-0.044 -0.044 -0.047	65.7	
243.0 525 242.0 525 241.0 525	.0 1.0		0.415	0.593 0.609 0.625	54.6 54.6	0.725 0.745 0.767	31.7 27.9 38.2	0.577	0.020 0.021 0.022	0.047 0.047 0.048	65.1	0.051	1.1 1.2 1.2	-0.020 -0.021 -0.022	-0.047 -0.047 -0.048	65.8 65.1	0.051 0.052 0.053
240.0 525 239.0 525			0.460	0.658	54.6 54.3 54.1	0.789 0.812 0.837 0.862	38.2 30.4 38.6	0.629	0.022 0.024	0.049	63.8	0.054	1.2	-0.022 -0.024	-0.048 -0.049	65.1 64.5 63.8	0.054 0.055 0.056 0.057
236.0 525 237.0 525 236.0 525	.0 1.0	1	0.493	0.576	53.9	0.862	38.9 39.1 39.3	0.686	0.025 0.026 0.027	0.050	63.0	0.055	1.3	-0.025 -0.026 -0.021	-0.050 -0.050 -0.051	63.1	0.057
235.0 525 235.0 525 234.0 525			0.525	0.714 0.734 0.735	33.5 53.3 53.1	0.888 0.916 0.944	39.3 39.5 39.8	0.707 0.729 0.73Z	0.027 0.029 0.030	0.051 0.051 0.052	60.0 60.0	0.059	1.3	-0.011 -0.029 -0.030	-9.051 -9.051 -9.052	60.8 60.0	0.059
233.0 525 232.0 525 231.0 525			0.555	0.777	52.9 52.6	1.006	40.0 40.2 40.4	0.775 0.800 0.825	0.031 0.033 0.036	0.052	59.2 58.4	0.062	1.4	-0.031 -0.033 -0.034	-0.052 -0.053 -0.053	59.2 58.4	0.062
231.0 525 230.0 525 229.0 525	.0 1.0	1	0.657	0.813 0.817 0.873	52.4 50.0 52.0	1.038 1.072 1.108	40.4 10.7 40.9	0.853	0.034 0.035 0.037	0.653 0.654 0.654	57.6 56.7 55.9	0.065	1.5 1.5 1.6	-0.034 -0.035 -0.031	-9.053 -9.054 -9.054	37.6 56.7 33.9	0.065
229.0 525 227.0 525	.0 1.0		0.709	0.999	51.6 51.6	1.145	41.1 41.3	0.911	0.039	0.054 0.055 0.055	54.0	0.067	1.6 1.6 1.6	-0.031 -0.039 -0.040	-0.055 -0.055	55.0 54.0	0.067
225.0 525 224.0 525	.0 1.0		0.765 0.795 0.828	0.956 0.986 1.018 1.051	51.3 51.1 50.9 50.7	1.225 1.267 1.312 1.359	41.7 41.7	0.975 1.009 1.044 1.091	0.042 0.044 0.046	0.456 0.456 0.457 0.457	53.1 52.1 51.1	0.070 0.071 0.073 0.074	1.7 1.7 1.0	-0.042 -0.044 -0.046 -0.048	-0.056 -0.056 -0.057 -0.057	52.1 52.1 51.1	0.070 0.071 0.073 0.074
223.0 525	.0 1.0	1	0.881		50.7		42.2		0.028	0.657 0.657 0.658	60.1	0.074 0.078 0.079	1.8 1.9 1.0	-0.019	-0.057 -0.057 -0.050		0.074
221.0 525 220.0 525 219.0 525	.0 1.0 .0 1.0 .0 1.0 .0 1.0		0.924	1.102 1.160 1.199	50.4 50.2 50.0 49.8	1.514	42.4 42.6 42.8 43.0	1.162 1.205 1.250	0.052 0.054 0.057	0.058 0.058 0.000	48.0 46.9 45.7	0.079	2.0 2.0	-0.050 -0.052 -0.054 -0.057	-0.050 -0.058 -0.058	49.1 46.9 45.7	0.078 0.079 0.079 0.081
218.0 525	.0 1.0	1	1.059	1.241	49.5	1.631	42.2	1,298	0.059	0.658	44.6	0.083	2.1	-0.059	-0.058	44.6	0.083

	Floranio O Adono esti	Field Cardy Demand	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	, ·	Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

	Floranio O Adono esti	Field Cardy Demand	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid	, ·	Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

	Fl 9 MA	Ciald Canala Danasa	Appl	ies to
EMF-OHL-002	Electric & Magnetic Spittal – Loch Buid		Distribution	Transmission ✓
Revision: 1.00	Classification: Public	Issue Date: July 25		

		Florida O Manuschia Field Charles Borrow		Applies to	
	EMF-OHL-002 Spittal – Loch Buidhe -		· ·	Distribution	Transmission ✓
	Revision: 1.00	Classification: Public	Issue Date: July 25		

Appendix E Arcadis Complex EMF Assessment Report

