Scottish Hydro Electric Transmission Plc

Non-Technical Summary

Environmental Statement

Published by
Scottish Hydro Electric Transmission Plc
10 Henderson Road
Inverness
IV1 1SN

August 2015
CONTENTS

1 INTRODUCTION
1.1 ABOUT THIS DOCUMENT

2 DESCRIPTION OF DEVELOPMENT

3 CONSULTATION
3.1 STAKEHOLDER CONSULTATION
3.2 SCOPING

4 ROUTE SELECTION
4.1 INTRODUCTION
4.2 ROUTEING PRINCIPLES
4.3 CORRIDOR SELECTION
4.4 ROUTE SELECTION

5 EXISTING ENVIRONMENT
5.1 INTRODUCTION
5.2 LANDSCAPE AND VISUAL AMENITY
5.3 ECOLOGY
5.4 ORNITHOLOGY
5.5 CULTURAL HERITAGE
5.6 GEOLOGY, HYDROLOGY AND HYDROGEOLOGY
5.7 SOILS AND AGRICULTURE
5.8 TRAFFIC
5.9 NOISE

6 ENVIRONMENTAL IMPACTS
6.1 MITIGATION
6.2 POSITIVE EFFECTS
6.3 NEGATIVE EFFECTS
6.4 MINOR EFFECTS
6.5 TEMPORARY EFFECTS
6.6 CUMULATIVE EFFECTS

7 NEXT STEPS

1 INTRODUCTION

1.1 About this Document

1.1.1 Scottish Hydro Electric Transmission Plc (SHE Transmission) is a wholly owned subsidiary of SSE Plc. SHE Transmission proposed to submit an application for consent under the Electricity Act 1989 (including deemed consent under the Town and Country Planning (Scotland) Act 1997), to construct a new double circuit 132 kV transmission connection between a new substation at Thurso South and a proposed new substation at Philips Mains, near Gills Bay. The project is referred to as the Gills Bay 132 kV (and hereafter referred to as “the Proposed Development”). This document is the Non-Technical Summary (NTS) of the Environmental Statement (ES) which reports on the findings of the Environmental Impact Assessment (EIA) of the Proposed Development. The ES has been prepared to accompany the application for consent.

1.1.2 The Proposed Development is part of the reinforcement of the electricity transmission network envisaged by the National Planning Framework (NPF3) and the Energy Networks Strategy Group. Analysis of the existing transmission network in the north of Scotland identified the need for increased network capacity to facilitate the transmission of renewable generation projects north of Beauly including onshore/offshore wind and marine and tidal generation. This increase in network capacity can only be achieved by developing the transmission network in the North of Scotland. The Proposed Development is part of this expansion.

1.1.3 The aim of this NTS is to summarise the content and the main findings of the ES in a clear and consistent manner to assist the public in understanding what the environmental effects of the Proposed Development are likely to be. The full ES (Volume 2: Main Report; Volume 3: Figures; Volume 4: Technical Appendices) provides a more detailed description of the Proposed Development, and the findings of the EIA.

1.1.4 The full ES and supporting Technical Appendices can be viewed at the following locations:

- Thurso Service Point
- Council Offices
- Rotterdam Street
- Thurso
- KW14 8AB

- Government Buildings
- Girnigoe Street
- Wick
- KW1 4HW

- Caithness Horizons
- High Street
- Thurso
- Caithness
- KW14 8AJ

- Mey Village Hall
- Mey
- Caithness
- KW14 8XH

1.1.5 Electronic versions of the consent application, including the ES will be available to download from the Applicant’s website at https://www.ssepd.co.uk/GillsBay/.
1.1.6 This document is available in other formats if required - for details and costings, please contact:

Lisa Marchi
SHE Transmission Community Liaison Manager
Scottish Hydro Electric Transmission Plc
10 Henderson Road
Inverness
IV1 1SN
2 DESCRIPTION OF DEVELOPMENT

2.1.1 The Proposed Development is located within Caithness and covers a linear development area of approximately 23 km between the new Thurso South (NGR: 311980, 964970) substation to the west and the proposed Gills Bay substation to the east (NGR: 311980, 964970).

2.1.2 The Proposed Development (shown in NTS Figure 1.1 in Annex A) comprises approximately 13 km of overhead line (OHL) and associated Limits of Deviation (LOD) supported by lattice steel towers with approximately 3 km of underground cable on the approach to Thurso South substation and a further approximately 7 km of underground cable from Reaster to the proposed Gills Bay Substation.

2.1.3 A typical lattice steel tower of the type likely to be used on for the Proposed Development is shown in NTS Figure 2.1 below. Typical construction activities are shown in NTS Figures 2.2- 2.3 below.

2.1.4 Underground cabling activities includes preparation of a trench in which the cable will be laid. An anticipated working width of 30 m has been assumed with a trench depth of approximately 1.4 m.

2.1.5 The Proposed Development also includes certain associated works which will be required to facilitate construction and for which deemed consent is sought. These include access tracks and temporary construction compounds and are shown in NTS Figure 1.1.

2.1.6 Access will be required both to construct the towers and string conductors and also to install the underground cable. The final access requirements have not been finalised at this stage but for the purposes of the assessment, an indicative access strategy has been developed which describes where existing tracks are anticipated to be upgraded, and where new permanent and new temporary tracks may also be established.

2.1.7 The associated LOD (as shown in NTS Figure 1.1) accommodates the requirements of the indicative access strategy and also defines the area within which other anticipated works associated with the construction of the Proposed Development will be carried out.

2.1.8 Construction of the Proposed Development is anticipated to commence in Q4 of 2016 and be completed by Q2 of 2019. Construction will be completed in phases.

2.1.9 Temporary diversions of parts of the existing electricity network will be required at certain locations in order to complete the construction of the Proposed Development. These diversions will be carefully programmed to ensure risk to the existing network and customer supply is minimised at all times.

2.1.10 Maintenance activities will be required throughout the life of the Proposed Development and these will include regular line and tower inspections, to check for natural wear and tear, but also may include occasional unscheduled maintenance in response to unanticipated events, such as inclement weather. No maintenance is anticipated of the underground cable.
NTS Figure 2.1: Illustrative Image of likely 132 kV OHL Towers

NTS Figure 2.2: Foundation Installation

NTS Figure 2.3: Cable Installation
3 CONSULTATION

3.1 Stakeholder Consultation

3.1.1 Stakeholder consultation with Scottish Natural Heritage (SNH), Scottish Environment Protection Agency (SEPA), the Scottish Government, The Highland Council (THC), Transport Scotland and Historic Scotland) has been ongoing since project inception (Autumn 2010) when initial route corridors and route selection were considered. A Consultation Document was issued in July 2013. Public exhibitions were held in July and August 2013 and March 2014 which sought feedback on the proposals and on the preferred route.

3.1.2 Subsequent ongoing consultation has been carried out to further develop and explore specific environmental questions as they have developed throughout the project. In particular, these have considered the approach, outcomes and mitigation options associated with ornithology collision risk. Landscape and visual impacts have also been subject to detailed discussion with SNH. Interactive consultation and discussion with SEPA has also been carried out, particularly with regard to areas where the Proposed Development may interact with peat resource and associated habitats. Following from this a further public consultation event was held in June 2015 to update interested parties on the final design of the Proposed Development which is the subject of the EIA.

3.2 Scoping

3.2.1 A scoping report was submitted to the Energy Consent and Deployment Unit (ECDU) of the Scottish Government under Regulation 7 of the EIA Regulations to request a Scoping Opinion. This was submitted in April 2015 and requested guidance as to the subjects to be assessed within the ES. No Scoping Opinion was received from the Scottish Government by July 2015. However, advice from stakeholders had been received separately.
4 ROUTE SELECTION

4.1 Introduction

4.1.1 The EIA Regulations require that where developers have considered alternatives to the Proposed Developments, these are summarised in full within the ES.

4.1.2 Various alternatives were considered during the design process following guidance set out by SHE Transmission:

- The 'do-nothing' scenario involved leaving the transmission network in Caithness in its current form. This was not considered viable within the context of the Scottish Government's strategy and policy commitments for renewable energy generation and tackling climate change.

- Alternative reinforcement strategies. The Applicant has undertaken a detailed review of alternative strategies looking at factors including technical capacity; cost; planning issues; and environmental impact; to achieve the required reinforcement objectives.

- Alternative route corridors. Various route corridors were considered in order to identify the corridor or corridors most capable of accommodating the Proposed Development.

- Alternative route options. A series of possible route alternatives were developed within the preferred route corridor in order to identify the preferred route.

4.2 Routeing Principles

4.2.1 The SHE Transmission (2004)\(^1\) guidance for the routeing of overhead electricity transmission lines emphasises the importance of giving due consideration to environmental sensitivities and particularly to reducing visual intrusion as much as possible as a routeing principle. Specifically, it applies the Holford Rules\(^2\) first developed in 1959 by Sir William Holford which set out guidance relating to the routeing of overhead electricity transmission lines and the consideration which should be given to environmental features and which continue to inform transmission line routeing in the UK today.

4.2.2 Taking account of both SHE Transmission guidance and the Holford Rules, the following principles informed the routing process:

- the need to avoid areas of highest amenity value;

- the need to avoid smaller areas of high amenity value;

- reducing visual impact by choosing the most direct line, therefore requiring fewer angle towers;

- general landscape and visual amenity (backcloth and screening);

\(^1\) SHE Transmission (formerly SHETL) (2004): Electricity Transmission Development Proposals in Scotland: A guidance document outlining the SHE Transmission approach to the routeing of high voltage steel lattice tower transmission lines, leading to an application for consent in Scotland.

\(^2\) These rules are held in Technical Appendix 4.2 in the ES.
opportunities to mitigate the wirescape of the area and to minimise 'new' visual impact by following the routes of existing electricity infrastructure wherever possible;
• minimise land-take, or severance, of existing agricultural land;
• minimising impact on traffic and access;
• opportunities to avoid areas of residential amenity such as residential dwellings and curtilages; and
• known information on proposed wind farms.

4.3 Corridor Selection

4.3.1 Early high level considerations were completed in 2010 as part of a wider process to consider the strategic network expansion options for the area. The substation at Dounreay was initially identified as the most likely location for the Proposed Development to connect into the existing electricity transmission grid. Consequently these high level considerations included a study area extending from Dounreay in the west to Gills Bay in the east but it also extended as far as Spittal in the south.

4.3.2 Based on known/anticipated network demands at the time, these early considerations sought to identify a preferred corridor for a single circuit 132 kV OHL on wood pole trident supports.

4.3.3 By 2012 the Applicant had identified the requirement for the Proposed Development to provide a dual circuit connection on steel lattice towers rather than a single circuit connection. In addition, proposals for a new substation at Thurso South were sufficiently advanced to allow project planning to be based around a connection into the substation at Thurso South, removing the requirement to provide a route all the way to Dounreay.

4.3.4 Consequently a corridor between Thurso South and Gills Bay passing through Hilliclay and the Moss of Greenland was identified. NTS Figure 4.1 below illustrates the identified corridor (corridor F2).
4.4 Route Selection

4.4.1 With the identification of the broad corridor as shown in NTS Figure 4.1 above, further evaluation was then completed in order to define a proposed route which offered the optimum balance of the various factors identified above. A wide range of route options and variations within these route options were considered with increasing detail over a two year design development period, culminating in the Proposed Development for which consent is being sought. The routing process was informed by the Holford Rules.
5 EXISTING ENVIRONMENT

5.1 Introduction

5.1.1 The following sections summarise the character and sensitivity of the environmental setting for the Proposed Development and the baseline against which the potential effects of the Proposed Development have been assessed.

5.2 Landscape and Visual Amenity

5.2.1 Landform is relatively low lying, typically around 40 m Above Ordnance Datum (AOD) with the highest points lying to the west, notably Spittal Hill, Hill of Olrig, Dunnet Head, Hill of Forss and Hill of Lieurary. The highest point is Spittal Hill, which reaches 176 m AOD.

5.2.2 There are two Special Landscape Areas (SLAs) located within 10 km of the Proposed Development, these are listed below:

- Dunnet Head SLA (designated for its prominent headland and striking vertical cliffs); and
- Duncansby Head SLA (designated for its spectacular cliff scenery and commanding views).

5.2.3 The Castle of Mey Garden and Designated Landscape is located approximately 2 km to the north of the Proposed Development.

5.2.4 The coast to the north is characterised by low rocky cliffs and marine platforms interspersed with small sandy beaches and bays.

5.2.5 Land use comprises a mosaic of improved and semi-improved grassland, rough grazing, moorland, and commercial forestry plantations, which are usually of a single species and uniform dark colour. Occasional hedgerows and isolated groups of wind pruned deciduous trees are also characteristic features of the study area.

5.2.6 Land use is primarily made up of mixed agriculture with scattered settlements. Field sizes are generally large and bounded by post and wire fences, traditional drystone dykes or the characteristic Caithness stone flag walls.

5.2.7 The area is characterised by concentrated and scattered settlement, isolated dwellings and farmsteads. The largest settlement is Thurso, with smaller settlements including Halkirk, Castletown, and John O’Groats.

5.2.8 Existing visibility of the Proposed Development has been evaluated through a series of 19 viewpoint locations along the Proposed Development, identified through theoretical modelling of the Zone of Visual Influence (ZVI) and verified through field visits and photography along the LOD, taking account of location of existing settlements, known cultural heritage features, roads and cycleways.

5.2.9 The landscape around the central part of the Proposed Development is generally open with good visibility across and within it. Some localised screening is available from areas of elevated topography.
5.3 Ecology

5.3.1 The Proposed Development passes through or close to the following designated sites as listed in Table 5.1 below:

<table>
<thead>
<tr>
<th>Table 5.1: Designated Nature Conservation Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Thurso Special Area for Conservation (SAC) and Site of Special Scientific Interest (SSSI)</td>
</tr>
<tr>
<td>Loch of Mey Special Protection Area (SPA) SSSI and Ramsar site</td>
</tr>
<tr>
<td>Loch Durran SSSI</td>
</tr>
<tr>
<td>Loch Heilen SSSI, SPA and Ramsar site</td>
</tr>
<tr>
<td>North Caithness Cliffs SPA</td>
</tr>
<tr>
<td>Caithness and Sutherland Peatlands SPA, SAC, SSSI and Ramsar site</td>
</tr>
</tbody>
</table>

5.3.2 The Proposed Development crosses a mix of upland grazing (improved, neutral and marshy grassland) and peatland habitats. Two main areas of peatland habitat have been identified at Moss of Greenland and Hollandmey Moss. Both have been characterised during field survey as modified, remnant bogs now isolated by the surrounding farmland.

5.3.3 A National Vegetation Classification (NVC) survey along the corridor of the Proposed Development identified areas of ecologically sensitive potential ‘Groundwater Dependent Terrestrial Ecosystems’ (GWDTE). The Proposed Development has been designed to avoid these areas wherever practicable.

5.3.4 Otter *Lutra lutra* are known to occur along the River Thurso and otter spraints were recorded in the vicinity of Syster farm. No evidence of holts or couches was recorded during field surveys. Water vole *Arvicola amphibius* droppings were also recorded on Hollandmey Moss.
5.3.5 Surveys found no evidence of other protected or sensitive fauna (e.g. wildcat, polecat, red squirrel, badger, and fish species) along the Proposed Development. No suitable bat roosting or important foraging locations were recorded.

5.4 Ornithology

5.4.1 Three SPAs classified for their internationally important ornithology interests lie within 4 km of the Proposed Development (refer to Table 5.1 above).

5.4.2 The Caithness Lochs SPA and Ramsar site is made up of six lochs and one wetland area and were classified for the wintering populations of three internationally important bird species as listed in Table 5.1 above. At the closest point (at Lochend) this SPA lies approximately 400 m from the Proposed Development.

5.4.3 The Caithness and Sutherland Peatlands SPA was classified for breeding populations of a range of international important bird species that it supports. At the closest point (at Lochend), this SPA lies approximately 3.2 km from the Proposed Development.

5.4.4 The North Caithness Cliffs SPA was classified for its international important breeding population of cliff nesting birds as listed in Table 5.1 above. At the closest point (at the Proposed Thurso South Substation) this SPA lies approximately 3.7 km from the Proposed Development.

5.5 Cultural Heritage

5.5.1 Caithness has a rich archaeological heritage, with special importance for its Neolithic and Iron Age sites. It is the heartland of the ‘broch’ and also contains important Norse settlement remains. In close proximity to the Proposed Development four Scheduled Ancient Monuments (SAMs) have been identified.

5.5.2 A number of other cultural heritage features, including listed buildings, have been identified, on which the possibility of indirect impacts on their setting has been considered.

5.5.3 A number of areas along the Proposed Development were also identified where, although no visible archaeology is apparent, there is considered to be potential for as yet undiscovered buried archaeology features.

5.6 Geology, Hydrology and Hydrogeology

5.6.1 The geology features typically comprise drift deposits of diamiction, boulder clay with isolated pockets of peat. These are further underlain by bedrock comprising Upper Caithness flagstone group, including Scrabster Flagstone, Achrscrabster Flagstone, and Sandside Bay sandstone. The Upper Caithness flagstone group is generally described as laminated carbonate rich siltstones and shales with subordinate fine-grained, thinly bedded sandstones.

5.6.2 The Proposed Development is underlain by a moderately permeable aquifer. While the Upper Caithness Flagstone Group will seldom produce large quantities of water for abstraction, and no such abstractions have been identified through this assessment, it is important for local supplies and for supplying base flow to rivers.
5.6.3 The Proposed Development crosses a number of water courses, drains and ditches of differing sizes. In addition, land in agricultural production will be subject to field drainage. Water quality in the Link Burn and in the Burn of Ham is currently good but poorer in the Burn of Bower. There is the potential for flooding along the Link Burn and the Burn of Durran.

5.7 Soils and Agriculture

5.7.1 Soil resources within the LOD for the Proposed Development reflect the nature of the parent material. Mineral soils are predominantly loam and sandy loam in texture. Topsoil range from shallow (<100 mm) peaty soils to moderate depths (c. 250 mm) loam/sandy loam soils.

5.7.2 The soils along the remainder of the Proposed Development are mapped as peat, with 19.5% of the cable sections and 24% of the OHL sections identified as crossing areas of peat.

5.7.3 Deep peat (>1 m in depth) is mapped only in the area of the Moss of Greenland and Hollandmey Moss, with an estimated 11% of the total length of the underground cable sections and 11% of the OHL sections identified as potentially crossing areas of deep peat.

5.7.4 The Proposed Development crosses 26 different landholdings, the majority of which are involved in livestock farming. A small proportion of the area used for arable production and forestry. Other land uses in the vicinity of the Proposed Development include Tofts of Tain (which has been consented). Agricultural land is predominantly capable of average production value and below.

5.8 Traffic

5.8.1 The A9, A836, A99, B876 and B870 are the main roads within the vicinity of the Proposed Development. In addition the area is served by a network of minor and local roads, including the C1025 and the C1033.

5.9 Noise

5.9.1 The noise environment is typical of a rural setting with a small number of specific localised noise sources, associated with transport infrastructure and agricultural activity.
6 ENVIRONMENTAL IMPACTS

6.1 Mitigation

6.1.1 Mitigation measures are measures which can be taken to avoid, minimise or control potential effects arising from a Proposed Development. At the outset, potential negative effects are avoided or reduced through the design process, modifying the design to eliminate or reduce aspects likely to give rise to an effect. Potential effects which cannot be avoided or reduced by design changes can be reduced or controlled by applying management measures, for example to control construction activities or effects connected with operation and maintenance.

6.1.2 The design of the Proposed Development has been informed by a set of routing principles to ensure sensitive environmental features are avoided where ever possible (see section 5 above).

6.1.3 Within the LOD, further micro-siting of individual tower locations and the locations of access tracks, construction work areas and laydown areas before commencement of construction will ensure that identified environmental impacts are further mitigated as necessary.

6.1.4 Construction impacts will be controlled through the development of a Construction Environmental Management Document (CEMD) with a number of project and issue specific Construction Environmental Management Plans (CEMPs) which will be part of the contract documentation for the Principal Contractor to be employed by the Applicant to construct the Proposed Development. Implementation of the environmental mitigation measures as set out within the CEMD will be monitored and managed throughout the construction process by an Environmental Clerk of Works (ECoW) and an Environmental Project Manager acting on behalf of the Applicant, working alongside the Principal Contractor, to ensure appropriate implementation of all environmental commitments.

6.1.5 The anticipated effects of the Proposed Development taking account of relevant mitigation proposals are summarised in section 6.2 and 6.3 below.

6.2 Positive Effects

6.2.1 The Proposed Development is part of the Scottish Government's plans to strengthen the transmission network in the north of Scotland, to improve connections to the grid for existing and future renewable generation, both on and offshore. Providing the means to export electricity to the grid strengthens the attractiveness of the north as a location for onshore and offshore renewable generation. In this way, the Proposed Development has a potentially positive effect in securing future generation and the benefits to the region which are associated with it.

6.3 Negative Effects

6.3.1 Visual amenity relates to the human experience of the landscape. It is therefore affected by population distribution, patterns in settlement, the nature of the location at which the impacts occur and the number and types of viewers affected.

6.3.2 The Proposed Development introduces manmade structures into a rural landscape, therefore significant visual effects are experienced at seven of the nineteen
viewpoints assessed. Significant impacts with a severe level of effect are anticipated for one location (Hill of Olrig) which lies approximately 1.75 km from the Proposed Development and will overlook, from an elevated location, much of the OHL element of the Proposed Development.

6.3.3 Notwithstanding the anticipated visibility of the Proposed Development at this one location, visual effects of the Proposed Development for the majority of receptors are predicted to be moderate or minor.

6.3.4 Surveys have been undertaken to determine the species and numbers of birds flying across the LOD at heights which correspond to the likely heights of the Proposed Development.

6.3.5 These surveys, considered in association with a range of relevant published data sources identified hen harrier, Greenland greater white fronted geese, greylag geese and whooper swan populations to be of particular importance.

6.3.6 The survey data was used to predict the probability of a bird of each of these key species colliding with the Proposed Development. Impact assessment considered the significance of impacts on the SPA populations. In the absence of mitigation, the predicted collision rates for Greenland greater white-fronted goose and whooper swan would result in significant negative effects on their SPA populations. However, those effects would be reduced through mitigation such as fitting ‘bird diverters’, which make the wires of the OHL more visible to flying birds, to the Proposed Development or by undergrounding certain sections of the Proposed Development.

6.3.7 Undergrounding the section between Reaster to Gills Bay Substation would avoid impacts upon Greenland greater white-fronted goose in this section of the line. Bird diverters installed between Fryster and Wester Olrig would reduce the impacts on Greylag goose and whooper swan SPA populations to insignificant levels. No significant long term negative effects of the Proposed Development are predicted on any other environmental feature or resource following implementation of the proposed mitigation.

6.4 Minor Effects

6.4.1 A number of other possible effects have been identified, including:

- Minor effects on landscape character types close to the Proposed Development, including flat open peatland and open intensive farmland;
- the potential to affect identified Groundwater Dependent Terrestrial Ecosystems (GWDTE), particularly during the construction of access tracks – though temporary trackways would be used where there is a requirement to cross especially wet areas;
- temporary disturbance to sensitive bird species;
- construction noise and activity affecting sensitive species (e.g. otter and water vole in the River Thurso corridor close to the Proposed Development);
- effects on cultural heritage assets within the vicinity of the Proposed Development, including upon cairns/spreads and a quarry, from both tower placement and upgrade of access tracks; and
• temporary disruption to existing land use and drainage patterns during construction.

6.4.2 The ES has identified that these potential effects can be effectively mitigated so that any residual effects which may remain after mitigation are assessed to have been minor or negligible.

6.5 **Temporary Effects**

6.5.1 Impacts arising during the construction process are temporary, generally of a short term and intermittent nature. Construction impacts such as noise and dust generation, surface water runoff and localised changes to traffic movements etc. can be difficult to predict with any certainty as they result from specific construction activities, in certain locations at different stages of the development process. Given these uncertainties the ES has considered the principal activities that will occur during construction and explained what measures will be adopted to control them.

6.5.2 Actions required to avoid, reduce or control environmental impacts associated with construction, through the adoption of policies, procedures and site controls will be identified within the CEMD as identified in Section 6.1 above, setting out relevant topic specific CEMPs.

6.6 **Cumulative Effects**

6.6.1 The ES has considered the possible cumulative effects of the Proposed Development with a number of other proposed developments including:

• Wind farm developments (as shown on NTS Figure 6.1 in Annex A).

• The consented Dounreay- Mybster OHL connection and associated Thurso South Substation.

• The Meygen Tidal power conversion centre.

6.6.2 Localised cumulative impacts on the visual amenity of specific receptors are possible in certain areas along the Proposed Development but the wider effects on the receiving landscape would be no greater than for those arising from the Proposed Development alone.

6.6.3 No ecologically significant impacts as a result of cumulative loss of habitats are expected. The timing of construction work would be programmed to avoid sensitive ecological times of the year and to minimise any cumulative effect on sensitive species.

6.6.4 The potential for cumulative collision risk for sensitive bird species has been considered. Based on data available from SNH relating to the collision risk associated with other developments, no significant cumulative collision risk has been identified for Greenland Greater White Fronted Geese, or greylag geese. However, whooper swan collision risk would increase to 2.75 % of the SPA population which could put higher pressures on the SPA population. Modelling studies of whooper swan viability has shown that of such a number, the viability of the population would not be affected.

6.6.5 No other cumulative effects have been identified within the ES.
7 NEXT STEPS

7.1.1 The EIA process provides the opportunity for the public to make comments on the information contained within the ES to the ECDU. If you have comments you would like ECDU to take into account when considering this application, please write to the following address:

Energy Consents and Deployment Unit
Scottish Government
4th Floor
5 Atlantic Quay
150 Broomielaw
Glasgow
G2 8LU
Annex A: Figures